ALICE luminosity determination for pp collisions at $\sqrt{s} = 8$ TeV

ALICE Collaboration

Abstract

Luminosity determination in ALICE is based on visible cross sections measured in van der Meer scans. In 2012, the Large Hadron Collider provided proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV. A van der Meer scan was performed, in which the cross section was measured for two classes of visible interactions, based on particle detection in the ALICE luminometers: the T0 detector with pseudorapidity coverage $4.6 < \eta < 4.9$, $-3.3 < \eta < -3.0$ and the V0 detector with pseudorapidity coverage $2.8 < \eta < 5.1$, $-3.7 < \eta < -1.7$. This document describes the experimental setup for such a measurement and reports its results. The analysis procedure used was described in a previous publication dedicated to the 13 TeV luminosity determination.

© 2017 CERN for the benefit of the ALICE Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license

*See Appendix A for the list of collaboration members
1 Introduction

Luminosity determination in ALICE (A Large Ion Collider Experiment) [1] at the Large Hadron Collider (LHC) is based on visible cross sections measured in van der Meer (vdM) scans [2, 3]. The visible cross section σ_{vis} seen by a given detector (or set of detectors) with a given trigger condition is a fraction of the total inelastic interaction cross section σ_{inel}: $\sigma_{\text{vis}} = \epsilon \sigma_{\text{inel}}$, where ϵ is the fraction of inelastic events that satisfy the trigger condition. In the following, a class of inelastic events satisfying a given trigger condition will be referred to as a reference process. Once the reference-process cross section (σ_{vis}) is measured, the luminosity at the ALICE interaction point (IP2) is determined as the reference-process rate divided by σ_{vis}. This procedure does not require a knowledge of ϵ.

In standard vdM scans the two beams are moved across each other in the transverse directions x (horizontal) and y (vertical). The x and y scans are performed separately, the beams being head-on in the non-scanned direction. Measurement of the rate R of the reference process as a function of the beam separation Δx, Δy allows one to determine the luminosity L for head-on collisions of a pair of bunches with particle intensities N_1 and N_2 as

$$L = \frac{N_1N_2f_{\text{rev}}}{(h_x h_y)},$$

(1)

where f_{rev} is the accelerator revolution frequency and h_x and h_y are the effective convolved beam widths in the two transverse directions. h_x and h_y are measured as the area below the $R(\Delta x, 0)$ and $R(0, \Delta y)$ curve (scan area), respectively, each divided by the head-on rate $R(0, 0)$. The cross section σ_{vis} for the chosen reference process is then

$$\sigma_{\text{vis}} = \frac{R(0, 0)}{L}.$$

(2)

The formalism of Eq. 1 assumes complete factorisation of the beam profiles in the two transverse directions, such that the beam overlap region is fully described by the product $h_x h_y$. Previous studies performed at the LHC [4–8] have shown that factorisation can be broken to a non-negligible level. Such non-factorisation effects can be studied and quantified by measuring the luminous region parameters via the distribution of interaction vertices, as a function of the beam separation.

In 2012, the LHC provided proton-proton (pp) collisions at a centre-of-mass energy $\sqrt{s} = 8$ TeV. The ALICE luminosity determination for this data sample is based on a vdM scan performed on July 17, in which the cross section was measured for two reference processes. In Sec. 2 the detectors used for the measurement are briefly described, along with the relevant machine parameters and the adopted scan procedure. The vdM scan analysis procedure is extensively described in a previous note [8] dedicated to the luminosity determination in pp collisions at $\sqrt{s} = 13$ TeV; it is briefly recalled in Sec. 3 where the results and uncertainties for the visible cross-section and the luminosity measurement are presented and discussed.

2 Experimental setup

In the July vdM scan, the cross section was measured for two reference processes: one is based on the V0 detector, the other on the T0 detector. A detailed description of these detectors is given in [1], and their performance is discussed in [9, 11]. The V0 detector consists of two hodoscopes, with 32 scintillator tiles each, located on opposite sides of the IP2, at distances of 340 cm (V0A) and 90 cm (V0C) along the beam axis, covering the pseudorapidity (η) ranges $2.8 < \eta < 5.1$ (V0A) and $-3.7 < \eta < -1.7$ (V0C). The T0 detector consists of two arrays of 12 Cherenkov counters each, located on opposite sides of IP2, at distances of 370 cm (T0A) and 70 cm (T0C) along the beam axis, covering the pseudorapidity ranges $4.6 < \eta < 4.9$ (T0A) and $-3.3 < \eta < -3.0$ (T0C). Note that the clockwise-travelling LHC beam moves from side A to side C. The C side is the one hosting the ALICE muon arm [1].
The V0-based trigger condition, chosen as the reference process, requires at least one hit in each detector hodoscope, i.e. on both sides of IP2. A similar trigger condition defines the T0-based reference process, with the additional condition that the longitudinal coordinate of the interaction vertex lies in the range $|z| < 30$ cm, where $z = 0$ is the nominal IP2 position. More details on this online cut, which aims to reject the background from beam-gas and beam-satellite interactions, are given in [8].

During the vdM scan session, each proton beam consisted of 50 bunches and 31 bunch pairs were colliding at IP2. The minimum spacing between two consecutive bunches in each beam was 1 ms. The β^* value at IP2 was 10 m. The nominal half vertical crossing angle of the two beams at IP2 was -212 μrad, the minus sign indicating that the two beams exit the crossing region with negative y coordinate with respect to the beam axis. The current in the ALICE solenoid (dipole) was 30 kA (6 kA), corresponding to a field strength of 0.5 T (0.7 T). The maximum beam separation during the scan was about 0.6 mm, corresponding to about six times the RMS of the transverse beam profile (σ_{beam}). The reference-process rates were recorded separately for each colliding bunch pair. Two independent measurements per bunch pair were performed by repeating the horizontal and vertical scan pair twice. In addition, a length-scale calibration scan was performed.

The proton bunch intensities were on the order of $7-11 \times 10^{10}$ protons per bunch. The bunch-intensity measurement is provided by the LHC instrumentation [12]: a DC current transformer (DCCT), measuring the total beam intensity, and a fast beam current transformer (fBCT), measuring the relative bunch populations. For the relative bunch populations, data from a second device, the ATLAS beam pick-up system (BPTX [13]) is also used. The measured beam intensity is corrected for the fraction of ghost and satellite charges. A measurement of ghost charge is provided independently by the LHCb collaboration, via the rate of beam-gas collisions occurring in nominally empty bunch slots, as described in [15], and by the LHC Longitudinal Density Monitor (LDM), which measures synchrotron radiation photons emitted by the beams [16]. The resulting ghost-charge correction factor to the bunch-intensity product N_1N_2 is 0.989 ± 0.002, where the uncertainty includes the difference between the two measurements. The LDM provides in addition a measurement of the satellite-charge fraction. For this fill, the satellite-charge correction factor to the bunch intensity product amounts to 0.9930 ± 0.0003.

3 Analysis and results

The reader is referred to Ref. [8] for a detailed description of all the analysis steps. Here, we briefly recall the main analysis features and provide numerical values for the relevant quantities entering the analysis.

The rates for the T0- and V0-based reference process are determined from the raw trigger rates by taking into account contamination from beam-background, pileup effects and time-dependence of the bunch intensities. The correction for fake coincidences originating from pileup uses the ratios of single-side (A&!C and C&!A, i.e. no signal on one of the two sides) to two-side (A&C) events $\alpha = \mu_{A&!C}/\mu_{\text{vis}}$ and $\beta = \mu_{C&!A}/\mu_{\text{vis}}$, where μ is the average number of events of a given type in a bunch crossing: $\mu_{\text{vis}} = L \sigma_{\text{vis}}$, and similarly for $\mu_{A&!C}$ and $\mu_{C&!A}$. These were determined by means of dedicated data-taking at low interaction rate, and found to be $\alpha = 0.550$, $\beta = 0.467$ for the T0, $\alpha = 0.0725$, $\beta = 0.0725$ for the V0, with negligible statistical uncertainty. The nominal separation values are corrected for beam-beam deflection [17] and orbit drifts.

The luminous region parameters used for the length-scale and non-factorisation corrections are measured

1. The $\beta(z)$ function describes the single-particle motion and determines the variation of the beam envelope as a function of the coordinate along the beam orbit (z). The notation β^* denotes the value of the β function at the interaction point.

2. The radio-frequency (RF) configuration of the LHC is such that the accelerator orbit is divided in 3564 slots of 25 ns each. Each slot is further divided in ten buckets of 2.5 ns each. In nominally filled slots, the particle bunch is captured in the central bucket of the slot. Following the convention established in [13], the charge circulating outside of the nominally filled slots is referred to as ghost charge; the charge circulating within a nominally filled slot but not captured in the central bucket is referred to as satellite charge.
via the distribution of interaction vertices, determined with the ALICE Inner Tracking System 18 and Time Projection Chamber 19 detectors.

The scan curves are fitted with a modified Gaussian function; two more models, one based on a double Gaussian function and one which uses numerical integration instead of a fit, are also used to evaluate systematic uncertainties. For each scan, the effective beam widths h_x, h_y and the head-on rate $R(0,0)$ are computed from the fit parameters. The beam widths are corrected by a length-scale calibration factor measured in a dedicated scan. The horizontal (vertical) factor is the slope parameter of a linear fit to the measured horizontal (vertical) vertex displacement versus the nominal one. Both fits are shown in Fig. 1. For both directions, the agreement between data and fit is not perfect ($\chi^2/\text{ndf} \approx 3-6$). To account for this, the fit is repeated after rescaling the uncertainties on the vertex position by $\sqrt{\chi^2/\text{ndf}}$. The final correction factor (obtained as the product of the two slopes) is 1.010 ± 0.003.

The measured beam widths are combined with the bunch intensities and head-on rates to determine the visible cross sections (Eq. 1 and 2). The results are corrected for non-factorisation effects, evaluated by simultaneously fitting the rates and the luminous region parameters (positions, sizes, transverse tilt) with a three-dimensional non-factorisable double-Gaussian model 20, and computing the bias on the head-on luminosity with respect to a factorisable model. An example of the fit is shown in Fig. 2. The resulting correction factor to σ_{vis} is 1.046 ± 0.005 (stat.). The systematic uncertainty on this quantity is evaluated by comparing the results obtained with different fitting schemes, and by comparing the standard result, obtained from a bunch-integrated analysis, with that obtained using a bunch-by-bunch correction. The former test yields a maximum difference of 1%, the second of 0.3%. These values are combined with the statistical uncertainty, for a total uncertainty of 1.2%.

The measured visible cross sections for the T0-based (V0-based) reference process in the two scans are shown in Fig. 3 (Fig. 4) for all the colliding bunch pairs, as a function of the product N_1N_2 of the colliding bunch intensities. Within uncertainties, the visible cross-section does not depend on N_1N_2. The combined effect of the beam-beam deflection and orbit drift correction is about 2% for the first scan, and slightly smaller for the second scan. The effect of orbit drift alone is about 0.3%. For both T0 and V0, the results from the two scans are compatible within statistical uncertainties (Fig. 3 and 4). The weighted average of the results of the two scans is retained as the final result: $\sigma_{\text{T0}} = 25.50 \pm 0.01$ (stat.) mb, $\sigma_{\text{V0}} = 55.75 \pm 0.03$ (stat.) mb. In order to test the pileup correction, the ratio $\sigma_{\text{T0}}/\sigma_{\text{V0}}$ obtained from the vdM scan (where, for head-on beams, $\mu_{\text{vis}} \simeq 0.53$ for the V0 and $\simeq 0.24$ for the T0) was compared to the ratio between the T0 and V0 rates measured at lower interaction rate ($\mu_{\text{vis}} \simeq 0.05$ for the V0...
Fig. 2: (Colour online) Luminous region parameters and T0 rate as a function of separation during a horizontal scan, as fitted by a three-dimensional non-factorisable model [20] (dashed red line). The centroids are shown in the top row, the RMS sizes are shown in the middle row, the transverse tilt is shown in the bottom row together with the T0 rate.

and $\simeq 0.023$ for the T0) in a fill close in time to the vdM scan and a negligible (<0.1%) difference was found. A list of all the systematic uncertainties considered for the visible cross-section measurement is presented in Table 1. Uncertainties not discussed above are evaluated as detailed in [8]. Combining all the uncertainties one obtains for the T0 (V0) a total systematic uncertainty of 2.4% (2.6%), with an uncorrelated component between the two measurements arising from pileup and background subtraction.

The results for the visible cross sections are then

$$\sigma_{T0} = (25.5\pm0.5) \text{ mb}, \quad \sigma_{V0} = (55.8\pm1.2) \text{ mb},$$

where the statistical uncertainties are negligible with respect to the systematic ones.

In order to test the stability of the luminosity measurement provided by the T0 and the V0, the ratio between their trigger rates in pp collisions at $\sqrt{s} = 8$ TeV has been computed for all runs recorded in 2012 at this collision energy. During this period (about 7 months of data-taking), collisions at IP2 were delivered in the so-called main-satellite mode, for which the high-intensity bunches of one of the two beams were collided with satellite bunches from the other. The minimum spacing between main bunches was 50 ns, leading to a minimum spacing between main-satellite encounters of 25 ns. ALICE took data with μ_{vis} ranging from 0.0005 to 0.015 for the V0. The reference process rates are determined from

3In the ALICE nomenclature, a run is a set of data collected within a start and a stop of the data acquisition, under stable detector and trigger configuration. For the considered data-taking period, the duration of a run ranges from $\simeq 10$ minutes to $\simeq 8$ hours.
Fig. 3: Visible cross section for the T0 measured in the first (top) and second (bottom) vdM scan, as a function of the product of the intensities of the colliding bunch pair. Only the statistical uncertainties are shown. The solid line is a constant fit to the data.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-factorisation</td>
<td>1.2%</td>
</tr>
<tr>
<td>Orbit drift</td>
<td>0.3%</td>
</tr>
<tr>
<td>Beam-beam deflection</td>
<td>0.7%</td>
</tr>
<tr>
<td>Dynamic β^*</td>
<td>0.7%</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>0.2% (T0), 1.2% (V0)</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.5% (T0), < 0.1% (V0)</td>
</tr>
<tr>
<td>Length-scale calibration</td>
<td>0.3%</td>
</tr>
<tr>
<td>Fit model</td>
<td>0.3%</td>
</tr>
<tr>
<td>$h_x h_y$ consistency (T0 vs V0)</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Luminosity decay</td>
<td>0.7%</td>
</tr>
<tr>
<td>Bunch-by-bunch consistency</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Scan-to-scan consistency</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Beam centreing</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Bunch intensity</td>
<td>0.4%</td>
</tr>
<tr>
<td>Total on visible cross section</td>
<td>1.91% (T0), 2.19% (V0)</td>
</tr>
<tr>
<td>Stability and consistency</td>
<td>1.4%</td>
</tr>
<tr>
<td>Total on luminosity</td>
<td>2.36% (T0), 2.60% (V0)</td>
</tr>
</tbody>
</table>

Table 1: Relative uncertainties on the measurement of visible cross sections and luminosity in pp collisions at $\sqrt{s} = 8$ TeV.
ALICE luminosity determination for pp collisions at $\sqrt{s} = 8$ TeV

Fig. 4: Visible cross section for the V0 measured in the first (top) and second (bottom) vdM scan, as a function of the product of the intensities of the colliding bunch pair. Only the statistical uncertainties are shown. The solid line is a constant fit to the data.

Fig. 5: (Colour online) Ratio of the T0 rate to that of the V0 for pp collisions at $\sqrt{s} = 8$ TeV, as a function of the time-ordered run number. The central horizontal dashed line indicates the expected ratio from the vdM scan, the upper and lower lines define its uncertainty band.
the raw rates with the same procedure used in the vdM scan and described in [8]. In order to suppress the bias induced by after-pulses on the V0 rates for dense filling schemes, the raw rates are measured after the data-acquisition system veto and corrected by the trigger dead-time. The results are shown as a function of the progressive run number in Fig. 5. Although a slight decreasing trend is observed, the run-by-run ratio is generally compatible within uncertainties with the one measured in the vdM scan, and so is its average value over the whole data-taking period. The fluctuations observed in the first group of runs reflect initial setting-up of the T0 and V0 working parameters (gates, thresholds, high voltages). The RMS of the ratio distribution over this period is 1.4%, and it is assigned as an additional uncertainty to the luminosity measurement.

4 Conclusions

In 2012, ALICE took data with pp collisions at $\sqrt{s} = 8$ TeV. In order to provide a reference for luminosity determination, a vdM scan was performed and visible cross sections were measured for two processes, based on the T0 (with pseudorapidity coverage $4.6 < \eta < 4.9$, $-3.3 < \eta < -3.0$) and V0 ($2.8 < \eta < 5.1$, $-3.7 < \eta < -1.7$) detectors. The two detectors provide independent measurements of the luminosity, with a total uncertainty of 2.4% for the T0 and 2.6% for the V0. A detailed list of the origin and size of the considered uncertainties for both, the visible cross section and the luminosity measurement, is reported in Table 1.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC) , China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology , Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo
ALICE luminosity determination for pp collisions at $\sqrt{s} = 8$ TeV

References

ALICE Collaboration

ALICE luminosity determination for pp collisions at $\sqrt{s} = 8$ TeV
A. Zaman15, C. Zampolli35, H.J.C. Zanoli124, N. Zardoshti113, A. Zarochentsev138, P. Závada57, N. Zaviyalov111, H. Zbroszczyk140, M. Zhalov98, H. Zhang7,22, X. Zhang7, Y. Zhang7, C. Zhang64, Z. Zhang7, C. Zhao21, N. Zhigareva65, D. Zhou7, Y. Zhou93, Z. Zhou22, H. Zhu7,22, J. Zhu7,117, X. Zhu7, A. Zichichi12,27, A. Zimmermann106, M.B. Zimmermann53,72, S. Zimmermann116, G. Zinovjev7, J. Zmeskal116, S. Zou7

Affiliation Notes

1 Deceased
II Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
III Also at: Georgia State University, Atlanta, Georgia, United States
IV Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia
V Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
VI Also at: Institute of Theoretical Physics, University of Wroclaw, Poland

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, California, United States
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
10 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12 Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
13 Chicago State University, Chicago, Illinois, United States
14 China Institute of Atomic Energy, Beijing, China
15 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
16 Departamento de Física de Partículas y IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
17 Department of Physics, Aligarh Muslim University, Aligarh, India
18 Department of Physics, Ohio State University, Columbus, Ohio, United States
19 Department of Physics, Pusan National University, Pusan, South Korea
20 Department of Physics, Sejong University, Seoul, South Korea
21 Department of Physics, University of Oslo, Oslo, Norway
22 Department of Physics and Technology, University of Bergen, Bergen, Norway
23 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
26 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
ALICE luminosity determination for pp collisions at $\sqrt{s} = 8$ TeV

27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
29 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
30 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
31 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
32 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
33 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
35 European Organization for Nuclear Research (CERN), Geneva, Switzerland
36 Excellence Cluster Universe, Technische Universität München, Munich, Germany
37 Faculty of Engineering, Bergen University College, Bergen, Norway
38 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
39 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
40 Faculty of Science, P.J. Šafářik University, Košice, Slovakia
41 Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway
42 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
43 Gangneung-Wonju National University, Gangneung, South Korea
44 Gauhati University, Department of Physics, Guwahati, India
45 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
46 Helsinki Institute of Physics (HIP), Helsinki, Finland
47 Hiroshima University, Hiroshima, Japan
48 Indian Institute of Technology Bombay (IIT), Mumbai, India
49 Indian Institute of Technology Indore, Indore, India
50 Indonesian Institute of Sciences, Jakarta, Indonesia
51 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
52 INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
53 INFN, Sezione di Bari, Bari, Italy
54 INFN, Sezione di Bologna, Bologna, Italy
55 INFN, Sezione di Cagliari, Cagliari, Italy
56 INFN, Sezione di Catania, Catania, Italy
57 INFN, Sezione di Padova, Padova, Italy
58 INFN, Sezione di Roma, Rome, Italy
59 INFN, Sezione di Torino, Turin, Italy
60 INFN, Sezione di Trieste, Trieste, Italy
61 Inha University, Incheon, South Korea
62 Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
63 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
64 Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
65 Institute for Theoretical and Experimental Physics, Moscow, Russia
66 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
67 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
68 Institute of Physics, Bhubaneswar, India
69 Institute of Space Science (ISS), Bucharest, Romania
70 Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
71 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
72 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
Technical University of Split FESB, Split, Croatia

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

The University of Texas at Austin, Physics Department, Austin, Texas, United States

Universidad Autónoma de Sinaloa, Culiacán, Mexico

Universidade de São Paulo (USP), São Paulo, Brazil

Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

Universidade Federal do ABC, Santo Andre, Brazil

University of Houston, Houston, Texas, United States

University of Jyväskylä, Jyväskylä, Finland

University of Liverpool, Liverpool, United Kingdom

University of Tennessee, Knoxville, Tennessee, United States

University of the Witwatersrand, Johannesburg, South Africa

University of Tokyo, Tokyo, Japan

University of Tsukuba, Tsukuba, Japan

Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France

Università degli Studi di Pavia and Sezione INFN, Pavia, Italy

Università di Brescia and Sezione INFN, Brescia, Italy

V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia

Variable Energy Cyclotron Centre, Kolkata, India

Warsaw University of Technology, Warsaw, Poland

Wayne State University, Detroit, Michigan, United States

Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

Yale University, New Haven, Connecticut, United States

Yonsei University, Seoul, South Korea

Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany