Development of ATLAS Liquid Argon Calorimeter Front-end Electronics for the HL-LHC

Andy Tiankuan Liu
on behalf of
the ATLAS Liquid Argon Group
Outline

1. Introduction
2. Front-end analog
 - 65 nm
 - 130 nm
 - SiGe
3. ADCs
4. Optical links
 - Laser driver array ASICs
 - Optical transmitter array module
5. Summary
ATLAS LAr Detector and Phase-II Upgrade

LAr Detector
@ 87K (Cold)
EM part not change
potential upgrade of FCal

Functionally the Same as the current detector

New Approach: Digitize and ship all digital data
@ 40 or 80Msps 14 bits
2 Gain Stages

The back end will also be replaced to readout the new front-end
Upgrade Objectives

• Detector capacitance 0.2 to 1.5 nF
• Noise requirements ~ 100 nA
• Signal dynamic range ~ 16 bits
• Moderate radiation tolerance requirements ~300 krad, 10^{13} n/cm2 1-MeV eq. neutrons
• Selectable Input impedance 25 or 50 Ω (+/-1.5%) to provide cable termination
• Digitize all 128 channels/FEB 14 bits, 2 gain scales @ 40 or 80Msps.
• Ship data from all channels off detector (trigger-less readout).
• Keep the power dissipation to the current one or lower.
Options Being Explored

1. Multi-ASIC/technology solutions
 - Preamplifier + shaper
 - ADC
 - Encoder + serializer
 - Laser drivers and optical transmitters

2. One ASIC System-on-a-Chip Solution
 - Preamplifier + shaper + ADC + serializer
 - Laser drivers and optical transmitters
Outline

1. Introduction

2. Front-end analog
 - 65 nm
 - 130 nm
 - SiGe

3. ADCs

4. Optical links
 - Laser driver array ASICs
 - Optical transmitter array module

5. Summary
Front-End System On Chip

- FESOC (front-end system on a chip): motivated and proposed
- HLC1: 8-ch. analog FE ASIC
 - Dual range
 - Programmable gain
 - Programmable termination
 - Programmable filter
 - 4x and 8x sum
- To be integrated with ADCs and mux/encoder/serializers
- Power dissipation ~1.2 W
- CMOS 65 nm
Preamp in 65 nm - Design

- New concept
- Fully differential amplifier with passive feedback
- Very stable termination (R and N independent of signal current)

\[v_i = -\frac{v_o}{N} \]

- R-noise: \(4kT/R \)
- Input impedance: \(+\frac{R}{N+1} \)
Preamp in 65 nm - Performance

- ENI ~57nA rms at 260pF, 40ns
- Linearity now within 0.1% at 9mA, within 0.5% at 10mA
- Power dissipation ~ 100mW/ch. from single 1.2V supply
- The layout design is being finalized, and the chip submission is imminent.
FE Analog in 130 nm - Design

Line termination

\[Z_{in\ PA} = \frac{R_0 + Z_{in\ (SCB)}}{1 + |G|} \]

Noise

\[\frac{4kTR_0}{(1 + |G|)^2} \]

<table>
<thead>
<tr>
<th></th>
<th>50 Ω</th>
<th>25 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>500 Ω</td>
<td>100 Ω</td>
</tr>
<tr>
<td>G</td>
<td>C1/C2=9</td>
<td>C1/C2=3</td>
</tr>
<tr>
<td>Noise</td>
<td>5 Ω</td>
<td>6Ω</td>
</tr>
<tr>
<td>Dynamic</td>
<td>2 mA with Rf=5kΩ</td>
<td>10 mA with Rf=1kΩ</td>
</tr>
</tbody>
</table>
Input impedance (Ω)

25.5Ω @1MHz

Impedance flat from 10 kHz to 100 MHz
< 1 Ω variation versus current due to Super Common base Zin variation

Frequency (Hz)

10 kHz 1 MHz 100 MHz

Integral nonlinearity with CR-RC2 (40 ns peaking time)

High gain (0-1-mA)

±0.2%

Low gain (1-10 mA)

±0.2%

Noise dominated by R0 and NMOS ampli: 150 nA with 1.5 nF

Tiankuan Liu, TWEPP, Karlsruhe, Germany, September 27, 2016
FE analog in 130 nm - Prototype

LAUROC : 8 Channel prototype
- Submitted April 2016
- Super Common Base type Preamp
- Programmable Zin: 25 or 50Ω
- 2 Gain Ranges: 2 or 10mA
- Input Noise eq. < 10Ω
- High current Saturation mitigation
- Preamp Power 7mA @ 2.5V ~ 18mW

Compare 130 nm and 65 nm:
- Test boards/benches similar
- Comparative measurements of 65/130 nm chips

Goal - Converge
FE Analog in SiGe (180 nm)

- Similar to the current design which is implemented with discrete components
- Bonding option for 25/50 Ω. No impedance/dynamic range tuning
- Might be marginal at High frequency (> 30 MHz) and large current
- Good noise performance on simulation: 25 Ω preamp: 86 mW, 97 nA for 1.0 nF with CR-RC2 shaping
- Layout exist. Submission is under discussion
Outline

1. Introduction
2. Introduction
3. Front-end analog
 – 65 nm
 – 130 nm
 – SiGe
4. ADCs
5. Optical links
 – Laser driver array ASICs
 – Optical transmitter array module
6. Summary
ADC in - Specs

- High resolution: **14 bits**
- High speed: **40-80 MS/s**
- Low power, small area
- Radiation-tolerant

Detector Output Signal

Phase-II Upgrade FEB (On detector)

Preamp

Analog Shaper

ADC

MUX & Serializer

16-bit DR

10 Gbps

Optical Links

To Back-end

Tiankuan Liu, TWEPP, Karlsruhe, Germany, September 27, 2016
Chip Architecture

- The work is still “in-progress” and the chip FEB2 context study started
- 65 nm CMOS
- 8-channel 14-bit ADCs at 40 MSps
- Outputs serialized at 320 MHz (DDR)
- QFN package preferred (100 pins, 0.5 mm pitch, 12 mm x 12 mm

Power cut
Possible Layout

Power cuts

Analog side

Digital side

References

ADC channels (DRE and SAR). Silicon space 0.2 x 1mm per channel

• Chip produces data volume of 5.12 Gbit/s
• Die size 1.98 x 1.95 mm
• 136 die I/O pads

Tiankuan Liu, TWEPP, Karlsruhe, Germany, September 27, 2016
Outline

1. Introduction
2. Front-end analog
 - 65 nm
 - 130 nm
 - SiGe
3. ADCs
4. Optical links
 - Laser driver array ASICs
 - Optical transmitter array module
5. Summary
Optical Links: Overview

- The optical link part will take advantage of lpGBT and Versatile Link +, together aiming at the development of rad-tol optical links.
- The major parts (mux, encoder and serializer) of lpGBT (65-nm CMOS technology) will be integrated with the front-end analog and ADCs. One group member of ATLAS LAr joins lpGBT.
- One group member of ATLAS LAr is designing laser array drivers and optical transmitter modules for Versatile Link +.

Related talk: Csaba Soos, Versatile Link PLUS Transceiver Development, 11:10 AM, Thursday.

Tiankuan Liu, TWEPP, Karlsruhe, Germany, September 27, 2016
Laser Driver Array: Design and Layout

Related
Talk: Di Guo, Developments of two 4 × 10-Gbps radiation-tolerant VCSEL array drivers in 65 nm CMOS, 3:40 PM, Wednesday.
Poster: Zhiyao Zeng, LDQ10P: A Compact Low-Power 4x10 Gb/s VCSEL Driver Array IC, today.

VLAD (VCSEL Array Driver) and IpVLAD (low-power VCSEL Array Driver) are 4-channel, 10-Gbps-per-channel VCSEL array driver ASICs designed in a 65-nm CMOS technology with different output structures.

VLAD output driver
IpVLAD output driver

Two-stage pre-driver
Laser Driver Array: Optical multi-channel test Results

- Total jitter = 48 ps
- Total power consumption 33.9 mW/ch

Signal source: Agilent J-BERT N4903B (12.5 Gb/s)
Oscilloscope: Agilent DSA91204A (12 GHz) with optical receiver Agilent 81495

- Total jitter 35 ps
- Total power consumption 21.6 mW/ch. This is a world record now.

10 Gbps optical eye with adjacent channel working simultaneously
Input: diff p-p 400 mV PRBS 7
Laser Driver Array: Module Development

- ATx (Array optical Transmitter) is a 12-channel optical transmitter module developed, based on the MOI/LTP from US Connec and the AZ8 connector from Samte with custom active-alignment method for the module assembly.
- ATx is used as a test vehicle for VLAD/lpVLAD.

ATx footprint: 10 mm x 15 mm. MOI with a Prizm connect to a 12-way fiber ribbon.

The base will be reduced from 2 mm to 1.2 mm. ATx modules will be 5.3 mm tall for now. In the final design we hope to reduce the height to 4.5 mm.
Summary

• The ATLAS LAr front-end readout electronics without trigger is under development to meet the high luminosity requirements.
• An approach of System-On-Chip is being targeted: integrating all front-end functional blocks (preamplifiers/shapers/ADCs/mux/encoders/serializers).
• Three front-end analog ASICs in early development stages show promising performances within termination, ranging capacitance range, input signal dynamic range and power requirements.
• New ADC design has been started.
• Two radiation-tolerant laser driver array ASICs and an optical transmitter modules are prototyped and tested.