ATLAS @ LHC: status and recent results

28th International Symposium on Lepton Photon Interactions at High Energies

Sun Yat-Sen University, Guangzhou China
7 August 2017

Rob McPherson University of Victoria / IPP + TRIUMF
On behalf of the ATLAS Collaboration
• 182 Institutions in 38 Countries
 - Including 9 Chinese institutes
• ~ 2900 Scientific Authors
 ~ 1900 with PhD, contributing to M&O share
 ~ 1000 Students
Outline of Talk

• ATLAS data-taking and performance
• ATLAS recent physics analysis results
• ATLAS Upgrades
• Summary
Outline of Talk

- ATLAS data-taking and performance
- ATLAS recent physics analysis results
- ATLAS Upgrades
- Summary
Excellent but Challenging LHC Performance

- 2016 p-p $\mathcal{L}_{\text{PEAK}}$ record $\approx 1.4 \times 10^{34}$ cm$^{-2}$ s$^{-1}$
 μ (peak) ≈ 44 interactions per crossing
 $\int \mathcal{L} = 38.5$ fb$^{-1}$ delivered by LHC

- 2017 p-p $\mathcal{L}_{\text{PEAK}}$ already $\approx 1.7 \times 10^{34}$ cm$^{-2}$ s$^{-1}$
 μ (peak) ≈ 50 interactions per crossing
 $\int \mathcal{L} = 11.7$ fb$^{-1}$ delivered by LHC (2017/08/04)

Pileup: average per fill

$\int \mathcal{L} = 51.9$ fb$^{-1}$

μ (peak) ≈ 25 other interactions

Z\rightarrow\mu\mu with 25 other interactions
Trigger Performance in 2016

- Trigger menu: physics, monitoring, calibration requirements
 - ~2000 active menu items
 - Level-1 rate: up to 100 kHz, Physics output rate ~1kHz
 - **Challenge: non-linear growth of trigger rates with pileup**
 - *E*$_T^{\text{miss}}$ resolution badly degraded by pileup potentially ⇒ threshold increase?

Typical trigger thresholds at 1.4x1034 cm$^{-2}$s$^{-1}$:
- *E*$_T$(e) > 26 GeV
- *p*$_T$(μ) > 26 GeV
- *E*$_T^{\text{miss}}$ > 110 GeV
- *E*$_T$(jet) > 380 GeV
- *E*$_T$(γ) > 140 GeV
Physics Object Performance

- **Physics analyses start with detector data, then physics objects:**
 - electrons, muons, taus, jets, b-tagged jets, E_t^{miss} etc.
- **Huge effort throughout 2016 and early 2017 to stabilize performance**
 - Eg: $m(ee)$ in $Z\rightarrow ee$:

 Mean of $m(ee)$ for $Z\rightarrow ee$ events vs. pile-up showing sub per-mille stability in 2016

 2016

 2016 & 2017

 2017-08-07 Rob McPherson
Outline of Talk

• **ATLAS** data-taking and performance
• **ATLAS** recent physics analysis results
• **ATLAS** Upgrades
• Summary
Outline of Talk

• ATLAS data-taking and performance
• ATLAS recent physics analysis results
• ATLAS Upgrades
• Summary

Only a few selected results presented here
Standard Model Processes

Standard Model Production Cross Section Measurements

ATLAS Preliminary
Run 1,2 $\sqrt{s} = 7, 8, 13$ TeV

LHC pp $\sqrt{s} = 7$ TeV
- Data $4.5 - 4.9$ fb$^{-1}$

LHC pp $\sqrt{s} = 8$ TeV
- Data 20.3 fb$^{-1}$

LHC pp $\sqrt{s} = 13$ TeV
- Data $0.08 - 36.1$ fb$^{-1}$
W Boson Mass Measurement

- **4.6 fb\(^{-1}\) of 7 TeV data** (\(W \rightarrow e\nu/\mu\nu\))
- **Huge amount of work since 2011 to understand detector response and modelling of kinematic quantities, e.g. lepton \(p_T\), \(E_T^{\text{miss}}\)**
 - Calibration of W recoil with \(Z \rightarrow \ell\ell\) data critical
- **Similar precision to best previous single experiment measurement (from CDF)**
- **Result consistent with SM expectation**
- **Further progress requires improved modelling**

\[
m_W = 80.370 \pm 0.019 \text{ GeV} \\
[\pm 7 \text{ MeV (stat.)} \pm 11 \text{ MeV (syst.)} \pm 14 \text{ MeV (modelling)}]
\]
Top Quark Physics example: Zt

- Previously evidence for single top quark production at LHC in s-channel, t-channel and Wt associated production

- Now also evidence for Zt production
 - Significance \(4.2\sigma\) (\(5.4\sigma\) expected)
 - Cross-section \(620 \pm 170_{\text{stat}} \pm 140_{\text{syst}}\) fb consistent with SM expectation

- Also m(top), ttW, ttZ, etc.

Distribution of NN discriminant in Zt search
Searches for “Exotic” New Physics

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

\[
\int \mathcal{L} \, dt = (3.2 - 37.0) \text{ fb}^{-1} \quad \sqrt{s} = 8, 13 \text{ TeV}
\]

Model

<table>
<thead>
<tr>
<th>Model</th>
<th>(\ell, \gamma)</th>
<th>Jets†</th>
<th>(E_{T}^{miss})</th>
<th>(\int \mathcal{L} , dt) [fb(^{-1})]</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD GKK + g/lq</td>
<td>0 e, (\mu)</td>
<td>1, 2 j</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_0)</td>
</tr>
<tr>
<td>ADD non-resonant (g/\gamma)</td>
<td>2 e, (\mu)</td>
<td>–</td>
<td>–</td>
<td>36.7</td>
<td>(\text{M}_0)</td>
</tr>
<tr>
<td>ADD QbH</td>
<td>–</td>
<td>2 j</td>
<td>Yes</td>
<td>37.0</td>
<td>(\text{M}_0)</td>
</tr>
<tr>
<td>ADD BH high (\Sigma_{\ell\ell})</td>
<td>(\geq 1) e, (\mu)</td>
<td>2 j</td>
<td>–</td>
<td>3.2</td>
<td>(\text{M}_0)</td>
</tr>
<tr>
<td>ADD BH multijet</td>
<td>–</td>
<td>3 j</td>
<td>–</td>
<td>3.6</td>
<td>(\text{M}_0)</td>
</tr>
<tr>
<td>RS1 (G_{\text{RS}} \rightarrow \gamma \gamma)</td>
<td>2 e, (\mu)</td>
<td>1 J</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_\text{Gamm})</td>
</tr>
<tr>
<td>RS1 (G_{\text{RS}} \rightarrow WW \rightarrow q\bar{q}l\ell)</td>
<td>2 e, (\mu)</td>
<td>1 J</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_\text{Gamm})</td>
</tr>
<tr>
<td>2UED / RPP</td>
<td>1 e, (\mu)</td>
<td>2, 3 j</td>
<td>Yes</td>
<td>13.2</td>
<td>(\text{M}_\text{RPP})</td>
</tr>
<tr>
<td>Gauge bosons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM Z' \rightarrow \ell\ell</td>
<td>2 e, (\mu)</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_\text{Z'})</td>
<td>4.5 TeV</td>
</tr>
<tr>
<td>SM Z' \rightarrow \tau\tau</td>
<td>2 (\tau)</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_\text{Z'})</td>
<td>2.4 TeV</td>
</tr>
<tr>
<td>Leptophobic Z' \rightarrow bb</td>
<td>2 b</td>
<td>Yes</td>
<td>3.2</td>
<td>(\text{M}_\text{Z'})</td>
<td>1.5 TeV</td>
</tr>
<tr>
<td>Leptophobic Z' \rightarrow rt</td>
<td>1 e, (\mu)</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_\text{Z'})</td>
<td>2.0 TeV</td>
</tr>
<tr>
<td>SM W' \rightarrow t\bar{t}</td>
<td>1 e, (\mu)</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_\text{W'})</td>
<td>5.1 TeV</td>
</tr>
<tr>
<td>HVT (V' \rightarrow WW \rightarrow qqqq)</td>
<td>2 e, (\mu)</td>
<td>Yes</td>
<td>36.7</td>
<td>(\text{M}_\text{W'})</td>
<td>3.5 TeV</td>
</tr>
<tr>
<td>HVT (V' \rightarrow WH/ZH)</td>
<td>2 e, (\mu)</td>
<td>Yes</td>
<td>36.7</td>
<td>(\text{M}_\text{W'})</td>
<td>2.93 TeV</td>
</tr>
<tr>
<td>LRSM (W'_L \rightarrow tb)</td>
<td>1 e, (\mu)</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{M}_\text{W'})</td>
<td>1.32 TeV</td>
</tr>
<tr>
<td>LRSM (W'_R \rightarrow tb)</td>
<td>0 e, (\mu)</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{M}_\text{W'})</td>
<td>1.76 TeV</td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial vector mediator (Dirac DM)</td>
<td>0 e, (\mu)</td>
<td>1, 2 j</td>
<td>Yes</td>
<td>40.1 TeV</td>
<td>(\text{M}_\text{Dirac})</td>
</tr>
<tr>
<td>Vector mediator (Dirac DM)</td>
<td>0 e, (\mu), 1 (\gamma)</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_\text{Dirac})</td>
<td>4.3 TeV</td>
</tr>
<tr>
<td>VLX EFT (Dirac DM)</td>
<td>0 e, (\mu), 1 (j \gamma)</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_\text{Dirac})</td>
<td>4.3 TeV</td>
</tr>
<tr>
<td>Scatter DM 1st gen</td>
<td>2 e, (\mu)</td>
<td>Yes</td>
<td>3.2</td>
<td>(\text{M}_{\chi})</td>
<td>700 GeV</td>
</tr>
<tr>
<td>Scatter DM 2nd gen</td>
<td>2 e, (\mu)</td>
<td>Yes</td>
<td>3.2</td>
<td>(\text{M}_{\chi})</td>
<td>1.05 TeV</td>
</tr>
<tr>
<td>Scatter DM 3rd gen</td>
<td>2 e, (\mu)</td>
<td>Yes</td>
<td>3.2</td>
<td>(\text{M}_{\chi})</td>
<td>1.05 TeV</td>
</tr>
<tr>
<td>LO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLO (TT \rightarrow Ht \rightarrow X)</td>
<td>0 e, (\mu)</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_{\chi})</td>
<td>540 GeV</td>
</tr>
<tr>
<td>VLO (TT \rightarrow Zt \rightarrow X)</td>
<td>1 e, (\mu)</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_{\chi})</td>
<td>540 GeV</td>
</tr>
<tr>
<td>VLO (TT \rightarrow WW \rightarrow X)</td>
<td>1 e, (\mu)</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_{\chi})</td>
<td>540 GeV</td>
</tr>
<tr>
<td>VLO (BR \rightarrow Hb \rightarrow X)</td>
<td>1 e, (\mu)</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{M}_{\chi})</td>
<td>700 GeV</td>
</tr>
<tr>
<td>VLO (BR \rightarrow Zb \rightarrow X)</td>
<td>2 e, (\mu)</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{M}_{\chi})</td>
<td>700 GeV</td>
</tr>
<tr>
<td>VLO (BR \rightarrow Vt \rightarrow X)</td>
<td>1 e, (\mu)</td>
<td>Yes</td>
<td>36.1</td>
<td>(\text{M}_{\chi})</td>
<td>1.23 GeV</td>
</tr>
<tr>
<td>VLO (QQ \rightarrow WqWq)</td>
<td>1 e, (\mu)</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{M}_{\chi})</td>
<td>600 GeV</td>
</tr>
<tr>
<td>Excited fermions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excited quark (q' \rightarrow q)</td>
<td>–</td>
<td>2 j</td>
<td>Yes</td>
<td>37.0</td>
<td>(\text{q'})</td>
</tr>
<tr>
<td>Excited quark (q' \rightarrow q)</td>
<td>–</td>
<td>2 j</td>
<td>Yes</td>
<td>37.0</td>
<td>(\text{q'})</td>
</tr>
<tr>
<td>Excited quark (b' \rightarrow b)</td>
<td>–</td>
<td>2 j</td>
<td>Yes</td>
<td>37.0</td>
<td>(\text{b'})</td>
</tr>
<tr>
<td>Excited quark (b' \rightarrow b)</td>
<td>–</td>
<td>2 j</td>
<td>Yes</td>
<td>37.0</td>
<td>(\text{b'})</td>
</tr>
<tr>
<td>Excited lepton (l')</td>
<td>3 e, (\mu)</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{l'})</td>
<td>1.5 TeV</td>
</tr>
<tr>
<td>Excited lepton (l')</td>
<td>3 e, (\mu)</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{l'})</td>
<td>1.5 TeV</td>
</tr>
<tr>
<td>LqRM Majorana v</td>
<td>0 e, (\mu)</td>
<td>2 j</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{M}_{\text{Majorana}})</td>
</tr>
<tr>
<td>Higgs triplet (H^{+} \rightarrow \ell \ell)</td>
<td>3 e, (\mu)</td>
<td>2 j</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{M}_{\text{Majorana}})</td>
</tr>
<tr>
<td>Higgs triplet (H^{+} \rightarrow \ell \ell)</td>
<td>3 e, (\mu)</td>
<td>2 j</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{M}_{\text{Majorana}})</td>
</tr>
<tr>
<td>Monopole (non-res prod)</td>
<td>1 e, (\mu)</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{M}_{\text{Majorana}})</td>
<td>607 GeV</td>
</tr>
<tr>
<td>Dipole (multi-charged particles)</td>
<td>–</td>
<td>Yes</td>
<td>20.3</td>
<td>(\text{M}_{\text{Majorana}})</td>
<td>785 GeV</td>
</tr>
<tr>
<td>Magnetic monopole</td>
<td>–</td>
<td>Yes</td>
<td>7.0</td>
<td>(\text{M}_{\text{Majorana}})</td>
<td>1.32 TeV</td>
</tr>
</tbody>
</table>

*Only a selection of the available mass limits on new states or phenomena is shown.

† Small-radius (large-radius) jets are denoted by the letter \(j \) (\(J \)).
Resonance Searches - Dilepton, Lepton+E_{T}^{miss}

- $X \rightarrow \ell^{+}\ell^{-}$ (eg Z')
 - $m(\ell^{+}\ell^{-})$ Peak

- $Y \rightarrow \ell^{\pm} + E_{T}^{miss}$ (eg W')
 - $m_{T}(\ell^{\pm})$ Peak/edge

- No significant excess over SM expectation

- 95% CL exclusion limits extracted in various new physics scenarios
Resonance Searches - Dibosons

- \(X \rightarrow VV, VH, HH \) (\(V=W/Z \))
 - \(VV \rightarrow qqqq / qq\ell\nu / qq\ell\ell \)
 - \(VH \rightarrow bbqq / bb\ell\nu / bb\ell\ell \)

- Merged jets at high \(p_T \) using substructure

- “boson-tagging”

Dijet mass in \(VV\rightarrow qqqq \) search with boson-tagged jets
Resonance Searches - $\tau^+ \tau^-$

- $X \rightarrow \tau^+ \tau^-$
 - Heavy Higgs, eg from SUSY
- No significant excesses over SM expectation

\[\tan \beta > 45 \text{ for } m_A = 1.5 \text{ TeV} \]
Searches for Dark Matter (DM)

- **Something + DM** where DM $\rightarrow E_T^{\text{miss}}$
 - Jet(s) + E_T^{miss}
 - γ + E_T^{miss}
 - H ($\rightarrow \gamma\gamma/\text{bb}$) + E_T^{miss}

- Complementary to direct dark matter searches
- Use “simplified models” to guide analyses and interpret results

Spin-Dependent σ_{SD} - m_{DM} plane – Axial-vector Mediator

- Axial-vector mediator, Dirac DM
 - $g_q = 0.25$, $g_\ell = 0$, $g_{DM} = 1$

Spin-Independent σ_{SI} - m_{DM} plane – Vector Mediator

- Vector mediator, Dirac DM
 - $g_q = 0.1$, $g_\ell = 0.01$, $g_{DM} = 1$

ATLAS-CONF-2017-060

E_T^{miss} distribution in monojet search

Data/SM

DM Mass [GeV]

- σ_{SD} (DM-nucleon) [cm$^{-2}$]
- σ_{SI} (DM-nucleon) [cm$^{-2}$]
Searches for Supersymmetry

ATLAS SUSY Searches - 95% CL Lower Limits

May 2017

<table>
<thead>
<tr>
<th>Model</th>
<th>ℓ, μ, τ, γ Jets</th>
<th>E_{T}^{miss}</th>
<th>\sqrt{s} TeV</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSUGRA/CMSSM</td>
<td>0 ℓ, 2-10 jets 3 b</td>
<td>Yes</td>
<td>20.3</td>
<td>1.85 TeV</td>
</tr>
<tr>
<td>$\tilde{g}, \tilde{q}, \tilde{t}$ (compressed)</td>
<td>mono-jet 1-3 jets</td>
<td>Yes</td>
<td>3.2</td>
<td>0.57 TeV</td>
</tr>
<tr>
<td>$\tilde{g}, \tilde{W}/\tilde{Z}$</td>
<td>0-2 jets</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
</tr>
<tr>
<td>GMSB (2 NLSP)</td>
<td>1-2 ℓ, 0-1 t</td>
<td>Yes</td>
<td>3.2</td>
<td>2.02 TeV</td>
</tr>
<tr>
<td>GGM (bino NLSP)</td>
<td>2 γ</td>
<td>Yes</td>
<td>3.2</td>
<td>1.85 TeV</td>
</tr>
<tr>
<td>GGM (higgsino-bino NLSP)</td>
<td>γ, 1 b</td>
<td>Yes</td>
<td>20.3</td>
<td>1.37 TeV</td>
</tr>
<tr>
<td>GGM (higgsino NLSP)</td>
<td>2 γ, 2 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.37 TeV</td>
</tr>
<tr>
<td>Chargino LSP</td>
<td>0 mono-jet</td>
<td>Yes</td>
<td>20.3</td>
<td>0.57 TeV</td>
</tr>
</tbody>
</table>

1st gen. squarks and sleptons

<table>
<thead>
<tr>
<th>Model</th>
<th>$\tilde{g}, \tilde{q}, \tilde{t}$</th>
<th>\tilde{b}, \tilde{t}</th>
<th>\tilde{W}/\tilde{Z}</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>\sqrt{s} TeV</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 2 ℓ</td>
<td>0, 2 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 2 ℓ</td>
<td>1 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2 ℓ, 0-2 jets</td>
<td>2.4 TeV</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 2 ℓ</td>
<td>1 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 2 ℓ</td>
<td>1 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Higgs bosons

<table>
<thead>
<tr>
<th>Model</th>
<th>$\tilde{g}, \tilde{q}, \tilde{t}$</th>
<th>\tilde{b}, \tilde{t}</th>
<th>\tilde{W}/\tilde{Z}</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>\sqrt{s} TeV</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 2 ℓ</td>
<td>0, 2 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 2 ℓ</td>
<td>1 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2 ℓ, 0-2 jets</td>
<td>2.4 TeV</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 2 ℓ</td>
<td>1 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 2 ℓ</td>
<td>1 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E.W. direct

<table>
<thead>
<tr>
<th>Model</th>
<th>$\tilde{g}, \tilde{q}, \tilde{t}$</th>
<th>\tilde{b}, \tilde{t}</th>
<th>\tilde{W}/\tilde{Z}</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>\sqrt{s} TeV</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 2 ℓ</td>
<td>0, 2 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 2 ℓ</td>
<td>1 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2 ℓ, 0-2 jets</td>
<td>2.4 TeV</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 2 ℓ</td>
<td>1 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 2 ℓ</td>
<td>1 b</td>
<td>Yes</td>
<td>36.1</td>
<td>2.02 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Long-lived particles

<table>
<thead>
<tr>
<th>Model</th>
<th>$\tilde{g}, \tilde{q}, \tilde{t}$</th>
<th>\tilde{b}, \tilde{t}</th>
<th>\tilde{W}/\tilde{Z}</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>\sqrt{s} TeV</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct $\tilde{g}, \tilde{q}, \tilde{t}$</td>
<td>Disapp. trk 1 jet</td>
<td>Yes</td>
<td>36.1</td>
<td>1.85 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable $\tilde{g}, \tilde{q}, \tilde{t}$</td>
<td>trk 1 jet</td>
<td>Yes</td>
<td>27.9</td>
<td>1.85 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable $\tilde{g}, \tilde{q}, \tilde{t}$</td>
<td>Disapp. trk 1 jet</td>
<td>Yes</td>
<td>27.9</td>
<td>1.85 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMSB stable $\tilde{g}, \tilde{q}, \tilde{t}$</td>
<td>1-2 ℓ</td>
<td>Yes</td>
<td>19.1</td>
<td>1.85 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMSB, $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</td>
<td>2 γ</td>
<td>Yes</td>
<td>20.3</td>
<td>1.85 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</td>
<td>disp. trk $\mu^{-}+\mu^{-}$</td>
<td>Yes</td>
<td>20.3</td>
<td>1.85 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</td>
<td>disp. trk $\ell^{-}+\ell^{-}$</td>
<td>Yes</td>
<td>20.3</td>
<td>1.85 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Model</th>
<th>$\tilde{g}, \tilde{q}, \tilde{t}$</th>
<th>\tilde{b}, \tilde{t}</th>
<th>\tilde{W}/\tilde{Z}</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>$\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$</th>
<th>\sqrt{s} TeV</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar charm, $2\rightarrow \ell^\pm\chi_1^0$</td>
<td>0, 2 b</td>
<td>Yes</td>
<td>36.1</td>
<td>1.85 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.
SUSY: 3rd Generation and Electroweak Limits in m(t_{1}) – m(\chi_{0}^{1}) plane

- **“Natural SUSY”**
 - light 3rd generation squarks and higgsinos cancel Higgs mass loop corrections
 - Direct stop (\tilde{t}_{1})
 - b-jets + E_{T}^{miss}
 - Many different signal regions:
 - Highly optimized

Limits on m(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}) – m(\tilde{\chi}_{1}^{0})

- Direct production of charginos and neutralinos with
 - 2 or 3 leptons + E_{T}^{miss}
 - Many different signal regions:
 - Highly optimized

Limits in m(\tilde{t}_{1}) – m(\tilde{\chi}_{1}^{0}) plane

Status: May 2017

- ATLAS Preliminary
- m(\tilde{t}_{1}) > 950 GeV

- \tilde{t}_{1} production, t\rightarrow b f f \tilde{\chi}_{1}^{0}, t\rightarrow c f f \tilde{\chi}_{2}^{0}, t\rightarrow W b \tilde{\chi}_{1}^{0} / t\rightarrow W b \tilde{\chi}_{1}^{+} / t\rightarrow t f f \tilde{\chi}_{1}^{0}

- Observed limits
- Expected limits
- All limits at 95% CL

Limits on m(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}) – m(\tilde{\chi}_{1}^{0})

May 2017

- ATLAS Preliminary
- \sqrt{s}=8,13 TeV, 20.3-36.1 fb^{-1}

- m(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}) > 580 GeV

- Expected limits
- Observed limits

- All limits at 95% CL

2 or 3 leptons + E_{T}^{miss}
Higgs Boson Studies ...

- Higgs-like particle discovery by ATLAS and CMS announced July 4th, 2012. ATLAS paper:
 - 7503 citations (as of 2017-08-03)

- March 2013: key papers on particle properties
 - new particle declared “a Higgs boson”

- Citation for 2013 Nobel Prize in Physics
Higgs Boson Production at $\sqrt{s} = 13$ TeV

- Measurements use $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels
 - Larger \sqrt{s} & data \Rightarrow more measurements possible
 - Fiducial cross-sections
 - Differential cross-sections
 - Total production cross-sections (assumes SM branching ratios)
- Combined global signal strength compatible with Standard Model:

 \[
 \mu = 1.09 \pm 0.12
 \]

 \[
 = 1.09 \pm 0.09 \text{ (stat.)} + 0.06 \text{ (syst.)} + 0.06 \text{ (th.)}
 \]

2017-08-07

Theory uncertainty reduced: N3LO ggF calculations
Higgs Boson Cross-Sections

- **Higgs differential cross-sections**
 - Possible with increased data sets and \sqrt{s}
- **Interpret in terms of cross-sections for production processes**
 - ggF: gluon fusion
 - VBF: vector boson fusion

ATLAS-CONF-2017-032

ATLAS-CONF-2017-047

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$

- $H \rightarrow ZZ^* \rightarrow 4\ell$
- $m_H = 125.09$ GeV, $|y_H|<2.5$

Cross-section vs. $p_T(4\ell)$

- Data
- Syst. uncertainties
- HRes $k = 1.1$, $+XH$
- NNLOPS $k = 1.1$, $+XH$
- MG5 FxFx $k = 1.47$, $+XH$
- p-value NNLOPS = 25%
- p-value MG5 FxFx = 42%
- p-value HRes = 21%

Higgs entering into precision measurement era with increased data sets and improved theoretical predictions
Measurement of the Higgs Boson Mass

- $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma \gamma$
- **Measurements complementary:**
 - 4ℓ channel stat uncertainty dominates with very small systematics
 - Will continue to improve as ATLAS acquires more data even into HL-LHC era
 - $\gamma \gamma$ channel syst uncertainty dominates (photon energy scale calibration)
- In 4ℓ channel measurements consistent among electron/muon sub-channels
- 4ℓ and $\gamma \gamma$ measurements consistent
- Combined measurement consistent with Run-1

\[
\begin{align*}
\text{ATLAS Preliminary} & \\
\sqrt{s} = 13 \text{ TeV, } 36.1 \text{ fb}^{-1} & \\
\text{LHC Run 1} & \\
H \rightarrow ZZ^* \rightarrow 4\ell & \quad 124.88 \pm 0.37 \ (\pm 0.37 \pm 0.05) \text{ GeV} \\
H \rightarrow \gamma \gamma & \quad 125.11 \pm 0.42 \ (\pm 0.21 \pm 0.36) \text{ GeV} \\
\text{Combined} & \quad 124.98 \pm 0.28 \ (\pm 0.19 \pm 0.21) \text{ GeV}
\end{align*}
\]
H→bb: analysis strategy and validation

- **H→bb mode dominates Higgs decays (BR~58%)**
- **Most sensitive channel exploits VH(→bb), V=W/Z**
- **Combined Tevatron significance at m_H=125 GeV 2.8σ**
- **Combined Run-1 ATLAS+CMS significance 2.6σ**

- **ATLAS analysis combines Z and W final states:**
 - 2-lepton (Z→ℓℓ)
 - 1-lepton (W→ℓν)
 - 0-lepton (Z→vv)
- **MVA-based (Boosted Decision tree), cross-checked by cut-based selection**

- **Validation of performance and systematics understanding from independent search for VZ(→bb)**
 - Obs. (exp.) significance: 5.8σ (5.3σ)
 - Observed signal strength:

\[
\mu_{VZ} = 1.11^{+0.12}_{-0.11} \text{(stat.)}^{+0.22}_{-0.19} \text{(syst.)}
\]
Evidence for $H \rightarrow bb$

- BDT trained separately for VH($\rightarrow bb$) search
- Observed significance 3.5σ (3.0σ expected)
- Cross-check with cut-based analysis gives 3.5σ observed (2.8σ expected)
- Combination of MVA result with ATLAS Run-1 gives 3.6σ observed (4.0σ expected)
- Evidence for $H \rightarrow bb$, consistent with SM
$W(\rightarrow e\nu)H(\rightarrow bb)$ candidate
• Submitted or published 656 papers (as of 4 August 2017)
 – Including 79 with Run II data
 – Still steady rate of Run I data papers (measurements)
Outline of Talk

• ATLAS data-taking and performance
• ATLAS recent physics analysis results
• **ATLAS Upgrades**
• Summary
Upgrade examples in pictures

- **Phase-I: new muon small wheel**
 - Micromegas and thin-gap chambers

- **Phase-II: new inner tracker**
 - All silicon design strips and pixels

H8 test beam

Itk strip module placement on petals
Outline of Talk

• ATLAS data-taking and performance
• ATLAS recent physics analysis results
• ATLAS Upgrades
• Summary
Summary

- ATLAS detector, trigger, computing and analysis are coping well with luminosities approaching twice LHC design
- Many measurements from collision data
 - Challenging theory calculations in many final states
 - Entering precision measurement era for H(125)
 - Evidence for $H \rightarrow bb$ and closing in on rare Higgs processes
 - Wide spectrum of results I cannot cover – see later talks this week eg. B-hadron physics, heavy ions, QCD
- Huge range of searches for BSM physics
 - No significant excesses have persisted so far
- ATLAS Upgrade program also very active preparing for HL-LHC
 - LHC program still in its infancy. Only a \approx percent of full data so far.
- We are approaching sensitivities for new, weakly-coupled electroweak-scale physics of any form.
- Huge credit and thanks to the LHC and injector teams who are delivering extraordinary luminosities!

2017-08-07 Rob McPherson
ATLAS results

• For further ATLAS results and details of the ones shown here:
 - ATLAS public results page: https://twiki.cern.ch/twiki/bin/view/AtlasPublic
 - Talks at this symposium include the following:
 • Elisabetta Pianori: Higgs in diboson modes
 • Keti Kaadze: Higgs in fermionic modes
 • Soshi Tsuno: BSM Higgs
 • Iacopo Vivarelli: SUSY searches
 • Sunil Somalwar: Exotic Searches
 • Oliver Buchmueller: Searches for DM
 • Yuji Yamazaki: top-quark measurements
 • Qiang Li: EW measurements
 • Gabriella Pasztor: Hard QCD
 • Marek Tasevsky: Soft QCD
 • Alexander Kalweit: Experimental Heavy Ion results
 • Yuan-Ning Gao: Hadron Spectroscopy
• Additional Material
Resonance Searches - $\gamma\gamma$

- $X \rightarrow \gamma\gamma$
 - New heavy spin-0 scalars, e.g. heavy Higgs
 - Spin-2 (eg, gravitons)

- No significant excesses over SM expectation

Mass limits from $\gamma\gamma$ spin-0 search

arXiv:1707.04147
High Mass Diphoton Mass Distributions

ATLAS

\[\text{Data} \]

\[\text{Background-only fit} \]

Spin-0 Selection
\[\sqrt{s} = 13 \text{ TeV, 36.7 fb}^{-1} \]

ATLAS

\[\text{Data} \]

\[\text{Background-only fit} \]

Spin-2 Selection
\[\sqrt{s} = 13 \text{ TeV, 36.7 fb}^{-1} \]

arXiv:1707.04147

2017-08-07 Rob McPherson
High Mass Diphoton Limits

ATLAS

Observed \CL_s limit
Expected \CL_s limit
Expected $\pm 1\sigma$
Expected $\pm 2\sigma$

$\ell s = 13$ TeV, 36.7 fb$^{-1}$
Spin-0 Selection
NWA ($\Gamma X = 4$ MeV)

Expected CL$_s$ limit
Observed CL$_s$ limit from pseudo-exp.
Expected CL$_s$ limit from pseudo-exp.

ATLAS

Observed \CL_s limit
Expected \CL_s limit
Expected $\pm 1\sigma$
Expected $\pm 2\sigma$

$\ell s = 13$ TeV, 36.7 fb$^{-1}$
Spin-2 Selection
$G^{*\rightarrow \gamma\gamma}$, $k/M_{Pl} = 0.10$

arXiv:1707.04147

2017-08-07

Rob McPherson
Searches with Dijets

- dijet mass and angular distributions
- No significant excesses over SM expectation
- Significantly extend limits. e.g.
 - Excited quarks: \(m(q^*) > 6.0 \text{ TeV} \) (5.8 TeV exp.)
 - Add. gauge bosons: \(m(W') > 3.6 \text{ TeV} \) (3.7 TeV exp.)
 - Quantum Black Holes: \(m(\text{BH}) > 8.9 \text{ TeV} \) (8.9 TeV exp.)
 - Contact Interactions: \(\Lambda > 13.1 \text{ TeV} \) (\(\eta_{LL} = +1/-1 \))
- Limits also set on generic Gaussian resonances

Limits on generic Gaussian resonance

\[m(q^*) > 6 \text{ TeV} \]
Higgs Production Mode Signal Strength

ATLAS Preliminary
\(\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \)
\(H \rightarrow \gamma\gamma \) and \(H \rightarrow ZZ^{*} \rightarrow 4l \)
\(m_H = 125.09 \text{ GeV}, |y_H| < 2.5 \)

4D compatibility with SM: 5%

Cross section normalized to SM
Physics with B Hadrons

- Kinematics of products from decay $B_d^0 \rightarrow K^* \mu^+ \mu^-$ measured to constrain components of generic expression for amplitude
- $P5'$ parameter (amplitude normalised by fraction of longitudinally polarised K^*) measured to exceed SM expectation at moderate $q^2 = m(\mu\mu) \sim 5$ GeV2 by LHCb and Belle
- ATLAS analysis with 8 TeV Run-1 data consistent with SM expectation in this bin, but also with LHCb and Belle measurements
Evidence for light-by-light scattering $\gamma \gamma \rightarrow \gamma \gamma$ in 5 TeV Ultra-Peripheral Pb-Pb collisions

Further evidence that production of strongly interacting particles is increasingly suppressed as density of nuclear medium increases.

- Evidence for jet suppression up to ~1 TeV

Results with novel sub-event cumulant method removing dijet contributions from pp and p-Pb elliptic flow measurements (ATLAS-CONF-2017-002)

Acoplanarity of photon pairs in low activity ultra-peripheral Pb-Pb collisions
• **WLCG has been fundamental to ATLAS physics analysis**
 • Fully leverage all pledged resources
 • Aggressively use non-pledged CPU resources
High Performance Computing, Clouds

- Increasing opportunistic use of clouds and HPCs: ~15%
 - event generation and Monte Carlo production
- Integration of non-Grid resources in ATLAS: big investment, big return

2017-08-07

Rob McPherson
ATLAS Upgrade Timelines

<table>
<thead>
<tr>
<th>Year</th>
<th>Phase 0 Upgrade</th>
<th>Phase I Upgrade</th>
<th>Phase II Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Consolidation, $\sqrt{s}=13$ TeV, 25nsec bunch spacing, $\mathcal{L} \approx 1 \times 10^{34}$ cm$^{-2}$s$^{-1}$ ($\mu \approx 30-50$) $\int \mathcal{L} \approx 150$ fb$^{-1}$</td>
<td>Likely $\sqrt{s}=14$ TeV</td>
<td>$\mathcal{L} \approx 7 \times 10^{34}$ cm$^{-2}$s$^{-1}$ ($\mu \approx 200$) $\int \mathcal{L} \approx 3000$ fb$^{-1}$</td>
</tr>
<tr>
<td>2014</td>
<td>New insertable pixel b-layer (IBL)</td>
<td>All new Tracking Inner Detector</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>New Al beam pipe</td>
<td>Calorimeter Electronics Upgrades</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>New pixel services</td>
<td>Muon system upgrades</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>New evaporative cooling plant</td>
<td>Level-1 track trigger</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>Consolidation (calorimeter power supplies)</td>
<td>Trigger-DAQ</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Neutron Shielding</td>
<td>High Granularity Timing Detector (R&D)</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Finish EE muons installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Upgrade magnet cryo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2017-08-07 Rob McPherson