ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

CHEP 2016, San Francisco (USA), 10-14 October 2016

Simon George
Royal Holloway, University of London
On behalf of the ATLAS Collaboration
High Luminosity LHC

Latest LHC long term schedule

PHASE I

- LS1: splice consolidation button collimators R2E project
- EYETS
- LS2: injector upgrade cryo Point 4 Civil Eng. P1-P5

30 fb⁻¹

150 fb⁻¹

300 fb⁻¹

PHASE II

2024 2025 2026 2027

- LS3: HL-LHC installation

3000 fb⁻¹

7 TeV 8 TeV 13-14 TeV

75% nominal luminosity

nominal luminosity

2 x nominal luminosity

radius damage

energy

TDAQ Phase-I: Construction

Commissioning & Integration

Maintenance & Operations

TDAQ Phase-II: R&D

Construction

Commissioning & Integration

Maintenance & Operations

Simon George CHEP 2016
ATLAS upgrade for High Luminosity LHC

- Motivation: high luminosity \Rightarrow high pile up*, increased radiation and readout bandwidth
- New Inner TracKer – silicon strips and pixels
- New Trigger & Data AcQuisition system
- Upgraded calorimeter and muon detectors
- Upgraded computing and software

* Multiple interactions per bunch crossing
TDAQ System Design
Overview of one of the two design options

- Level-0 Muon & Calo used to make initial fast rejection and identify Regions of Interest
- Level-1 hardware track trigger and high resolution calo data provide further rejection
- DAQ comprises readout, regional requests, data handling and storage
- Storage Handler decouples Event Filter from DAQ so it can work continuously, between fills
- Event Filter combines commodity processor farm and hardware tracking
Trigger strategy for HL upgrade

- High rate of low threshold inclusive single lepton triggers to maximize electroweak physics. Higher thresholds would significantly limit physics potential.
- Lower rate triggers for multiple low-\(p_T\) leptons, taus, jets and missing transverse energy
- Robustness against pileup through early use of high granularity calorimeter information and hardware tracking
- Upgrades to improve muon efficiency
- Trigger as close as possible to offline selection, to improve efficiency and minimise systematics
- Note: Level-1 rates projected to HL far exceed 100 kHz limit of Run 3 system

Estimated rates and thresholds for architectures described on following pages

| Item | Offline \(p_T\) Threshold [GeV] | Offline \(|\eta|\) | L0 Rate [kHz] | L1 Rate [kHz] | EF Rate [kHz] |
|-----------------------|--------------------------------|-----------------|---------------|---------------|---------------|
| isolated single \(e\) | 22 | < 2.5 | 200 | 40 | 2.20 |
| forward \(e\) | 35 | 2.4 – 4.0 | 40 | 8 | 0.23 |
| single \(\gamma\) | 120 | < 2.4 | 66 | 33 | 0.27 |
| single \(\mu\) | 20 | < 2.4 | 40 | 40 | 2.20 |
| di-\(\gamma\) | 25 | < 2.4 | 8 | 4 | 0.18 |
| di-\(e\) | 15 | < 2.5 | 90 | 10 | 0.08 |
| di-\(\mu\) | 11 | < 2.4 | 20 | 20 | 0.25 |
| \(e - \mu\) | 15 | < 2.4 | 65 | 10 | 0.08 |
| single \(\tau\) | 150 | < 2.5 | 20 | 10 | 0.13 |
| di-\(\tau\) | 40,30 | < 2.5 | 200 | 30 | 0.08 |
| single jet | 180 | < 3.2 | 60 | 30 | 0.60* |
| large-\(R\) jet | 375 | < 3.2 | 35 | 20 | 0.35* |
| four-jet | 75 | < 3.2 | 50 | 25 | 0.50* |
| \(H_T\) | 500 | < 3.2 | 60 | 30 | 0.60* |
| \(E_T^{miss}\) | 200 | < 4.9 | 50 | 25 | 0.50* |
| jet + \(E_T^{miss}\) | 140,125 | < 4.9 | 60 | 30 | 0.30* |
| forward jet\(^{*}\) | 180 | 3.2 - 4.9 | 30 | 15 | 0.30* |

Total: \(\sim 1000\) \(\sim 400\) \(\sim 10\)

Simon George CHEP 2016

ATLAS Phase-II Upgrade Scoping Document CERN-LHCC-2015-020
Level-0 Trigger

- **L0 Calo**
 - Coarse calorimeter data sent to three feature extractors (em/tau, jet and global) to find different types of trigger objects (TOBs)
 - Firmware upgrade; largely same hardware as Run 3

- **L0 Muon**
 - New readout and improved coverage to increase efficiency
 - Latency now long enough to use precision MDTs for sharper turn on

- **“L0Topo/CTP/RoIEngine”**
 - Receives trigger objects from L0 Calo and L0 Muon
 - Performs complex trigger selections (invariant mass, missing transverse energy, etc.) and applies the L0 trigger menu
 - On L0 Accept, the RoIEngine calculates the Regional Readout Requests (R3) to send back to the detectors via FELIX
 - RoIs cover at most 10% of detector => 100 kHz equivalent rate for readout
Level-1 Trigger

L1Global
- Low latency aggregation network for calo data; time multiplexed event processing in FPGA/GPU
- Process finer-grained calo information using all cells to improve e, γ, τ, jets, E_T^{miss}
- Combine refined calo objects and L0 muons with tracks from **L1Track**
- Make topological combinations

L1Track:
- Hardware tracking using AM chips to match data to patterns
- Finds tracks with $p_T > 4$ GeV in RoIs at 1 MHz
- For electron identification and to reduce the pileup background to multi-object events

See talk by B Allbrooke
Level-0-only option

- L1 hardware trigger and RoI Engine relocated to EF hardware & software
 - Consequently no major EF CPU increase
- Readout less complex but less flexible
- DAQ scaled for 1 MHz readout from all detectors
- Also looking at L0+L1 option in which lower latency is traded for higher L0 accept rate
Data Acquisition

• **Trends from custom to commodity hardware, and hardware to software**

• **Front End Link eXchange (FELIX)**
 - Routes between custom serial links and commodity multi-gigabit networks
 - Building on initial use in Phase-I

• **Data Handler**
 - Detector-specific data processing and monitoring.
 - Software toolkit and commodity computers replace custom hardware & firmware

• **Event Builder**
 - May be logical or physical
 - Data compression drives resources

• **Storage Handler**
 - Decouples Event Filter from DAQ so **EF can work continuously, between fills**
 - Requires storage volume of the order of **50 PB**, able to concurrently receive and serve a few TB/s

Simon George CHEP 2016
High Level Trigger CPU and software evolution

<table>
<thead>
<tr>
<th>LHC Run 1</th>
<th>LS1</th>
<th>LHC Run 2</th>
<th>LS2</th>
<th>Run 3</th>
<th>LS3</th>
<th>Run 4 HL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>2024</td>
<td>2025</td>
<td>2026</td>
<td>2027</td>
<td>2028</td>
<td>2029</td>
</tr>
</tbody>
</table>

Commodity CPUs
- 8-12 cores e.g. E5540, E5420, X5660
- 12-24 cores e.g. E5-2680v3
- 24+ cores Co-processors?

Event processing
- Multiple independent processes
- Offline algorithms wrapped
- Multi-processes with shared memory
- Offline algorithms wrapped
- Multi-thread, multiple events in flight
- Seamless integration of offline algorithms
- Multi-thread, multiple events in flight
- More thread-safety, parallelism, optimisation

PHASE I
- Multi-threading, multiple events in flight
- Offline algorithms wrapped

PHASE II
- Many cores? Hardware accelerators?
- 24+ cores Co-processors?

Simon George CHEP 2016

See talks by B Wynne, P Conde Muino
Event Filter: tracking expected to dominate CPU time

- Software/hardware hybrid solution
- Software for seeded precision tracking in RoIs
- Hardware for unseeded tracking
 - \textbf{FTK++}: AM chips, same board as L1Track
 - $p_T > 1$ GeV, for pileup suppression, b-tagging, E_T^{miss}, jet calibration, etc.
- Also studying
 - Hardware/software interplay
 - Software algorithms, parallelisation
 - Use of other hardware accelerators, e.g. GPUs

\textbf{Current approach does not scale}

\textbf{ATLAS Simulation}
Monte Carlo $t\bar{t}$ events $\sqrt{s} = 14$ TeV
2016 Online software

\textbf{Online beamspot algorithm}

\textbf{CPU time [ms]}

\textbf{pileup interaction multiplicity}
Summary & conclusions

- ATLAS has a TDAQ design to meet the challenges of HL-LHC
- Two-level hardware trigger based on Regions of Interest, also a single level option.
- Hardware tracking in L1 and EF used to tackle high pileup
- Trend in DAQ from custom hardware to commodity hardware and software
- Baseline will be documented in a TDR, due around the end of 2017
Backup material
HL-LHC physics motivation

- Studies of the light Higgs boson require precision at electroweak scale.
- Precision measurement of Higgs couplings are a window into new physics (including much higher mass scales than the LHC).
- Searches for physics Beyond the Standard Model (BSM) may require low cross section processes with large backgrounds, e.g. SUSY.
- Subtle BSM physics can only be found if the SM is well understood.
- European Strategy report (ECFA), P5 (DOE/NSF): HL-LHC needs at least 3000 fb$^{-1}$ (10 years at $\mathcal{L} = 7.5 \times 10^{34}$ cm$^{-2}$s$^{-1}$).
Motivation: Limitations of Run 3 TDAQ system at HL

<table>
<thead>
<tr>
<th>Item</th>
<th>Run 1 Offline p_T Threshold [GeV]</th>
<th>Run 3 Level-1 system performance at $L = 7.5 \times 10^{34}$ cm$^{-2}$ s$^{-1}$</th>
<th>Level-1 Rate [kHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>isolated Single e</td>
<td>25</td>
<td>22</td>
<td>200</td>
</tr>
<tr>
<td>single μ</td>
<td>25</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>di-γ</td>
<td>25</td>
<td>25</td>
<td>8</td>
</tr>
<tr>
<td>di-e</td>
<td>17</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>di-μ</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>$e - \mu$</td>
<td>17.6</td>
<td>17,12</td>
<td>8</td>
</tr>
<tr>
<td>single τ</td>
<td>100</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>di-τ</td>
<td>40,30</td>
<td>40,30</td>
<td>200</td>
</tr>
<tr>
<td>single jet</td>
<td>200</td>
<td>180</td>
<td>60</td>
</tr>
<tr>
<td>four-jet</td>
<td>55</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>120</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>jet + E_T^{miss}</td>
<td>150,120</td>
<td>140,125</td>
<td>60</td>
</tr>
</tbody>
</table>

Level-1 rates projected to HL far exceed 100 kHz limit of Run 3 system.

Without upgrade, higher thresholds significantly curtail physics potential.
Upgrade motivation: computing evolution

Shift away from clock speed scaling to increasing numbers of cores and other parallel processing features.

Commoditisation of co-processors/accelerators.

Evolution in programming paradigms, tools and libraries.

Computing models and software must adapt.

Gaudi/Athena design year ~2000

Charles Leggett, LBL
Read Out architecture

Front End LInk eXchange (FELIX), routes between **custom serial links** and **commodity multi-gigabit networks**

Data Handler

For detector-specific data processing and monitoring. Software toolkit and commodity computers replace custom hardware & firmware