The Phase-2 ATLAS ITk Pixel Upgrade

Leonardo Rossi
on behalf of the ATLAS Collaboration
First time Pixel ITk is presented at Hiroshima Symposium

- In HSTD10 only one ITk-Pixel-related presentation (S. Veil – LBNL) proposing (and showing results for) an extended barrel layout configuration (and comparison with the alternative inclined configuration).

 inclined? (optimized material on track) or extended? (precise high-p tracklets)

- Lot of work done since then and not only this alternative has been solved, but many other parts of the ITk pixel program have been defined and new prototype results were obtained.

- ATLAS Pixel ITk has grown-up, in the meantime, to a >100 lab collaboration and is about to submit to the LHCC the TDR of the project.

- In the following I’ll present the motivation behind the project (why?, when?), the most significant design choices (how?) and results obtained over the last two years.
Why ATLAS Pixel ITk?

- Only technique*) allowing “cm-away” 10 \(\mu \text{m} \) precision measurements of track trajectories emerging from of \(\mu = 200 \) pp synchronous collisions at 14 TeV and able to do it up to \(2 \times 10^{16} \text{ MeV n}_{eq}/\text{cm}^2 \) doses (HL-LHC specs).

*) thanks to \(4 \times 10^4 \) adjacent and independent sensors per \(\text{cm}^2 \), all of them with 25ns time resolution.

~12000 tracks in the tracker acceptance (each 25 nsec)
• Current ATLAS Pixel has proven to work beautifully up to $\mu=60$ (even if designed for $\mu=25$).

• The design spec extrapolation ($\text{LHC} \rightarrow \text{HL-LHC}$) is not huge ($\sim 7$). Similar factor in the ratio of areas (then in collaborators…) as a larger role is given to Pixel in HL-LHC tracker (no more large-R gaseous detectors). Project is doable, but requires to push further a technology already on the edge. Challenging (and possibly fun)!
When ATLAS Pixel ITk?

LHC / HL-LHC Plan

- Driven by HL-LHC schedule (we are still 9 yrs from HL-LHC start, but this is less than the time needed from TDR (1998) to data (2010) for the current ATLAS Pixel→ the timeline of the ATLAS ITk Pixel project is quite critical)
- Must be ready for installation in 2024→ construction from 2019 to 2023, then integration at CERN and system tests.
How (do we plan to build the) ATLAS Pixel ITk?

The layout

- This is the basic strategic choice and the skeleton around which the project should be refined.
- Related to viable solutions in all sectors (sensors, electronics, mechanics, cooling services, etc.) and driven by the mission of the ITk in the ATLAS experimental program (reconstruct, in the HL-LHC environment, tracks and vertices and tag short-lived particles at least as efficiently and precisely as currently done at LHC).
- As usual in this phase of the project many solutions were proposed and studied using full simulation (including a realistic evaluation of supports and services).
- The TDR baseline design was defined aiming at:
 - > 5 hits close to the interaction point with high granularity and accuracy \(\sim 10\mu m \)
 - > 9 precision hits over the full acceptance (-4<\(\eta\)<4) and up to R\(\sim\)1m
 - minimization of material over the full \(\eta\)-acceptance
 - best physics reach (good b-tagging, efficient reconstruction in dense jets and in high-pile-up environment, and precise track & vertex measurements)
- Short barrel followed by inclined modules and then by disks (of different radial coverage → a measurement “layer” is not necessarily coplanar)

Active area: 12.7 m²
Pixel size: 50x50 (or 25x100) µm²
of modules: 10276
of FE chips: 33184
of channels: ~5 × 10⁹

Additional η-acceptance

Insertable inner layers
An artistic view to get a better feeling of the ITk layout

Barrel Strip

End-Cap Strip (Disks)

End-Cap Pixel (Rings)

Barrel Pixel

R~1m, L~7m
The Sensors

- Sensor technology must be tailored to the radiation environment (and financial constraints)
- Baseline is 3D for the innermost layer(s) and planar elsewhere. Outer barrel layer (~1/5 total area) may employ CMOS.

3D sensors

- Used in IBL (and in operation since 2015)
- More rad-hard (and less power hungry), but also higher C_{IN} and more complex production process (yield and less available firms)
- Naturally confined to innermost layer(s)
- Challenges (vs IBL):
 - Smaller pixel needed (50x50 or 25x100 μm^2) \rightarrow yield?
 - Column themselves are not efficient \rightarrow tilt sensor
 - Thinner sensors (<150μm) \rightarrow Lower signal & yield
 - Test before BB \rightarrow sacrificial metal layer
The Sensors

- Sensor technology must be tailored to the radiation environment (and financial constraints)
- Baseline is 3D for the innermost layer(s) and planar elsewhere. Outer layer (~1/5 total area) may employ CMOS.

3D sensors

- Used in IBL (and in operation since 2015)
- More rad-hard (and less power hungry), but also higher C_{IN} and more complex production process (yield and less available firms)
- To increase yield a Single Side process has been studied and implemented.
- With very encouraging results

G.F. Dalla Betta et al. PoS (Vertex 2016) 028
- Small (50x50µm²) pitch 3D ok before and after irrad. up to 1.4e16 n_{eq}/cm² (excellent detection efficiency and power dissipation)

- Better than 3D IBL generation

Power dissipation 1.5mW/cm² @ 5 x 10^{15} n_{eq}/cm² (vs 3.5 mW/cm² for IBL 3D)

Beam test measurements of irradiated 3D pixel sensors with 50x50 µm² pixel size, D.Vasquez, Trento 2017

See also H. Oide this conference
Planar sensors

- Well proven and understood technique, but must simplify production to decrease cost (n-in-p = single sided process)

Challenges:
- HV insulator on sensor or chip needed (1000 V) → BCB coating
- Thin detectors (<150 µm) → low signal
- A punch-through bias grid is necessary to select good sensors before hybridisation. This will result in a small and local inefficiency (especially after irradiation) → design optimisation (or sacrificial grid)
• Hit efficiency for highly irradiated sensors (10^{16} MeV n_{eq}/cm^2) reaches 97%
• Thinner sensors require lower V_{bias}

Thin planar pixel sensor productions at MPP for the ATLAS ITk, A Macchiolo, Trento 2017
CMOS sensors

- 3D and planar built on high-ρ Si and connected to FE electronics with high density BB. This technology is well known and optimisation of sensor and electronics can be done independently.
- But…need specialised foundries (high unit cost, low throughput 6” wafers) and BB
- CMOS foundries have much higher throughput (larger wafers) and became interested to medium-ρ Si (e.g. for automotive applications) + open to external designers → possible to implement sensors and circuits on the same substrate.

E-field is weaker (charge collected by drift & diffusion) one may then worry about:

- timing (can the detector be fast enough for LHC?)
- Efficiency after irradiation (up to which dose can this device work?)
The basics of CMOS for HL-LHC use (at large radius) is in hand.

Now see if a chip with full read-out architecture (and digital traffic) can be safely operated.

If yes (and satisfactory) CMOS will be used for the external layer (with some gain of production time and some cost saving).

arXiv:1611.02669, M. Benoit et al.
The FE electronics

- Synergic development with CMS (RD53) to design FE Pixel ASIC for HL-LHC. The first prototype chip should be delivered any day (submitted Aug 31).

- Main characteristics:
 - Increased radiation hardness using 65nm technology in TSMC
 - First time using a fully synthetized digital part in a "sea of digital"
 - Smallest pitch for hybrid LHC application so far, 50x50um² (possibility for 25x100um²)
 - Shunt LDO implemented for compatibility with Serial Powering
 - Highest data rate achievable per ASIC: 5Gbps
 - Now tests on wafer and (if ok) with sensors
 - Next iteration: each experiment will tailor to its own specs and extend to full size (now ~50%).

<table>
<thead>
<tr>
<th>Technology</th>
<th>65nm CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel size</td>
<td>50x50 um²</td>
</tr>
<tr>
<td>Pixels</td>
<td>192x400 = 76800 (50% of production chip)</td>
</tr>
<tr>
<td>Detector capacitance</td>
<td>< 100fF (200fF for edge pixels)</td>
</tr>
<tr>
<td>Detector leakage</td>
<td>< 10nA (20nA for edge pixels)</td>
</tr>
<tr>
<td>Detection threshold</td>
<td><600e-</td>
</tr>
<tr>
<td>In-time threshold</td>
<td><1200e-</td>
</tr>
<tr>
<td>Noise hits</td>
<td>< 10⁻⁶</td>
</tr>
<tr>
<td>Hit rate</td>
<td>< 3GHz/cm² (75 kHz avg. pixel hit rate)</td>
</tr>
<tr>
<td>Trigger rate</td>
<td>Max 1MHz</td>
</tr>
<tr>
<td>Digital buffer</td>
<td>12.5 us</td>
</tr>
<tr>
<td>Hit loss at max hit rate (in-pixel pile-up)</td>
<td>≤1%</td>
</tr>
<tr>
<td>Charge resolution</td>
<td>≥ 4 bits ToT (Time over Threshold)</td>
</tr>
<tr>
<td>Readout data rate</td>
<td>1-4 links @ 1.28Gbits/s = max 5.12 Gbits/s</td>
</tr>
<tr>
<td>Radiation tolerance</td>
<td>500Mrad at -15°C</td>
</tr>
<tr>
<td>SEU affecting whole chip</td>
<td>< 0.05 /hr/chip at 1.5GHz/cm² particle flux</td>
</tr>
<tr>
<td>Power consumption at max hit/trigger rate</td>
<td>< 1W/cm² including SLDO losses</td>
</tr>
<tr>
<td>Pixel analog/digital current</td>
<td>4μA/4μA</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40°C ÷ 40°C</td>
</tr>
</tbody>
</table>

Example of square pixel on sensor above
Bump bond location

More in M. Garcia-Sciveres talk
The Module

- Sensors and mating FE electronics are joined through high density vertical connectivity (bump-bonding) → bare module
- Module (basic building block, replicated many times to cover the detector surface) requires dressing with flex circuits for I/O

For yield reasons 3D modules will be with 1 FE only, while planar with 4 FE (or 2).

- High-density bump-bonding (50x250 \(\mu m^2 \)) routinely done (in few firms), but now:
 - 50x50 \(\mu m^2 \) pixels, same pitch as before but 5x density → just try…
 - Larger ASIC wafer size (12”) → start with daisy chain dummy wafers to qualify firms
 - Thinner ASIC and Sensors (<150 um) → handling wafers (or stress compensation)

- Effort ongoing (now to 2019) to qualify 4 to 5 firms for BB production (needed for the large area of ITk Pixel; 12k modules in 2 years = 50 modules/week)
- Also considering to complement flip-chip “power” with in-house capability
The Mechanical Supports and Services

- Mechanics and services have been optimized for better coverage and lower material budget.
- Inclined layout preferred vs extended (better track reco for mid&low p)

Services (not shown) will run inside the longeron

Barrel

- Flat section in the middle part of the Longeron
- Inclined modules mounted on pyrolitic graphite plate (PGP)
- Connected to cooling pipe via high thermal conductivity cooling block (e.g. graphite)
- Inner layers could have slightly different support design (see later)
End-cap

- Coverage (up to $\eta=4$) obtained with many disks with (partially overlapping) modules on both sides. Rings supported by CRF half shells.
- 1 measurement “plane” made of 3 z-displaced rings (inner, mid, outer)

- Cooling pipe (and power lines) running inside a thermally conductive carbon foam sandwiched between two CRF rings
The innermost insertable layers

- Must slide-in inside a CRF shell (prototype here→)

- Inner layout contains a (short) barrel part and many small rings (some covering the barrel acceptance and some the EC acceptance)

Barrel
- 16 L0 Staves
- 20 L1 Staves

Barrel Rings
- 16 L0/L1 Coupled Rings
 (1/4 shown here for clarity)

Inner Endcap
- 4 Coupled Quad Rings
- 4-6 Simple Quad Rings

Outer Shell as Integrating and Servicing Structure
Serial Powering

• Crucial to minimize the amount of material (one cable instead of 12 or 16)

• DCS functionality integrated in the system
 – DCS chip: monitor and control of module (bypassing)
 – Independent DCS power and communication lines
 – Test results on a prototype made of 6 FEI4 quad modules (3 with bypass chip) show no degradation of threshold or noise (vs parallel powering of the same setup) → good, but more tests needed to reach the desired modularity (and fail safe operation).
Material budget

- All the design choices (thin sensors & electronics, use of CO2 evaporative cooling, use of serial powering, etc.) greatly reduced the material budget in the acceptance region (compared to the current Pixel detector that has one layer less).
- ...and even more in the forward region up to $\eta < 5.5$
- most of the gain comes from cables (i.e. serial powering)

...now we just have to maintain the promises (it is well known that trackers tend to put on some weight during construction)
Read-out & Trigger

- 1 MHz read-out and up to 35µs data latency (alternative is partial 4 MHz read-out @L0 trigger and 800 kHz full read-out @L1)
- 4 MHz L0 sustainable only from outer ITk pixel layers.

Diagram:

- L0 [L1] trigger latency 10 [35] µs
- Average data rate in barrel layers
- Layer 0 is critical
Concluding remarks

- All the basics techniques for the project are understood and available in the collaboration and in the industrial environment.
- Many refinements are needed, some of which are critical for the timely success of the project (e.g. serial powering, bump-bonding, etc.)
- The production plan is quite constrained and will require careful optimization and flexibility to react to problems.
- The ATLAS ITk Pixel collaboration is going to submit its TDR to the LHCC next week.
- Ready to jump…
Additional information
Figure 5 (a) Layout detail of 3D strip sensor of $50 \times 50 \, \mu \text{m}^2$ elementary cell layout (the red rectangle indicates the region of interest for the laser scan), and (b) maps of measured signals at three different bias voltage (2, 8, and 50 V).
Highest Level Integration
¼ Shell Assembly (Barrel Shown)

- Service Bundles in Trays
- Barrel Ring PP0 Flex
- Barrel PP0 Flex
- Quad Stave
- Single Stave
- Coupled Barrel-Rings
- Barrel End Flange

Cut at Z=0 for clarity

12 of these in total