Two-particle correlations in the LHCb experiment

Marcin Kucharczyk on behalf of LHCb collaboration

HNI Krakow

ZIMÁNYI SCHOOL'17, Budapest

04.12 - 08.12 2017
Outline

- LHCb - general purpose forward experiment
- Physics motivation
- BEC for pion pairs in p-p collisions at 7 TeV
- Ridge effect in p-Pb collisions at 5 TeV
- Conclusions
LHCb detector

- single arm spectrometer fully instrumented in forward region → GPD in forward region
- designed to study CP violation in B, but also fixed target, heavy ion physics
- precision coverage unique for LHCb: $2 < \eta < 5$
- complementary results wrt other LHC experiments

- momentum resolution between 0.4% at 5 GeV to 0.6% at 100 GeV
- impact parameter resolution of 20 μm for high-p_T tracks
- good PID separation up to 100 GeV (miss ID ($\pi \rightarrow K$) ≈ 5 %)
Bose-Einstein Correlations

accepted by JHEP
Motivation - HBT

Historically

- In 1950s Robert Hanbury Brown an Richard Q. Twiss found correlations between photons from different radio sources (**HBT interferometry**)
- 1959: experiment at the Bevalac/LBL in Berkeley
 - looking at the resonances by comparing Q distribution of unlike-sign pion pairs to same-sign
 - unexpected angular correlation for same-sign pions

In particle physics:

- symmetrization (**Bose-Einstein Correlations - BEC**) and antisymmetrization (**Fermi-Dirac Correlations - FDC**) of total wave function
- correlations in four-momenta of indistinguishable particles emitted from the same source:

$$Q = \sqrt{-(q_1 - q_2)^2} = \sqrt{M^2 - 4\mu^2}$$

- useful tool to probe the spatial and temporal structure of the hadron emission volume

- many results on BEC from LEP, RHIC, SPS, ...
- already done by ALICE, ATLAS and CMS at central rapidities
- **LHCb can add measurements in the forward region !**
Correlation function

Experimentally: \[C_2(Q) = \frac{N(Q)^{DATA}}{N(Q)^{REF}}, \quad \text{REF} = \text{mix, MC, unlike} \]

\(N(Q)^{DATA}\) - distribution for same-sign pairs in data
(BEC present)

\(N(Q)^{REF}\) - distribution for reference sample with no BEC effect

Event-mixed reference sample used
- pions from different events from PVs with same VELO track multiplicity (*long-range correl.*)
- derived from data
- other correlations also removed \(\rightarrow\) construct double ratio (*next slide*)

Parametrization of correlation function
- Levy parametrization with \(\alpha = 1\) (Cauchy) + long-range correlations

\[
C_2(Q) = N(1 + \lambda e^{-RQ}) \times (1 + \delta \cdot Q)
\]

- \(R\) - the radius of a spherical static source
- \(\lambda\) - chaoticity parameter
(0 – coherent source, 1 – chaotic case)
- \(N\) - normalisation factor
- \(\delta\) - long range correlations
Double ratio

Improved correlation function - double ratio (DR)

\[DR(Q) = \frac{C_2(Q)^\text{data}}{C_2(Q)^\text{MC}} \quad MC \text{ without BEC} \]

- reduce possible imperfections in the construction of the reference sample
- eliminate second order effects to large extent
- correct for long range correlations (if properly simulated)

By constructing of the correlation function we should be independent of:

- single particle acceptance and efficiency
- effects due to the detector occupancy, acceptance and material
- selection cuts
- two-track efficiency effects if properly simulated
Single track selection

Relatively loose selection of pions

Long track traversing whole detector
- loose particle identification cuts on pions
- $2 < \eta < 5$
- good track quality ($\chi^2 / ndf < 2$)
- momentum > 2 GeV/c
- transverse momentum > 0.1 GeV/c
- impact parameter (IP) < 0.4 mm
- cut on probability to be a ghost track

Correlation function is not sensitive to single track efficiency but can be sensitive to two-track effects such as cloned or ghost tracks

Two-track effects do not influence the baseline LHCb analyses but for BEC one has to pay special attention.
Clones and ghosts

Cloned tracks
- two or more tracks reconstructed by mistake from the hits originating from a single particle
 - Cloned pairs of tracks with small opening angle
 → in low-Q region
 → may affect BEC signal

Ghost tracks
- wrongly reconstructed tracks which combine the hits deposited by multiple particles
 - Ghosts populate wide Q range

ghosts / clones may affect the BEC signal forming pairs with small opening angle → low Q not perfectly simulated → cannot be fully corrected by DR

Effect from ghosts present in LIKE and UNLIKE
- controled by double ratio for unlike-sign pairs corrected for Coulomb effect (no BEC effect)

Contamination from clones investigated looking at tracks slope differences at Q → 0
Track pair selection

Ghost tracks
- most of ghosts already removed → tracks with high probability to be a ghost removed
- additional cut: if tracks share same VELO hits → keep one with best χ^2
 → after selection ghosts are under control for $Q > 0.05$ GeV/c2
 → systematic uncertainty low compared to dominant contributions

Cloned tracks
- clones removed by cut on: $|\Delta t_x| < 0.3$ mrad & $|\Delta t_y| < 0.3$ mrad
 (t - tangent of the track momenta of two particles)
 → contribution from clones marginal for $Q > 0.05$ GeV/c2

Two-particle efficiencies under control in $Q > 0.05$ GeV/c2
→ analysis in 0.05 GeV/c$^2 < Q < 2.0$ GeV/c2

Coulomb effect
Removed with Gamov penetration factor for Q distribution in data:

$$G_2(Q) = \frac{2\pi\zeta}{e^{2\pi\zeta} - 1}, \quad \text{where} \quad \zeta = \pm \frac{\alpha m}{Q}$$

→ systematics due to Coulomb correction found to be negligible
Event-activity bins

BEC effect depends on the charge particle multiplicity
- charged particle multiplicity is not a good observable to compare results with other experiments
 → detector acceptances may not overlap & reconstruction efficiencies may differ

Three activity classes are defined as fractions of PV VELO track multiplicity distrib.
- good probe of the total multiplicity in the full solid angle
- defined in relative way → scaling in different η acceptances
- specific features of different experiments cancel out

<table>
<thead>
<tr>
<th>VELO N_{ch}</th>
<th>Activity class</th>
<th>unfolded N_{ch}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10</td>
<td>(52-100)%</td>
<td>[8; 18]</td>
</tr>
<tr>
<td>11-20</td>
<td>(15-52)%</td>
<td>[19; 35]</td>
</tr>
<tr>
<td>21-60</td>
<td>(0-15)%</td>
<td>[36; 96]</td>
</tr>
</tbody>
</table>

charged-particle multiplicities unfolded using Pythia 8 ($2 < \eta < 5$)
Results (I)

Fits to DR with Levy parametrization for 3 activity bins

- clear BEC related enhancement observed
- χ^2 / ndf for the fits ~ 1.6
- Levy parametrization
 \rightarrow effective 1D approximation for static source
- 3D parametrization to be used in the future
 \rightarrow fits better data as it includes information about time evolution of the emitting source

<table>
<thead>
<tr>
<th>Activity</th>
<th>R [fm]</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>$1.01 \pm 0.01 \pm 0.10$</td>
<td>$0.72 \pm 0.01 \pm 0.05$</td>
</tr>
<tr>
<td>Medium</td>
<td>$1.48 \pm 0.02 \pm 0.17$</td>
<td>$0.63 \pm 0.01 \pm 0.05$</td>
</tr>
<tr>
<td>High</td>
<td>$1.80 \pm 0.03 \pm 0.16$</td>
<td>$0.57 \pm 0.01 \pm 0.03$</td>
</tr>
</tbody>
</table>

Systematic uncertainty ($\sim 10\%$) dominated by the generator tunings and pile-up effects
Direct comparison between experiments not straightforward (*different* η *ranges*)

A trend compatible with previous observations at LEP and the other LHC experiments and with some theoretical models
Comparison with central rapidities

Correspondence of unfolded N_{ch} bins between ATLAS ($|\eta| < 2.5$, $p_T > 0.1$ GeV/c) and LHCb ($2 < \eta < 5$) acceptances at 7 TeV found using relations obtained from PYTHIA 8.

- R and λ parameters measured in the forward region are slightly lower wrt ATLAS.
- Need to measure the BEC parameters using a full three-dimensional analysis to perform a more detailed comparison.
• Bose-Einstein correlations studied for same-sign pions at 7 TeV
 - first measurement in the forward region 2 < η < 5
 - three activity classes to measure the dependence on N_{ch}
 - event-mixed reference sample used
 - observed trends compatible with previous observations and predictions
 - R and λ parameters measured in the forward region slightly lower wrt central rapidities ($GPDs$)

• Analysis shows the LHCb potential in HBT field
 - many possible future analyses with different collisions ($p-p$, $p-Pb$), collision energies ($7, 8, 13$ TeV for $p-p$ and 5 TeV for $p-Pb$), different hadrons etc.
 - full three-dimensional analysis
 - possible study of 3-body correlations for pions
Ridge effect

Physics motivation - ridge effect

Two-particle angular \((\Delta \eta, \Delta \phi)\) correlations of prompt charged particles

- long-range correlations on the near side \((ridge \ at \ \Delta \phi = 0)\)
- reported first by RHIC in \(Au-Au\)
- measured by ATLAS, CMS, ALICE in \(Pb-Pb, p-p\) and \(p-Pb\) collisions at central rapidities
 \(\rightarrow\) central rapidity region \((|\eta| < 2.5)\)
- LHCb can confirm such effect at large rapidities \((2 < \eta < 5)\)
 \(\rightarrow\) long-range correlations in both hemispheres \((p-Pb\ and \ Pb-p)\)
 \(\rightarrow\) measured in different \(p_T\) regions as well as in relative and absolute activity classes

\(pPb\) - probe collective effects in dense environment of high energy collisions

- \(p-Pb\) collisions as a reference for \(Pb-Pb\), but interesting by themselves
- theoretical interpretation of ridge is still under discussion \((e.g. \ gluon\ saturation,\ collective\ effects)\)
 \(\rightarrow\) study of the ridge at large \(\eta\) in both \(p-Pb\ and \ Pb-p\)
 \(\rightarrow\) new input for theory
LHCb setup for proton-nucleus

- p-Pb / Pb-p data collected at $\sqrt{s_{NN}} = 5$ TeV (2013)
- **Asymmetric beams**: nucleon-nucleon center-of-mass system shifted by $\Delta y = 0.47$ in the proton beam direction

Forward production (p-Pb)
rapidity coverage: $1.5 < y_{CMS} < 4.5$
collected data (2013): ~ 1.1 nb$^{-1}$

Backward production (Pb-p)
rapidity coverage: $-5.5 < y_{CMS} < -2.5$
collected data (2013): ~ 0.5 nb$^{-1}$

Rapidity coverage $2.5 < |y_{CMS}| < 4.5$ for both configurations

$y_{CMS} = y^*$: rapidity in nucleon-nucleon centre-of-mass system, with forward direction (**positive values**) in direction of the proton beam
Data selection

LHCb data at 5 TeV using minimum bias sample (randomly selected minimum bias events)

- lumi used: \(p-Pb \) (\(\sim 0.5 \text{ nb}^{-1} \)) and \(Pb-p \) (\(\sim 0.3 \text{ nb}^{-1} \))
- events with exactly 1 PV in luminous region \(\pm 3\sigma \) around mean interaction point
 \(\rightarrow \) pile-up only \(\sim 2\% \)
- prompt particles
 \(\rightarrow \) small IP with respect to PV
 \(\rightarrow \) reconstructed in full tracking system
- kinematic range: \(p > 2 \text{ GeV}, \quad p_T > 150 \text{ MeV}, \quad 2.0 < \eta < 5.0 \)

- \(Pb-p \) multiplicity higher wrt \(p-Pb \)
- comparable multiplicity distributions for \(p-p \) and \(p-Pb \)
Correlation function

Correlation function described as a per-trigger particle associated yield (binned)

- event-mixed reference sample

\[
\frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{pair}}}{d\Delta\eta d\Delta\Phi} = \frac{S(\Delta\eta, \Delta\Phi)}{B(\Delta\eta, \Delta\Phi)} \times B(0,0)
\]

- different \(p_T \) bins \([0.15-1.0], [1.0-2.0], [2.0-3.0]\) GeV/c and activity classes
- mixing with particles from 5 random events of the same activity and \(p_T \)

![Graphs showing the correlation function](image)

Normalized yield of same event particle pairs

Normalized yield of different event particle pairs

05-12-2017 Marcin Kucharczyk, ZIMÁNYI SCHOOL'17
Activity classes

Hit multiplicity in VELO is a good probe of the global event multiplicity

- 5 relative event activity classes
 → fractions of VELO hit multiplicity distributions of the minimum-bias sample
 → separately for p-Pb and Pb-p

- 5 common absolute activity classes
 → in high-multiplicity region 2200 < VELO hits < 3500
 → possible comparison p-Pb wrt Pb-p
Ridge effect in $p_T \in (1.0-2.0) \text{ GeV/c}$

Jet peak at $\Delta \phi=0$, $\Delta \eta=0$ truncated to make other effects visible

Low event-activity (50-100%)
$\Delta \phi=\pi$ away-side ridge
$\Delta \phi=0$ jet peak

High event-activity (0-3%)
$\Delta \phi=\pi$ away-side ridge
$\Delta \phi=0$ jet peak + near side ridge

- near-side ridge present in both configurations
- ridge in Pb-p more pronounced
Ridge evolution in relative activity

1D projection of correlation function on $\Delta \phi$

$$Y(\Delta \phi) \equiv \frac{1}{N_{\text{trig}}} \frac{dN_{\text{pair}}}{d\Delta \phi} = \frac{1}{\Delta \eta_b - \Delta \eta_a} \int_{\Delta \eta_a}^{\Delta \eta_b} \frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{pair}}}{d\Delta \eta d\Delta \phi} d\Delta \eta$$

→ study the ridge evolution
→ integrated over $2 < |\eta| < 2.9$ (exclude jet peak)

- correlation yield increases with event activity
- away-side ridge decreases for higher p_T
- near-side ridge maximum for p_T bin 1.0–2.0 GeV/c
- near side ridge more pronounced in $Pb-p$ than in $p-Pb$
 → larger event activity in backward configuration
Ridge evolution in absolute activity

Common absolute activity ranges

- 5 identical activity ranges for p-Pb and Pb-p in $2200 < \text{VELO hits} < 3500$
- $2.0 < \Delta \eta < 2.9$

- away-side and near-side ridge depends only on activity in the direction of measurement
- near-side correlation yields compatible for both configurations
- increase of correlation strength with increasing event activity
Summary on ridge effect

Two-particle angular correlations produced in p-Pb collisions at $\sqrt{s_{NN}} = 5$ TeV have been measured for the first time in the forward region

- Near-side ridge effect has been observed in both p-Pb and Pb-p beam configurations, being most pronounced for $1.0 < p_T < 2.0$ GeV/c
- Effects on the near-side and away-side grow with increasing event activity
- Near-side ridge is more pronounced in Pb-p configuration for relative activity
- Ridge effects are compatible for p-Pb and Pb-p collisions for absolute activity
- Analysis for p-p at 13 TeV is ongoing
Conclusions

First measurement of BEC in the forward region $2 < \eta < 5$

- measured HBT parameters slightly lower wrt results in central η region
- full three-dimensional analysis needed for more detailed comparison
- LHCb shows a potential to perform a set of further HBT analyses with different hadrons, collision energies, collision types etc.

Long-range correlations on the near-side (the ridge) observed for the first time in the forward region

- statistically limited - *more data expected from Run II*
- Analyses with different collision types or collision energies planned

 \rightarrow *study with p-p collisions at 13 TeV ongoing*
Backup
Systematics - BEC

<table>
<thead>
<tr>
<th>Source</th>
<th>Low activity</th>
<th>Medium activity</th>
<th>High activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔR [%]</td>
<td>$\Delta \lambda$ [%]</td>
<td>ΔR [%]</td>
</tr>
<tr>
<td>Generator tunings</td>
<td>6.6</td>
<td>4.3</td>
<td>8.9</td>
</tr>
<tr>
<td>PV multiplicity</td>
<td>5.9</td>
<td>5.8</td>
<td>6.1</td>
</tr>
<tr>
<td>PV reconstruction</td>
<td>1.8</td>
<td>0.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Fake tracks</td>
<td>0.4</td>
<td>1.1</td>
<td>1.7</td>
</tr>
<tr>
<td>PID calibration</td>
<td>1.3</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Requirement on pion PID</td>
<td>2.9</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Fit range at low-Q</td>
<td>1.2</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Fit range at high-Q</td>
<td>1.8</td>
<td>0.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Total</td>
<td>9.8</td>
<td>7.6</td>
<td>11.4</td>
</tr>
</tbody>
</table>