Study of $H \rightarrow b\bar{b}$ in association with a single top quark

E. Zunic1, J. Jovicevic2, A. Held3.

1CERN Summer Student
2TRIUMF, 3CERN, TRIUMF, UBC

September 4, 2017

Abstract

The production of the Higgs boson in association with a single top quark, tH, is a very important process for testing the Standard Model theory. There are three production channels: associated production with W, t-channel and s-channel. In this study only tHq production with $H \rightarrow b\bar{b}$ decay and top leptonic decay has been generated and analyzed. The tH production is important for probing the sign of the Higgs-top Yukawa coupling, y_t. Namely, there is an interference between diagrams which depends on the relative sign of y_t. LO Madgraph is used as a tool for generating events, calculating the cross-sections and Feynmann diagrams. The cross-section is parameterized as a continuous function of y_t. The kinematics of the process appears to be dependent on the y_t used. In addition, the dominant background from tt production with heavy flavor jets has been generated and potential discriminating variables to separate tH from this background have been analyzed and discussed.

1 Introduction and motivation

Nowadays, we know about Higgs-top Yukawa coupling (y_T) from ATLAS and CMS measurements (figure 1) [1].

[1]
Parameter κ_T is a multiplicative modifier to the y_T that we use in general in measurements to probe any deviation from the Standard Model (SM) prediction of the y_T. The precision on κ_T measurement mainly comes from measurements of the ggF (gluon-gluon fusion) production and $H \rightarrow \gamma\gamma$ decay, but there we assume that only Standard Model particles contribute to the loops (figure 2).

To measure y_T directly (at tree level) we can do only through ttH production. The Feynmann diagram from the figure 3 offers us sensitivity to y_T^2, while if we look at tH production we can also get a sensitivity of the sign of the coupling. This is the main theoretical motivation for tH production search. There are three production channels: associated production with W, t-channel and s-channel. S-channel gives small contributions to the value of cross-sections, so it is negligible.
W- and t-channel have two diagrams that interfere and give sensitivity to sign of the Higgs-top Yukawa coupling. Leading Order (LO) Madgraph is used to generate cross-sections, diagrams and events. Feynmann diagrams for tHq and tHW production are showed in figures 4 and 5.
The focus of the report is on the tHq production, but conclusions can be extrapolated later to the tHW production as well.

2 ATLAS detector

The ATLAS experiment is one of the main experiments in the LHC. The position of charged particles, (with transverse momentum above 500 MeV) as they traverse the detector, is measured in the Inner Detector [4]. The energy of hadrons, electrons and photons are measured by the calorimeter system. Using several different technologies, the calorimeter system provides coverage up-to $|\eta|=4.9$ [4]. The Inner Detector provides coverage up-to $|\eta| \approx 2.5$ [5]. The variables which would be used below: η (pseudorapidity), ϕ (azimuthal angle) and ΔR (the distance) are a part of the coordinate system used in the ATLAS. ΔR is defined as:

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}.$$ (1)
3 Calculation of the cross-sections for tHq production

The calculation of the cross-sections is done using Madgraph leading order Monte Carlo generator. 999999 events are generated at $\sqrt{s}=13$ TeV.

Figure 6: Cross-section σ and σ/σ_{SM} as a function of κ_t

The figure 6 shows the histogram with cross-sections as a function of κ_T. One can observe that it behaves as an asymmetric parabolic function. It is expected, because without interference of diagrams, it would be a symmetric parabolic function. In order to define the function that can be used to parameterize the cross-section in any point of the κ_T, measured values of the cross-sections are taken for three values of κ_T ($\kappa_T=-1,0,1$), parameters P_0, P_1 and P_2 (figure 7) are calculated.
Figure 7: Cross-section σ as a function of κ_t - asymmetric parabolic function

The results obtained in this way are identical to the result that are obtained by direct fit in ROOT. These results and the function parameters from ROOT fit are showed in the figure 8.

Figure 8: The function fitted by ROOTfit

As conclusion, in general we can continuously parameterize σ as a function of κ_t.
4 Kinematics of the tHq

In order to discover if we can generate only a Standard Model template and test all other scenarios by parameterizing cross sections, but assuming the same kinematics, 999999 events for five values of the κ_T are generated and the main kinematic features of the generated leptons and quarks are analyzed. Also, the kinematics of the dominant background $tt+HF$ (production of tt with additional heavy flavor jets\(^1\)) would be under consideration in order to distinguish between signal and background. I made analysis in ROOT for this task.

4.1 Lepton kinematics

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{PT_lepton.png}
\caption{Transverse momentum of leptons.}
\end{figure}

\(^1\)Jets originating from b- and c- quarks
One conclusion so far is that the Standard Model looks slightly different from Beyond Standard Model (BSM), so maybe indeed using SM template for lepton p_T might not be sufficient. Any selections that should have to be done at the detector level are not done, but it can been immediately seen that if single lepton triggers that require offline cut of $p_{T,\text{lepton}} > 27 \text{ GeV}$ are used, as the most suitable for this production, a big fraction of the events would be lost.

Figure 10: Pseudorapidity of lepton.
4.2 Kinematics of the b-quarks

Figure 11: Transverse momentum of the leading b-quark.

Figure 12: Transverse momentum of the first subleading b-quark.
Plots with the transverse momentum of the leading b-quark and transverse momentum of the first subleading b-quark shows a significant difference in p_T of the leading b-quark between signal and background, while for signal different values of the κ_T give similar distributions. Of course, it still need to be seen on the detector level and if reconstructed jets gives any separation.

4.3 Invariant mass of 2 b-quarks closest in ΔR

![Invariant mass of the two nearest b quarks](image)

Figure 13: Invariant mass of 2 b-quarks closest in ΔR.

This is a very promising variable for separation of a signal from the background, because invariant mass for all signal hypothesis peaks at mass of the Higgs boson, while it is not the case for background.
4.4 Non-\(b\)-quark from the matrix element

Figure 14: Transverse momentum of the non-\(b\)-quark from the matrix element.

Figure 15: Pseudorapidity of the non-\(b\)-quark from the matrix element.
For p_T the background is quite different from signal and Standard Model is quite different from BSM. From the plot of η of non-b-quark is concluded that most of the signal shape is outside ATLAS Inner detector coverage and inclusion of the forward jets are needed for this analysis. This is also very important signature in the detector to tag them.

5 Conclusions

Events for tHq process for various κ_t values and dominant background are generated.

Cross-sections can be parameterized as a function of the κ_t.

If we want to use kinematics to study sensitivity to various κ_t, we probably need to generate templates as many distributions differ depending on the κ_t.

Good discrimination of the signal is given by non-b-quark in the forward region and invariant mass mass of the two b-quarks closest in ΔR, but also another kinematics can be used as a good potential discrimination.

6 Outlook

Next steps which should be done:
Looking this kinematics at the detector level using reconstructed events in the ATLAS detector.
Trying to put various discriminating kinematic distributions into some MVA discriminant for the highest separation of signal and background, or try to develop in Madgraph Matrix Element discriminant.

7 Acknowledgements

I am very grateful to my supervisors Jelena and Alexander for their time and effort in my project. The knowledge they provided me has no price. I’m looking forward to the next project and collaborating with them. I am also very grateful to Summer Student Program Committee for the organization of Summer Student program.

References

[3] The CMS Collaboration, Search for $H \rightarrow b\bar{b}$ in association with a single top quark as a test of Higgs boson couplings at $\sqrt{s} = 13$ TeV, 2016/08/04, link: CMS PAS HIG-16-019

[4] John Alison, “The Road to Discovery: Detector Alignment, Electron Identification, Particle Misidentification, WW Physics, and the Discovery of the
Higgs Boson”, a dissertation in Physics and Astronomy, Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in 2012.