Search for Vector-Like Quarks

Erich W. Varnes
University of Arizona
for the ATLAS Collaboration

Phenomenology 2017 Symposium
Pittsburgh, PA, USA
May X, 2017
Why Vector-Like Quarks?

• VLQ are colored, fractionally-charged fermions that are non-chiral under SU(2)
 - why search for these particular particles?

• Well-motivated:
 - appear in many BSM models (Little Higgs, extra dimensions, etc)
 - cancel quadratic divergences in Higgs mass
 - (maybe) explain fermion mass hierarchy

• Allowed
 - not constrained by Higgs or FCNC measurements

• Accessible at the LHC
 - mass $< \sim 2$TeV to preserve naturalness
VLQ Phenomenology

- Both “normal” ($-1/3$, $2/3$) and “exotic” ($-4/3$, $5/3$) charges possible
- Can appear as SU(2) singlets, doublets, or triplets
- Natural models tend to favor coupling to 3rd-gen SM quarks
- Production via QCD (pair) or EW (single) interactions

Cross section depends only on mass

Cross section depends on mass and EW coupling
Both charged- and neutral-current decays are possible for B and T:

- $B \rightarrow Zb, Hb, Wt$
- $T \rightarrow Zt, Ht, Wb$

BRs are constrained in some models

Wide variety of potential signatures

But the general case should be considered as well

JHEP 0911, 030 (2009)
General Strategy

• Searches are typically targeted toward a particular VLQ in a particular decay mode
 - often substantial cross-sensitivity exists

• Backgrounds estimated using:
 - MC for irreducible sources (e.g. Pythia, Sherpa, POWHEG…)
 - data-driven methods for reducible sources (i.e. fake/non-prompt leptons and electron charge misID)

• Data assessed for evidence of VLQ by either counting number of events passing selection or from the distribution of a sensitive variable

• Limits are set at 95% CL using the CLS method
Search for $T \to Zt+X$

- Assume Z decays to $\nu\nu$, with a charged lepton from one of the other objects.
- Signature: 1 lepton, ≥ 4 jets (≥ 1 b-tagged, ≥ 2 large-radius), E_T^{miss}
- Control regions used to assess background modeling.

Signal region is blinded until control regions are understood.
Search for $T \to Zt+X$

- Then compare yields to SM expectation in:
 - ‘validation regions’ with small signal contribution
 - signal region

- One key variable: m_{T2}
 - this is a ‘partial mass’ of particles with invisible decay products
 - kinematic endpoint is at parent particle mass
 - used to suppress W and top backgrounds
Search for $T \rightarrow Zt + X$

- Good agreement between observed yield and SM expectation in signal region
- Proceed to setting limits in various scenarios:

Singlet model BRs

For any BRs

- Observed limit
- Expected limit
- $\pm 1 \sigma$
- $\pm 2 \sigma$
- $T\bar{T}$ production
- SU(2) singlet

870 GeV

ATLAS Preliminary
$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
Limit at 95% CL

ATLAS Preliminary
$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
Observed 95% CL mass limit [GeV]

BR($T \rightarrow Ht$)

BR($T \rightarrow Wb$)
Search for $T \rightarrow Wb + X$

- Final-state objects are similar to $T \rightarrow Wb$ search
 - one lepton, ≥ 4 jets ($\geq 1 b$-tagged), $E_{T\text{miss}}$

- Optimized for Wb by:
 - reconstructing ν momentum, and requiring $\Delta R(l, \nu) < 0.8$

- defining separate (‘boosted’) SR for events with jet consistent with $W \rightarrow qq$

$S_T \equiv \sum |p_T|$ for jets, l, $E_{T\text{miss}}$
Search for $T \rightarrow Wb + X$

- Leptonically-decaying T candidate mass used to test for signal

ATLAS-CONF-2016-102

Phenomenology 2017 Symposium
May, 2017
Search for $T \rightarrow Ht + X$

- Two separate topologies considered: 0-lepton and 1-lepton
 - $E_{T\text{miss}} > 200$ GeV for 0-lepton events
 - Ht signature selected by requiring ≥ 2 b-tagged jets

- Several signal regions defined, based on:
 - number of b-tagged jets
 - number of $R = 1.0$ jets consistent with Higgs or top decay
 - kinematic variables
 - these allow separate sensitivity to low- and high-mass signals
Search for $T \rightarrow Ht + X$

- Variable used to test for signal is m_{eff}:

 $$m_{\text{eff}} \equiv \sum |p_T|_{\text{jets,l}, E_T^{\text{miss}}}$$

- Distribution in the most sensitive signal regions:
Search for $T \rightarrow Ht + X$

- Limits with all signal regions combined
 - both 0- and 1-lepton

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 13.2 fb$^{-1}$

Ht+X Combination

1020 GeV

95% CL mass limit [GeV]
Search using same-sign leptons

- Events with 2 like-charge leptons are rare in SM
 - low background \rightarrow sensitive to many BSM effects, incl. VLQ
- Challenge: understanding of rare backgrounds: e charge mis-ID, fake/non-prompt leptons
- Multiple SRs defined
 - allows sensitivity to B, T, and $T^{5/3}$ VLQ

<table>
<thead>
<tr>
<th>Definition</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^-+\mu^+\mu^-+\mu^+{\bar{\mu}}^{-}$, $N_{\text{jets}} \geq 2$</td>
<td>$E_T^{\text{miss}} > 40$ GeV</td>
</tr>
<tr>
<td>$N_b = 1$</td>
<td>SR0</td>
</tr>
<tr>
<td>$N_b = 2$</td>
<td>SR1</td>
</tr>
<tr>
<td>$N_b \geq 3$</td>
<td>SR2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_T \geq 700$ GeV</td>
<td>$40 < E_T^{\text{miss}} < 100$ GeV</td>
</tr>
<tr>
<td>$N_b = 1$</td>
<td>SR3</td>
</tr>
<tr>
<td>$E_T^{\text{miss}} \geq 100$ GeV</td>
<td>SR4</td>
</tr>
<tr>
<td>$N_b = 2$</td>
<td>SR5</td>
</tr>
<tr>
<td>$40 < E_T^{\text{miss}} < 100$ GeV</td>
<td>SR6</td>
</tr>
<tr>
<td>$E_T^{\text{miss}} \geq 100$ GeV</td>
<td>SR7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_b = 3$</td>
<td>$E_T^{\text{miss}} > 40$ GeV</td>
</tr>
<tr>
<td>$N_b \geq 3$</td>
<td>SR8</td>
</tr>
</tbody>
</table>
Search using same-sign leptons

- No excess seen. Resulting limits:

\[\text{ATLAS Preliminary} \]
\[\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1} \]

\begin{align*}
\text{SS dilepton / trilepton + b-jets} \\
\text{Observed limit} \\
\text{Expected limit} \\
\text{\pm 1\sigma} \\
\text{\pm 2\sigma} \\
\text{Theory (NNLO)}
\end{align*}

\[\begin{array}{c|c}
\text{780 GeV} & \text{830 GeV} \\
\end{array} \]
Search for single VLQ production

- Cross section depends on WQb coupling
- Can become dominant mechanism at high VLQ mass:

• Search focussed on $T/Y \rightarrow Wb+X$

• Selection:
 - 1 lepton, 1 high-p_T b-tagged jet, $E_{T\text{miss}}$
 - no additional high-p_T central jets
 - ≥ 1 forward jet

JHEP 0911, 030 (2009)
Search for single VLQ production

- Reconstructed VLQ mass used to test for signal

ATLAS-CONF-2016-072

ATLAS Preliminary

\(\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1} \)

\(Q \rightarrow Wb, Q = T \text{ or } Y \)

Post-Fit

ATLAS Preliminary

\(\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1} \)

\(Q \rightarrow Wb, Q = T \text{ or } Y \)

SR

95% CL Exclusion Limits on Coupling

\(\frac{W_b}{C_\nu} \)

Observed

Expected \(\pm 1 \sigma \)

Expected \(\pm 2 \sigma \)
Summary

• ATLAS is pursuing a broad search for vector-like quarks
 - using multiple decay channels to cover all possible branching ratios
• No evidence for their existence uncovered so far
• Still to come:
 - updates using the full 2016 data sample
 ✦ including channels not presented here
 - combination of searches to obtain maximal sensitivity
 - an additional ~70 fb\(^{-1}\) of data to be collected by end of 2018