BOSE CONDENSATES, BIG BANG NUCLEOSYNTHESIS
AND COSMOLOGICAL DECAY OF A 17 KEV NEUTRINO

Jes Madsen

Abstract

Early Universe decay of 17 keV neutrinos is likely to happen in equilibrium for lifetime $t_{\text{free}} < 10^5$ sec. For 3×10^{-4} sec $< t_{\text{free}} < 1 \times 10^{-2}$ sec the primordial 4He mass-fraction Y_p may be reduced by up to 0.028 relative to the standard model. Bosons from the decay can form a Bose condensate, with interesting consequences for galaxy formation and the dark matter problem. The effects are generic to early Universe decay of fermions; not just of relevance for 17 keV neutrinos.

To appear in Physical Review Letters
The possibility of nonzero chemical potentials also changes the dark matter problem. The fermions also have very interesting consequences for baryon formation and the baryon asymmetry in Section 1. This leads to formation of a Bose-condensed baryon (SBH).

0.02-0.05 GeV occur relative to standard Big Bang nucleosynthesis (SBN).

Induced transitions in Section 2.1, 3.1, 10−7 sec > f > 10−6 sec. This leads to interesting consequences for Big Bang nucleosynthesis. This leads to interesting consequences for the scale and properties of the particle and antiparticles, with the same spin for particle and antiparticle reactions than decays and the corresponding inverse reactions, similar distributions in mass and mp, as well as spin, and no anomaly in the form of decay (assumed to have one internal degree of freedom) of fermion. Both the spin and antiparticle reaction products: 1. P ≠ 1. P ≠ 1.

Two scenarios are studied. Both assuming B and P to be stable, with massless and m ≲ 100 GeV and, in agreement with the scenario in Section 1, these are both assumed to have one internal degree of freedom. Forexample, 1 − 10 GeV and 10−7 sec > f > 10−6 sec.

The light field presents the essential spinless decay pattern.

From the basic concept of a field of motion 200 GeV.

But the newtons (wrongly assumed to be 2) must be matched to present the Universe by perfect hard particle transitions not to determine cosmology and astrophysics. In particular, the 17 hard particle transitions, not to determine cosmology and astrophysics, and the determination of the mass of the 17 hard particle transitions, not to determine cosmology and astrophysics, lead to 26 hard particle transitions, not to determine cosmology and astrophysics. Recent experimental evidence [1] for a 17 key neutrino mass observable with

PACS numbers: 98.80.Cq, 14.30.Fc, 98.60.-a

The neutrino decay of 17 key neutrinos is likely to happen in agreement with

The Institute of Physics and Astronomy, Adams University, 17 Key, Denmark

Jes Makasen

And cosmological decay of a 17 key neutrino

Does condensate's Big Bang nucleosynthesis
hot dark matter scenario for galaxy formation, and the Tremaine-Gunn phase-space limit on the mass of dark matter particles [3, 4] is significantly altered.

The generic two-particle decay of a 17 keV neutrino is simply described in the center-of-momentum frame, where both of the relativistic decay-products carry 8.5 keV of energy. By application of Lorentz-transformations [5] one may calculate the momentum-distribution of the decay-products in the cosmic frame assuming instant isotropic decay in the rest frame at temperature T_ν, taking into account the thermal Fermi-Dirac distribution of the decaying ν_τ. An example is shown in Fig. 1, for $T_\nu = 1$MeV. The distribution function of the decay-products derived in this purely kinematical fashion exceeds the thermal distributions for momenta $p < 1$MeV. The “oversaturation” of levels proceeds down to temperatures of a few keV, corresponding to lifetimes $t_{\text{free}} \approx 10^9$ sec [6]. This demonstrates that “free decay” of a ν_τ with lifetime less than 10^6 sec is impossible. The inverse reaction is crucial, and an equilibrium description is more appropriate.

The assumption of equilibrium breaks down when the relevant reaction rates, depending on the actual couplings in the model, become small relative to the cosmic expansion rate. I shall assume that equilibrium is a good approximation as long as a significant fraction of the kinematically preferred phase-space for the decay products is inaccessible; that is, for $T_\nu > 1$ keV [7]. To avoid a complicated reaction network, I shall limit discussion to $t_{\text{free}} > 3 \times 10^{-4}$ sec, so that the decay process is unimportant prior to freeze-out of the weak interactions that keep neutrinos and antineutrinos in equilibrium at $T > 2.3$MeV, $t < 0.13$ sec.

The occupation number distributions in equilibrium are

$$f_i(E_i) = \left[\exp((E_i - \mu_i)/T) \pm 1 \right]^{-1},$$ \hspace{1cm} (2)

with chemical potentials constrained by

$$\mu_\nu = \mu_B + \mu_F, \quad \mu_\nu = \mu_B + \mu_F.$$ \hspace{1cm} (3)

Equation (3) assumes that no reactions apart from decay and inverse decay take place.

The total number of fermions (ν_τ plus F) must be conserved by the decay, and the number of bosons shall equal the number of ν_τ that have decayed (twice the number of ν_τ decaying if $B = \bar{B}$). Finally, the energy density must be conserved in the decay.

For $F = \nu_\tau$, $B = \bar{B}$ this leads to the conservation equations:

$$n_{\nu_\tau}(T_D, 0) = n_{\nu_\tau}(T_A, \mu_\nu) + \frac{1}{2} n_B(T_A, \mu_B)$$ \hspace{1cm} (4)

$$n_{\nu_\tau}(T_D, 0) + n_{\nu_\tau}(T_D, 0) = n_{\nu_\tau}(T_A, \mu_\nu) + n_{\nu_\tau}(T_A, \mu_\nu)$$ \hspace{1cm} (5)

$$\rho_{\nu_\tau}(T_D, 0) + \rho_{\nu_\tau}(T_D, 0) = \rho_{\nu_\tau}(T_A, \mu_\nu) + \rho_{\nu_\tau}(T_A, \mu_\nu) + \frac{1}{2} \rho_B(T_A, \mu_B),$$ \hspace{1cm} (6)

where $n_i(T, \mu_i)$, $\rho_i(T, \mu_i)$ are number- and energy densities, T_D is the neutrino temperature at decay (assumed to be instant), and T_A is the temperature immediately after decay. The distribution function of 17 keV neutrinos prior to decay is that of Eq. (2) with $\mu_{\nu_\tau} = 0$, $E_{\nu_\tau} = \rho_{\nu_\tau}$ because of the relativistic decoupling. Similar conservation laws hold for the other 3 cases. For $\mu_B = 0$ Eqs. (3), (5) and (6) describe the equilibrium, and a critical temperature $T_c = (\pi^2 n_B/\zeta(3))^{1/3}$ (with n_B calculated from Eq. (4)) is established. Below T_c a fraction $[1 - (T_A/T_c)^3]$ of the bosons are in a Bose condensate with zero momentum [8]. Figure 2 shows the evolution of chemical potentials required to satisfy Eqs. (3)–(6), and Fig. 3 illustrates how ν_τ survives until it becomes nonrelativistic. This property is independent of the nature of the decay products [9].

A 17 keV ν_τ with a lifetime longer than 10^{-2} sec acts like a normal third neutrino in SBBN calculations. For lifetimes between 3×10^{-4} sec and 10^{-2} sec the nucleosynthesis changes if $F = \nu_\tau$, the yields depending on whether B is its own antiparticle.
since the maximum occupation number, \(\rho(z) \), is increased from \(0 \) to \(1/\langle \exp(\mu z) \rangle \) with increasing sample size, the distribution of the free energy is shifted to lower values, effectively broadening the peak at \(k_B T \). This broadening is further increased due to the decrease in the number of states above \(k_B T \). The lower energy states, in contrast, are more strongly suppressed due to the increased interaction energy at lower \(T \) relative to \(T = 0 \).

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

10.3 minutes

The only potentially observable exception is the case where the interactions are purely diagonal in position space. In this scenario, the broadening effect is negligible, and the peak in the free energy is observed at \(k_B T \). The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.

The broadening of the problem in higher dimensions of space-time requires a detailed analysis of the system's behavior. The broadening effect is observed when the system's occupation number is increased, leading to a decrease in the free energy. This effect is more pronounced in higher-dimensional systems, where the occupation number is increased by a factor of \(\langle \exp(\mu z) \rangle \) as the system size increases.
the density but have more power on small scales due to higher occupation numbers at low momenta. For small negative chemical potential the distribution will be somewhat intermediate between the zero-chemical potential neutrino and boson spectra shown in Fig. 2 of Ref. [16]. The Tremaine-Gunn limit for the boson masses [4] are strengthened by a factor approaching $\exp(-\mu_B/4T_A)$ for very negative μ_B. If a fraction of the bosons form a condensate, one has the fascinating possibility of a dark matter candidate which at the same time acts as hot dark matter [16] (the $\approx 65\%$ of particles not in the condensate) and cold dark matter (the $\approx 35\%$ of particles in the condensate). Such hybrid models have been shown to work well with massive neutrinos plus an unknown cold dark matter component [17]. The boson model will be rather similar, but with only one particle involved.

In summary, two-particle decay of a 17 keV ν_e in the early Universe is forced into equilibrium with the inverse decay. The effective lifetime is thereby extended to 10^9 sec for free-particle lifetimes 3×10^{-4}-10^5 sec. If the fermion produced in the decay is ν_e and the lifetime is 3×10^{-4}-10^{-2} sec, this may give one of the only known mechanisms to reduce primordial 4He without significantly changing the production of other elements [18]. If either of the decay-products have eV-masses, galaxy formation may proceed via a variant of the hot dark matter model, or (in the case of Bose condensation) like a hybrid hot + cold dark matter model, with the same particle responsible for both components. Phase-space constraints on the masses of dark matter particles in galaxy halos are strengthened significantly due to the non-zero chemical potentials (except in the hybrid case).

I have attempted to keep the discussion very general without reference to specific models for the 17 keV neutrino or its decay properties. Details may change in particular models, but the main inferences seem to be generic, and will prevail even for decays into three or more particles, for models identifying the 17 keV neutrino with a fermion distinct from ν_e, and for other fermion decays in the early Universe.

ACKNOWLEDGMENTS

It is a pleasure to thank Georg Raffelt for useful discussions and hospitality during a visit to MPI, München, and a referee for pointing out an error in the original treatment. This work was supported in part by the Danish Natural Science Research Council.
REFERENCES
FIGURES

FIG. 1. Occupation number distribution for low-mass B and F if decay was purely kinematic, instantaneous and isotropic in the rest-frame at $T_e = 1\text{MeV}$ (full line). Dotted and dash-dotted curves are thermal Fermi- and Bose-distributions at the same temperature. Dashed curve is the fraction of decay products with momentum below p.

FIG. 2. Chemical potentials for decay in equilibrium. (a) $F \neq \nu_e, B \neq \bar{B}$; (b) $F \neq \nu_e, B = \bar{B}$; (c) $F = \nu_e, B = \bar{B}$; (d) $F = \nu_e, B \neq \bar{B}$. Full lines are for B, dotted lines for F, and dashed lines for ν_e. Dash-dotted curves are T_A/T_D, and dash-triple-dot curves T_A/T_c.

FIG. 3. Full and dotted curves are the occupation number distributions for B and F at $T_D = 1\text{keV}$. Dashed curves from top to bottom show the evolution for ν_e at $T_D = 100, 10, 5, 3$ and 1keV for $F \neq \nu_e, B \neq \bar{B}$. The other scenarios are similar; ν_e disappears after 10^6sec, at temperatures of a few keV.

FIG. 4. Primordial mass-fraction of ^4He as a function of baryon-to-photon ratio. Full curve is the standard model. Dashed and dotted curves correspond to Fig. 2 (c) and (d). The box is allowed by observations.