Integration and testing of the DAQ system for the CMS phase 1 pixel upgrade

Bora Akgün for the CMS Collaboration

Abstract

The CMS pixel detector phase 1 upgrade in 2017 requires an upgraded DAQ to accept higher data rates. A new DAQ system has been developed based on a combination of custom and standard microTCA parts. Custom mezzanines on FC7 AMCs provide a front-end driver for readout, and front-end controller for configuration, clock and trigger. The DAQ system is undergoing a series of integration tests including readout of the pilot pixel detector already installed in CMS, checkout of the phase 1 detector during its assembly, and testing with the CMS central DAQ. This paper describes the DAQ system, integration tests and results, and an outline of the activities up to commissioning the final system at CMS in 2017.

Presented at TWEPP-16 Topical Workshop on Electronics for Particle Physics
Integration and Testing of the DAQ System for the CMS Phase 1 Pixel Upgrade

Dr. Bora Akgün on behalf of the CMS collaboration

Abstract: The CMS pixel detector phase 1 upgrade in 2017 requires an upgraded data acquisition (DAQ) system to accept higher data rates. A new DAQ system has been developed based on a combination of custom and standard $\mu$TCA parts. Custom mezzanines on FC7 AMCs provide a front-end driver for readout, and front-end controller for configuration, clock and trigger. The DAQ system is undergoing a series of integration tests including readout of the pilot pixel detector already installed in CMS, checkout of the phase 1 detector during its assembly, and testing with the CMS central DAQ. This paper describes the DAQ system, integration tests and results, and an outline of the activities up to commissioning the final system at CMS in 2017.

Keywords: Detector control systems; Data acquisition concepts; Optical detector readout concepts; Modular electronics
1 Introduction

The current pixel detector [1] consists of three barrel layers (BPIX) at radii of 4.4 cm, 7.3 cm and 10.2 cm, and two forward/backward disks (FPIX) at longitudinal positions of 34.5 cm and 46.5 cm and extending in radius from about 6 cm to 15 cm. The BPIX contains 48 million pixels covering a total area of 0.78 m$^2$ and the FPIX has 18 million channels covering an area of 0.28 m$^2$. These pixelated detectors produce 3-D measurements along the paths of the charged particles with single hit resolutions between 10 - 20 $\mu$m. The current pixel readout electronics was designed and optimized for the data rates and pixel occupancies expected up to the LHC design luminosity of $1 \times 10^{34}$ cm$^{-2}$ s$^{-1}$ with 25 ns bunch spacing. The goal of the Phase 1 upgrade is to replace the present pixel detector with one that can maintain a high tracking performance at luminosities up to $2.5 \times 10^{34}$ cm$^{-2}$ s$^{-1}$. Due to data losses in the read out chip (ROC) and reaching the maximum throughput rate for data links of the innermost layer of the current pixel system, the present system will not sustain the extreme operating conditions expected in Phase 1. The plan is to install and commission the phase 1 pixel detector with modified data acquisition (DAQ) and detector control systems (DCS) during an extended year-end technical stop at the end of 2016 and to have the new detector fully operational soon after.

For the CMS pixel phase 1 upgrade [2] an additional layer will be added in the forward and barrel pixel detectors and thus increase the number of required readout links from 1120 to 1696 for the barrel and from 448 to 672 in the forward pixel system, which yields a total of 2368 readout links. The first and second layer of the barrel system will use four and two links per module, respectively, to cope with the high occupancy and data rate. In addition, the new pixel detector will feature a fully digital readout system including new backend electronics. The new digital ROCs [3] operate on a 40 MHz clock and have a 160 Mbps serial output data stream. Two streams of eight ROCs each are multiplexed in a 320 Mbps stream by the token-bit manager chip (TBM). This stream is then
encoded using a four-to-five bit scheme to reduce bit-errors during transmission [4]. The output signal of the TBM is converted to an optical signal off the module and transmitted on a fiber to a Front-End Driver (FED) board in the backend electronics. In order to fit all the logic required for the decoding and deserialization of 24 input channels of a single FED card, the µTCA-based CMS Tracker Advanced-Mezzanine Card (CTA) [5], a revised version of the FC7 [6], has been selected as platform for the new digital FED. Since the µTCA standard offers several distinct advantages, such as modern FPGAs, higher speed communication, etc., over the presently installed VME-based system, for which spare-parts are limited and components are no longer available, it is planned to also upgrade the backend part of the control system of the Phase 1 pixel detector to use the CTA as Front-End Controller (FEC).

2 System Requirements for DAQ and Readout Architecture

The design of the backend electronics for the Phase 1 pixel detector follows a µTCA schema. It uses a redundant, dual-star µTCA backplane to distribute clock, trigger and fast commands that are received from the central CMS Trigger and Command Distribution System (TCDS) [7] via a specifically developed module called AMC13 [8].

An overview of the system architecture including auxiliary components required to interface with the central CMS services is shown in Figure 1. The pixel data from the detector front-end is sent to the FED, which decodes the incoming data stream and assembles the channel data of all 24 input channels into event fragments that are then pushed to the central DAQ. The control part of the system requires two different flavors of FECs that are based on the CTA and use identical hardware; Pixel FEC and Tracker FEC. The Pixel FEC distributes clock, trigger and fast signals to the pixel modules and in addition is responsible for controlling the DAC registers of ROCs and the TBM. The Tracker FEC is used to program the registers of the auxiliary electronics and components like opto-hybrids and DC-DC converters [9] via the I²C interface and PIA port of a CCU [10].

Overall, a total of 124 AMCs, with 108 being FEDs, 16 Pixel-FECs and 2 Tracker-FECs, distributed over a total of 12 crates, will be required to control and readout the barrel and forward pixel detector.

3 Phase I Pixel FED and FECs

The CTA shown in Figure 2, which is a variant of the FC7 card, is a full-size, double-width Advanced Mezzanine card holding a Xilinx Kintex 7 FPGA and offering two low-pin-count compatible (LPC) FPGA Mezzanine Card (FMC) slots. These slots allow the use of a variety of mezzanines for various applications, including compatibility with multi-Gigabit optical transceivers. The total number of high-speed (10 Gbps) serial links to the FPGA available on the front-panel is 20 and 12 links are available on the backplane connector. Moreover, there is a block of 4 Gb DDR3 RAM for data buffering that supports a transfer rate of 30 Gbps, and the firmware can be uploaded to the FPGA via a µSD card. The application specific FMCs and firmware make a CTA into a FED or FEC.

The data from the detector modules will be transmitted to the backend via a 400 Mbps digital protocol. Since this already includes four-to-five bit encoding, the real bandwidth available for pixel data is 320 Mbps which is sufficient to accommodate data rates expected from modules closest to
Figure 1. Overview of the $\mu$TCA DAQ system of the Phase 1 pixel detector. Modules are mounted on half disks and connected to the port cards via flex or twisted pair cables. There are two different types of optical hybrids on the port cards; pixel-opto-hybrid (POH) converts electrical signal from the modules to optical signal and delivers it to the Front-End Driver (FED), digital-opto-hybrid (pDOH) converts optical signal from the Pixel Front-End Controller (Pix FEC) to optical signal to the modules. Registers on the port cards and DC-DC units, used for powering, are programmed by Tracker Front-End Controller (Tk FEC) via Command Control Unit (CCU).

Figure 2. Front and back picture of the CTA AMC with the Xilinx Kintex 7 FPGA and two LPC compatible FMC connectors.
the interaction point. The hardware of a Pixel FED consists of a CTA board with a Receiver-FMC (Rx-FMC), which is a mezzanine having two 12-channel optical receivers, collecting signals from the pixel detector, and one SFP+ 10 Gbps S-Link Express transmitter for data transmission to the central DAQ. One CTA FED can read out 24 channels and transmit output data with 10 Gbps. The receivers used on the FMC are manufactured by FITEL and were specifically adapted to the wavelength at which the pixel-opto-hybrid (POH) transmitters operate (1310 nm) and tested at the desired speed of these links. Figure 3 (left) shows a picture of a Rx-FMC with a SFP+ attached to it. The Pixel FED also needs to receive clock and trigger signals from the TCDS system and the AMC13 via the $\mu$TCA backplane, in order to read out the module data. In addition, the Pixel FED sends a trigger-throttle signal (TTS) to the AMC13 which forwards this signal to the trigger system.

Figure 3. Left: 24 optical input channels, 2 FITEL 12 channel optical receivers, optimized for the 400Mb/s optical signal at 1310nm and SFP+ 10Gb/s transceiver for S-Link Express DAQ output to CMS Central DAQ. Right: FMC equipped with low-speed (80 Mb/s) optical transceivers; 8 SFPs per FMC.

The operation of the CMS pixel phase 1 detector requires two kinds of Front-End Controller boards, that are functionally equivalent to the present VME parts. Both devices use identical hardware but differ in the firmware running on the FPGA. The Tracker FEC offers a way to program auxiliary pixel supply electronics, via the CCU chips’ $I^2C$ and PIA interfaces, which is completely independent from the control of the pixel modules. The distribution of clock and trigger signals via the Tracker FEC is not used for the pixel detector. Each Tracker FEC can connect a number of CCU chips in a ring-like topology via redundant optical fiber connections that carry clock and data signals and the control is done via a token-ring protocol. The digital-opto-hybrid (DOH) transceivers convert the signal from optical to electrical levels and forward it to the CCUs. The $\mu$TCA implementation of the Tracker FEC will use the CTA board and to be compatible with the fibers and transceivers already installed in the detector, an FMC that can run at the lower speed (80 Mbps) of the control links is adapted. Figure 3 (right) shows a SFP FMC. For the CMS phase 1 pixel upgrade two $\mu$TCA Tracker FECs with two FMCs will be required to drive a total of four redundant CCU control-rings. The Pixel FEC is completely identical to the Tracker FEC in terms of the hardware. However, the underlying communication protocol and thus firmware differs. The Pixel FEC is responsible for distributing clock, trigger and fast signals to the detector front-end and for programming the DAC registers of the TBM and ROC chips on the detector modules. Commands are being sent to the modules via optical fibers through a modified version of the DOH (mDOH) mounted on the supply electronics. This connection is not redundant. The clock and
fast signals like trigger, reset and calibration pulse request, that are encoded in the clock line, are
decoded by Tracker Phase Locked Loop (TPLL) and Quartz Phase Locked Loop (QPLL)-chips
after the opto-electrical conversion, and forwarded to the modules on dedicated lines. The DAC
programming commands for ROC and TBM chips are carried on the data line of the control link and
are routed to the front-end through a series of delay and addressing ASICs. Each module connected
to a pixel-control link is identified by a unique, hardwired four-bit hub address. A total of 16 \( \mu TCA \)
Pixel FECs will be required for the Phase 1 detector.

4 System Tests in the Laboratory

The firmware and software development is ongoing for the \( \mu TCA \) components. Small scale systems
are used for development and testing of final detector parts, which advance development and help
finding bugs. There are three integration centers using \( \mu TCA \) backend: Fermilab, University of
Zurich and CERN. At Fermilab final check out of the FPIX detector is performed before being
shipped to CERN for installation in CMS. At University of Zurich \[11\] the focus is on testing the
optical components of the service cylinders and the integration test for BPIX. At CERN emphasis
is on firmware development, hardware tests and reception tests of arriving detector components.
A so called soak test facility has been set up at CERN. The rack layout is identical to the final
setup. The goal is to test all production parts before they are installed in the CMS service cavern.
The soak test includes firmware upload and power cycling of FED and FECs. It is a a test for infant
mortality while stressing the components. Moreover, a front-end emulator board (FED tester) is
designed to stress-test the FED firmware and perform measurements of optical receivers.

5 System Tests in the CMS Detector - Phase 1 Pixel Pilot System

In order to be best prepared for a short commissioning period and to take advantage of the long
shutdown during Long Shutdown 1 (LS1), a pilot system \[12\] was built which consists of eight
prototype pixel modules incorporating the new readout chain. The pilot system was installed in
2014 in the available space in the existing FPIX half cylinders, which host the auxiliary electronics.
A hybrid solution with new daughterboards on the existing FED was used at the beginning to
readout the new fully digital pixel system. The new \( \mu TCA \) FED system is used since March 2016.
The motivation of the pilot system was to learn in the actual collision environment of CMS how
the readout, control, and offline systems perform with the LHC collisions of 2015-2016. This has
provided valuable experience for the operation of the new pixel detector as well as enabling an early
start for the modifications that are required for the DAQ.

As shown in Figure 4, the pilot system half disks are integrated into the existing FPIX half
cylinders and commissioned using a test stand running a standalone test software at CERN. Pro-
totype detector calibration procedures implemented in the online software were validated after the
installation in CMS. The pilot system required addition of new hardware to the pixel DAQ system
at P5. The pilot system was initially controlled and read-out from dedicated VME boards placed in
a dedicated pilot system VME crate. The pilot VME crate has a pixel front-end controller (FEC)
motherboard with two mezzanine front-end controllers (mFECs), each connected to one of the pilot
system half-disks, which are serviced by separate optical fiber ribbons. Devices on the auxiliary
electronics are programmed by a separate tracker FEC with two mFECs, each connected to the pilot CCU boards in each half cylinder. One modified FED card with two daughter boards was used to receive the optical links from the two pilot system half-disks. One S-link connection, a data-link which can be used to connect front-end to readout at any stage in a dataflow environment, to the central CMS DAQ allowed readout of the pilot system FED in the usual data stream. Since March 2016 a prototype $\mu$TCA FED has been used with the pilot system. The $\mu$TCA FECs are installed in the pilot $\mu$TCA crate alongside with the $\mu$TCA FED.

The pilot system took collision data in CMS with the current pixel detector during 2015-2016 proton-proton runs both with VME and $\mu$TCA FEDs.

6 System Tests in the Future

Until now only small scale systems with low data throughput have been tested. The DAQ system will be fully qualified for the highest expected data rates before installation. A fully loaded crate (at least 8 FEDs) will be connected to the central DAQ processor of CMS sending emulated data patterns. The new Pixel detector DAQ will also be tested with all other CMS sub-systems to ensure a smooth start-up in 2017.

7 Conclusion

A new CMS phase 1 pixel DAQ system has been developed based on a combination of custom and standard $\mu$TCA parts. The DAQ system is undergoing a series of integration tests including readout of the pilot pixel detector already installed in CMS, checkout of the phase 1 detector during its assembly, and testing with the CMS central DAQ. It will also be tested for the high data rates expected during LHC running starting from 2017.

References


