Gauge models of planar high-temperature superconductivity without parity violation

N.E. Mavromatos

Theory Division, CERN, CH-1211, Geneva 23, Switzerland
and,
Laboratoire de Physique Théorique ENSLAPP1
Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France.

Abstract

I give a status report of a parity-invariant model of two-dimensional superconductivity, recently proposed by N. Dorey and myself. The model consists of two-species of fermions coupled with opposite sign to an abelian gauge field and is closely related to QED\textsubscript{2}. The first part of the talk is devoted to a detailed analysis of the relevant properties of QED\textsubscript{2}. In particular we study the dynamical generation of a parity-conserving fermion mass and the finite-temperature symmetry restoration transition. We show how the parity-invariant model arises as an effective long-wavelength theory of the dynamics of holes in a two-dimensional quantum antiferromagnetic system on a bi-partite lattice. The model exhibits type-II superconductivity without parity or time-reversal symmetry violation, a high value of $2\Delta/k_B T_c$, flux quantization with quantum $\hbar c/2e$ and a two-dimensional Meissner effect. I discuss non-perturbative effects and give arguments about the validity of the superconductivity mechanism in their presence, for low doping. I speculate about the possible rôle of such effects in intra-sublattice hopping and eventual disappearance of superconductivity for large doping concentrations. I also discuss the possible relevance of this model to the high-T_c superconductors.

Invited contribution to 'Common Trends in Particle and Condensed Matter Physics',
Chia-Laguna, Sardinia (Italy), September 1992.

1URA 14-36 du CNRS, associée à l' E.N.S. de Lyon, et au L.A.P.P. (IN2P3-CNRS) d' Annecy-le-Vieux
Gauge models of planar high-temperature superconductivity without parity violation

N.E. Mavromatos

a Theory Division, CERN, CH-1211, Geneva 23, Switzerland, and Laboratoire de Physique Théorique ENSLAPP, Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France.

I give a status report of a parity-invariant model of two-dimensional superconductivity, recently proposed by N. Dorey and myself. The model consists of two species of fermions coupled with opposite sign to an abelian gauge field and is closely related to QED\textsubscript{3}. The first part of the talk is devoted to a detailed analysis of the relevant properties of QED\textsubscript{3}. In particular we study the dynamical generation of a parity-conserving fermion mass and the finite-temperature symmetry restoration transition. We show how the parity-invariant model arises as an effective long-wavelength theory of the dynamics of holes in a two-dimensional quantum antiferromagnetic system on a bi-parite lattice. The model exhibits type-II superconductivity without parity or time-reversal symmetry violation, a high value of $2\Delta/k_B T_c$, flux quantization with quantum $\hbar c/2e$ and a two-dimensional Meissner effect. I discuss non-perturbative effects and give arguments about the validity of the superconductivity mechanism in their presence, for low doping. I speculate about the possible role of such effects in intra-sublattice hopping and eventual disappearance of superconductivity for large doping concentrations. I also discuss the possible relevance of this model to the high-T_c superconductors.

1. Introduction

Ever since the discovery of the quasi-planar high-T_c oxides in 1986 [1], there has been considerable theoretical interest in two-dimensional superconductivity. In two dimensions, particles are no longer limited to Bose and Fermi statistics but can acquire an arbitrary interchange phase; such particles with fractional statistics are known as anyons [2]. Laughlin [3] suggested that a gas of anyons may exhibit superconductivity at low temperature and, subsequently, this idea was supported by the results of calculations in the random phase approximation [4] which demonstrated that a perfect gas of charged anyons with certain values of the statistics parameter is indeed a superconductor at zero temperature. This 'anyonic superconductivity' is an entirely novel phenomenon which has no analog in three-dimensional systems. Motivated by the role of anyonic quasi-particles in the Fractional Quantum Hall Effect, Laughlin went on to suggest that the charge carriers in the copper oxide planes of materials such as La$_2$CuO$_4$ and YBa$_2$CuO$_6$ might also have fractional statistics and that superconductivity in these materials may be well described by the anyonic model.

A field theoretic realisation of anyonic matter consists of fermions interacting with an abelian 'statistical' gauge field whose dynamics is governed by a Chern-Simons term. As discussed in [5], this term leads to observable parity violation in an anyonic superconductor for which there is, as yet, no conclusive experimental evidence [6].

In its original form [6] the anyonic scenario for superconductivity has been demonstrated only for zero temperatures. The occurrence of superconductivity in the anyonic model depends critically on a delicate cancellation of the bare Chern-Simons term against the Chern-Simons term radiatively generated by one-loop vacuum polarisation so that the statistical gauge field becomes massless. Only when this cancellation occurs does the pole required for superconductivity appear in the current-current correlator. However, the coefficient of the radiatively generated term is temperature dependent and the cancellation no longer occurs at finite temperature [7]. Hence, unless the cancellation is restored by higher order effects, the conventional anyonic model is only a true superconductor at exactly zero tempera-
ture. A way out has been proposed in [8]. In this model there are no bare Chern-Simons terms, but they are all generated dynamically through interactions among fermionic degrees of freedom. So far, this model appears to be the only variant of the anyonic model to avoid the abovementioned problem. It is also conceptually closer to the conventional (BCS) superconductivity, which is nothing other than a dynamical opening of a gap in the fermion spectrum due to phonon interactions. In three dimensions the rôle of the scalar phonon interactions can be replaced by that of a vector field. The so-generated mass-gap in the fermion spectrum can be either parity-conserving or parity-violating, and hence this dynamical scenario allows in general for both types of superconductivity.

The necessary condition for superconductivity is the existence of a massless scalar mode ϕ which couples to the electromagnetic field A_μ in the standard London action,

$$\mathcal{L} = K(\partial_\mu \phi - A_\mu)^2$$ \hspace{1cm} (1.1)

where K is a constant. In $(2+1)$-dimensions a massless gauge field has only one degree of freedom and the London action can be derived exactly from a theory of a massless gauge field a_μ, defined by $\varepsilon^{\mu \nu \rho} \partial_\nu a_\rho = \partial_\mu \phi$, which couples to the electromagnetic field via a mixed Chern-Simons term [9],

$$\mathcal{L} = -\frac{1}{4g^2} f_{\mu\nu} f^{\mu\nu} + \frac{k}{4\pi} \varepsilon^{\mu\nu\rho} a_\mu \partial_\nu A_\rho$$ \hspace{1cm} (1.2)

The presence of a parity-violating Chern-Simons term which provides a topological mass for the a_μ field spoils this equivalence and hence this term must be cancelled exactly in the anyonic model. On the other hand, the mixed Chern-Simons term which couples the electromagnetic and statistical gauge fields is essential for superconductivity. From this point of view an obvious question to ask is whether there exists a theory which includes the latter term but not the former. This is precisely the effective low energy theory describing the dynamical generation of a parity-conserving mass.

Recently, several authors [10–12] have proposed a simple gauge-theory model which has exactly this property, and thereby exhibits two-dimensional superconductivity without parity violation. In its most general form, the model consists of two species of massive fermions coupled with opposite signs to an abelian gauge field (which we will continue to refer to as the statistical gauge field to avoid confusion with the electromagnetic gauge field). The two species have equal and opposite masses and hence parity is conserved overall. Although this model has no bare Chern-Simons term and the charge carriers do not acquire fractional statistics, a mixed Chern-Simons term is radiatively generated at one-loop and the effective action takes on the form (1.2) exactly as in the anyonic case. Unlike anyonic superconductivity, the parity-conserving case invokes no artificial cancellations and superconductivity persists at finite temperature. In this talk I will review the phenomenology of this model in some detail and discuss its possible relevance to the high-T_c superconductors. In general [10, 12], this model has been introduced at the continuum level and discussed without reference to a specific physical system. However, in [11], we showed that a special case of the parity-conserving theory arises as an approximate long-wavelength limit of an idealised model of the dynamics of the charge carriers in the copper oxide layers of the high-T_c materials. In this special case the fermionic terms in the action have a Dirac-like structure. Neglecting the coupling to the three-dimensional electromagnetic field, the resulting effective theory of the charge carriers interacting with the statistical gauge field is closely related to QED in $(2+1)$-dimensional space-time (QED$_3$).

Three-dimensional QED provides the simplest possible realisation of the parity-conserving model. Variants of the model with non-relativistic fermions and a finite particle density exhibit the same mechanism of superconductivity and only introduce added calculational complexity. In addition, as mentioned above, the case of
Dirac fermions at zero density appears to be a physically relevant one. For these reasons in the course of this talk I will discuss in some detail the relevant properties of QED$_3$. I will review the symmetries of the massless theory and the patterns of symmetry breaking which occur when different mass terms are introduced. In particular, I will identify the relevant form of QED$_3$ in which the introduction of a parity-conserving mass term leads to the spontaneous breaking of the symmetry of the system under global phase rotations, denoted $U_R(1)$. This pattern of symmetry breaking leads directly to a mixed Chern-Simons term and hence superconductivity when the system is coupled to external (three-dimensional) electromagnetic fields. I will discuss the phenomenon of dynamical mass generation in QED$_3$, and I will argue that in the minimal model under consideration - which is derived from a lattice system widely believed to simulate the physics of high-T_c superconductors - the generated mass gap is parity conserving for energetics reasons. I will review previous analytical and numerical work at zero temperature and provide an approximate treatment of the finite temperature case. We find a non-zero critical temperature above which the dynamically generated fermion mass vanishes identically. In the context of the parity-conserving model this has an obvious interpretation as the phase transition separating the superconducting and normal states. We find that this transition has no local order parameter and thus is not subject to the Mermin-Wagner theorem [13].

I will also provide some brief discussion on a microscopic model of the charge carriers in the copper oxide layers of the high-T_c materials which yields the parity-conserving model in the long-wavelength limit. In the absence of doping impurities these materials are antiferromagnetic (AF) insulators and are well described by the two-dimensional Heisenberg antiferromagnet. Following ideas of Shankar [14], Wiegmann [15] and Lee [16], we model [17] dynamics of charged holes in the antiferromagnet by coupling two-species of Grassman fields, corresponding to the two sublattices defined by the AF order, to the σ-model action. The long-wavelength limit of this system is a quasi-relativistic quantum field theory of Dirac fermions coupled with opposite sign to an abelian gauge field. In this approach the statistical gauge field of the σ-model is an independent degree of freedom, which should be integrated out in the path-integral of the long-wavelength limit.

In the last section I discuss the phenomenology of the parity conserving model coupled to a physical three-dimensional electromagnetic field and demonstrate the occurrence of superconductivity explicitly. In particular, I demonstrate infinite conductivity, flux quantisation and a two-dimensional Meissner effect. I discuss the role of topologically non-trivial gauge field configurations and argue that superconductivity in the model survives these non-perturbative effects, for low doping concentrations. I will also present arguments for justifying their role as an effective way of representing intra-sublattice hopping in doped quantum antiferromagnets. I will argue that for large doping this effect could be enhanced and lead to disappearance of superconductivity, eventually.

Finally, I discuss the possible relevance of this model to the high-T_c materials. We find that the parity-conserving model overcomes many of the phenomenological obstacles confronting the anyonic theory. The model exhibits parity-invariant superconductivity with a non-zero transition temperature and the occurrence of two species of fermions with opposite masses and gauge couplings has a natural interpretation in terms of the antiferromagnetic structure of the copper oxide layers. Although a quantitative comparison with experiment is not yet possible, the special case of the model in which the fermion mass is dynamically generated seems to capture several qualitative features of high-T_c superconductivity. These include an extremely large value of the Landau-Ginsburg constant (high-T_c superconductors are strongly type-II) and a high value for the characteristic ratio $2\Delta/k_BT_c$.

2. Three-dimensional QED

2.1. The action and its symmetries

The Lagrangian for massless Euclidean QED$_3$ with N flavours of fermions is given by

$$\mathcal{L} = -\frac{1}{4} f_{\mu\nu} f^{\mu\nu} + \bar{\psi}_i (i\partial^\mu - e \gamma^\mu) \psi_i$$ \hspace{1cm} (2.1)

where $i = 1, 2, \ldots, N$. In (2+1)-dimensional spacetime the lowest rank irreducible representation of the Dirac algebra is two-dimensional. In this representation the γ-matrices may be chosen as

$$\gamma_\mu = (\sigma_3, \sigma_1, \sigma_2)$$

where σ_i are the usual Pauli matrices and Dirac fermions are described by two-component spinors, ψ_0. In the case at hand, we are interested in even-number of fermionic flavours. This is always the case of the continuum limit of lattice gauge theories. In the present case it is also the even number of sublattices that contributes. Hence, we consider a reducible four-dimensional representation of the Dirac algebra [18, 19]. A possible choice of (4×4) γ-matrices is,

$$\gamma_0 = \begin{pmatrix} i\sigma_3 & 0 \\ 0 & -i\sigma_3 \end{pmatrix} \quad \gamma_1 = \begin{pmatrix} i\sigma_1 & 0 \\ 0 & -i\sigma_1 \end{pmatrix}$$

$$\gamma_2 = \begin{pmatrix} i\sigma_2 & 0 \\ 0 & -i\sigma_2 \end{pmatrix}$$ \hspace{1cm} (2.2)

In this representation it is possible to define two further matrices, γ_3 and γ_5, which anticommute with γ_0, γ_1 and γ_2:

$$\gamma_3 = i \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \quad \gamma_5 = i \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$ \hspace{1cm} (2.3)

where I is the (2×2) unit matrix. Fermions are now described by four-component spinors, ψ, which can be be written as vectors of two-component spinors, $\psi = (\psi_1, \psi_2)$. In terms of four-component spinors, the massless Lagrangian (2.1), now has two continuous global symmetries generated by γ_3 and γ_5 respectively. The four component mass term, $M\bar{\psi}\psi = M\bar{\psi}_1\psi_1 - M\bar{\psi}_2\psi_2$, coincides with that of two species of two-component fermions with equal and opposite masses. Examining the vacuum polarization tensor pertaining to the graph of fig. 1, we see that Chern-Simons terms

with equal and opposite coefficients are generated ($N_+ = N_-\dagger$), which automatically cancel in the effective action. The action of the parity operator on four-component spinors is given by

$$P_4 \psi = \begin{pmatrix} 0 & P_2 \\ P_2 & 0 \end{pmatrix} \psi$$ \hspace{1cm} (2.4)

and so interchanges the labels 1 and 2. The four-component mass term is parity invariant but breaks the `chiral' symmetries generated by γ_3 and γ_5.

In the four-component case, the Lagrangian (2.1) also has a continuous global symmetry generated by the matrix $\gamma_3 = \text{diag}(I, -I)$. This symmetry is sometimes referred to as `chiral' but will be referred to here as γ_3-symmetry to avoid any confusion with the chiral symmetries mentioned above. Under a γ_3-transformation, the upper and lower components of spinors receive equal and opposite phase rotations:

$$\psi_1 \rightarrow \exp (i\theta) \psi_1$$

$$\psi_2 \rightarrow \exp (-i\theta) \psi_2$$ \hspace{1cm} (2.5)

Because γ_3 commutes with the three block-diagonal gamma matrices, a mass term $M\bar{\psi}\psi$ does not break the γ_3-symmetry of the massless Lagrangian. However, a non-vanishing mass term leads to a vacuum state which is not γ_3 invariant. The corresponding conserved current

$$J^\mu = \bar{\psi}\gamma_\mu\gamma_3\psi$$

acquires a non-zero matrix element between the vacuum and a one-photon state. The lowest order contribution to this matrix element is shown in Figure 2 and gives [20]

$$\langle 0 | J^\mu | 1, p \rangle = -\text{sign}[m] \frac{ie}{2\pi^2 \sqrt{2p_0}} \epsilon_{\mu\nu\rho} p^\nu \epsilon^\rho$$ \hspace{1cm} (2.6)
Figure 1. The one-loop vacuum polarisation diagram.

Figure 2. The one-loop contribution to the matrix element \(\langle 0| J^\nu_\mu |1,p \rangle \). A blob indicates an insertion of the current \(J^\nu_\mu \).

where \(e^\nu \) is the photon polarisation vector. Again the non-vanishing of the diagram shown in Figure 2 depends on the non-zero trace of three \(\gamma \)-matrices \(\text{Tr}(\gamma_\mu \gamma - \nu \gamma_\rho) \approx 2e_{\mu\nu\rho} \) and is special to three-dimensional spacetime. In Ref [20] it is shown that the non-vanishing of this matrix element implies the non-invariance of the vacuum under \(\tau_3 \) transformations. Although this constitutes the spontaneous breaking of \(\tau_3 \)-symmetry, there is no local order parameter for the symmetry breaking (i.e. no \(\tau_3 \)-non-invariant operator acquires a non-zero vacuum expectation value). In this respect, the spontaneous breaking of \(\tau_3 \)-symmetry is similar to the Kosterlitz-Thouless transition of the two-dimensional XY-model [21].

In the four-component representation, each species of fermion is equivalent to two species of two-component fermions with the same gauge coupling. As mentioned in Section 1, the relevant case for the parity-conserving superconductivity model has two species coupled with opposite sign. This case is realised in four-component notation by replacing the gauge coupling in (2.1) by \(e\tau_3 \). This variant will be referred to as \(\tau_3 \)-QED3. Because \(\tau_3 \) anticommutes with \(\gamma_5 \) and \(\gamma_3 \), \(\tau_3 \)-QED3 has no chiral symmetry of the conventional form. One could however define [11] a (generalized) continuous ‘chiral’ symmetry generated by \(C\gamma_5 \), where \(C \) is an appropriate charge conjugation operator\(^2\). However, in the physical case of superconductivity, this symmetry is explicitly broken by the coupling to the external electromagnetic fields and hence the conclusions about the absence of chiral symmetry in this model are not affected. In addition, the presence of a \(\tau_3 \) in the gauge coupling means that the roles of \(\tau_3 \) phase rotations and ordinary phase rotations are interchanged in \(\tau_3 \)-QED3. The \(\tau_3 \)-symmetry now becomes the \(U(1) \) gauge symmetry of the model and remains unbroken by a mass term. Transformation under ordinary phase rotations is now an additional global symmetry, which will be called \(U^\tau(1) \). Once the system is coupled to external three-dimensional electromagnetism.

\(^2\)This has been pointed out to us by A. Kovner.
netic fields this symmetry is just the $U(1)$ symmetry associated with the conservation of physical electric charge. When a parity-conserving mass term is introduced the vacuum is no longer invariant under this symmetry and the system becomes a superconductor. In this paper we are primarily interested in the dynamical generation of a parity-conserving mass term. We note that if the generation of the fermion mass is exclusively due to gauge interactions, then energetic arguments imply that the resulting mass gap is parity-conserving [19]. For τ_3-QED$_3$ this corresponds to the dynamical breaking of $U_E(1)$. We note that for τ_2-QED$_3$ with more than one flavour of four-component fermion it is possible to construct parity-conserving mass terms which break global flavour symmetry. However, even if the dynamically generated mass has a flavour symmetry violating component, the vacuum is still non-invariant under $U_E(1)$.

The symmetry properties of QED$_3$ and τ_3-QED$_3$ and the corresponding patterns of symmetry breaking induced by a parity-conserving mass term are summarised in Table 1. The entry ‘KT’ in the last two rows of this table indicates that the symmetry in question is realised in the Kosterlitz-Thouless mode in the presence of the parity-conserving mass term as explained above. For the remainder of Section 2 we will be primarily concerned with dynamical mass generation. The analysis is identical for QED$_3$ and τ_3-QED$_3$ and for simplicity we will restrict our attention to the former.

For our purposes it is also useful to know the form of the photon propagator (to leading order approximation in (resummed) $1/N$ expansion). This is given by the infinite sum of diagrams shown in Fig. 3.

The precise expression (at $T = 0$) reads [11]

$$\Delta_{\mu\nu} = \frac{\delta_{\mu\nu} - p_{\mu} p_{\nu}/p^2}{p^2(1 + \alpha/8\pi)}$$

At leading order in $1/N$ the effective static potential between charges is given by the one photon-exchange diagram of Fig. 4. The fermion world lines in Fig. 4 are taken as those of static massive particles of opposite charge.

It can be shown [11] that at short distances the effective static potential between charges retains the familiar logarithmic form, but at large distances (as compared to the cut-off scale) the logarithmic potential is screened by vacuum polarization effects and becomes a Coulombic $(1/R)$ attraction of the form $-4/\pi NR$. This turns out to be important for our superconductivity scenario, as it allows a direct comparison with electromagnetic effects. We shall come back to it in section 4. At finite temperatures, the (numerical) results of [11] for the effective potential as a function of the distance R are summarized in the graph of Fig. 5.

2.2. Dynamical mass generation

The chiral symmetry of the massless Lagrangian (2.1) is preserved by order by order in the $1/N$ expansion and in the ordinary weak coupling expansion. Hence the phenomenon of dynamical mass generation requires a nonperturbative approach. One such approach is the numerical simulation of the lattice regulated theory. Monte-Carlo simulations of non-compact lattice QED$_3$ [22] suggest that, for N sufficiently small, the chiral condensate $\langle \bar{\psi}\psi \rangle$ is non-zero, indicating that a fermion mass has been generated. Dynamical mass generation in QED$_3$ can be studied directly using an approximate treatment of the Schwinger-Dyson equation for the fermion propagator, $S_F(p)$,

$$S_F^{-1}(p) = S_F^{(0)-1}(p) - e \int \frac{d^3k}{(2\pi)^3} \gamma^\nu S_F(k)\Delta_{\mu\nu}(q)\Gamma^\nu(k,p)$$

(2.8)

where $\Gamma^\nu(k,p)$ is the fermion-photon vertex and $q = k - p$. This relation is shown graphically in Fig. 6.

This equation is part of an infinite hierarchy of integral equations for the Green's functions of the theory and some approximation is required before progress can be made. The simplest possible truncation of this equation is to replace $\Delta_{\mu\nu}$
Table 1
Symmetry properties of QED_3 and τ_3-QED_3 with and without a parity-conserving mass term.

<table>
<thead>
<tr>
<th>$M = 0$</th>
<th>QED_3</th>
<th>τ_3-QED_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_5, γ_3</td>
<td>Global</td>
<td>-</td>
</tr>
<tr>
<td>τ_3</td>
<td>Global</td>
<td>Local</td>
</tr>
<tr>
<td>E</td>
<td>Local</td>
<td>Global</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$M > 0$</th>
<th>QED_3</th>
<th>τ_3-QED_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_5, γ_3</td>
<td>Broken</td>
<td>-</td>
</tr>
<tr>
<td>τ_3</td>
<td>KT</td>
<td>Unbroken</td>
</tr>
<tr>
<td>E</td>
<td>Unbroken</td>
<td>KT</td>
</tr>
</tbody>
</table>

Figure 3. The photon propagator to leading order in $1/N$.

by the expression (2.7) and replace Γ^ν by the bare vertex, $e\gamma^\nu$. Both these substitutions are correct to $\mathcal{O}(1/N)$. Writing the fermion propagator as $S_p^{-1}(p) = (1 + A(p))^{-1} + \Sigma(p)$ and separating eq(2.8) into scalar and spinor parts yields coupled integral equations for $A(p)$ and $\Sigma(p)$.

$$ p^2 A(p) = \frac{2\alpha}{N} \int \frac{d^3 k}{(2\pi)^3} \frac{(p.q)(k.q)}{k^2 (1 + A(k))^2 + \Sigma^2(k)} $$

(2.9)

$$ \Sigma(p) = \frac{2\alpha}{N} \int \frac{d^3 k}{(2\pi)^3} \frac{1}{q^2 (1 + \Pi(q))} \frac{\Sigma(k)}{k^2 (1 + A(k))^2 + \Sigma^2(k)} $$

(2.10)

The wave-function renormalization $A(p)$ is suppressed by an explicit power of $1/N$ in the self-energy equation (2.10) and, following [19], we assume that it may be safely neglected. The angular integrals may then be performed giving the following closed integral equation for $\Sigma(p)$.

$$ \Sigma(p) = \frac{\alpha}{2\pi^2 N p} \int_0^\Lambda dk \frac{k\Sigma(k)}{k^2 + \Sigma^2(k)} $$

(2.11)

where we have introduced an explicit momentum-space UV cutoff Λ. In the application to high-T_c superconductivity considered below, QED_3 arises a long-wavelength limit of an underlying lattice model and the UV cutoff has an obvious interpretation as the inter-site lattice spacing.

The above equation has been solved numerically by several authors, but the essential behaviour of the solution can be seen in an approximate analytical treatment. The integrand on the RHS of (2.11) is dominated by momenta in the range $k << \alpha$. Expanding the logarithm and keeping only the leading term for small k and p gives.

$$ \Sigma(p) = \frac{8}{N\pi^2} \int_0^\Lambda dk \frac{1}{\text{max}\{k, p\}} $$

(2.12)

\frac{k^2 \Sigma(k)}{k^2 + \Sigma^2(k)} $$

where we have introduced an explicit momentum-space UV cutoff Λ. In the application to high-T_c superconductivity considered below, QED_3 arises a long-wavelength limit of an underlying lattice model and the UV cutoff has an obvious interpretation as the inter-site lattice spacing.

The above equation has been solved numerically by several authors, but the essential behaviour of the solution can be seen in an approximate analytical treatment. The integrand on the RHS of (2.11) is dominated by momenta in the range $k << \alpha$. Expanding the logarithm and keeping only the leading term for small k and p gives.

$$ \Sigma(p) = \frac{8}{N\pi^2} \int_0^\Lambda dk \frac{1}{\text{max}\{k, p\}} $$

(2.12)
The simplest possible analysis of the above equation, due to Pisarski [18], is to assume that \(\Sigma(p) \simeq \Sigma(0) = M \) throughout equation (2.12). This leads to the approximate solution

\[
M \simeq a \exp\left(-N\pi^2/8\right)
\]

(2.13)

A more accurate approach is to use the method of Maskawa and Nakajima [23] to transform (2.12) into a boundary value problem. The result (2.13) is replaced in this case by the more accurate value for \(N < N_c \approx 32/\pi^2 \)

\[
M = A_0 \exp\left(\frac{-2n\pi}{\sqrt{N_c/N - 1}}\right)
\]

(2.14)

where \(A \) is a constant of order unity. For \(N > N_c \) there is no dynamical mass generation in this framework. An examination of the vacuum energy density shows that it decreases monotonically as a function of \(M \), implying that the physical solution is given by \(n = 1 \) [19].

This approximate solution for the SD equation indicates that for \(N < N_c \), a fermion mass is generated dynamically and chiral symmetry is spontaneously broken. This confirms the results and interpretation of the simple quantum mechanical model given in the previous section. As in the four-dimensional case, the relation between dynamical mass generation and the corresponding bound-state problem can be illuminated further by considering the Bethe-Salpeter equation [24]. The Bethe-Salpeter wavefunction for the pseudoscalar fermion-antifermion bound-state obeys an equation almost identical to (2.10) and is non-zero only for \(N < N_c \).

As mentioned above, the results of the linearised analysis presented here have been confirmed by a full numerical solution of eqn(2.11) [19]. However the approximations leading to a closed integral equation for \(\Sigma(p) \) are still the subject of some controversy. In particular the validity of neglecting the wave-function renormalisation, \(\Lambda(p) \), has been criticised by Pennington et al [25]. A study of the full coupled equations, (2.9,2.10), calls into question the existence of a critical number of flavours, indicating instead that chiral symmetry is broken for all \(N \) by a fermion mass which depends on \(N \) as \(M \sim a \exp(-CN) \) for some constant \(C \), much like the simplified solution of Pisarski (2.13). Unfortunately, lattice simulations
have so far been unable to distinguish between the two possible behaviours. This is because the fermion mass decays exponentially with N and the corresponding length scales quickly become much larger than the size of the lattice.

2.3. Symmetry restoration transition

Both numerical simulations [22] of non-compact lattice QED$_3$ and the approximate analytic approach of the previous section indicate that, for $T = 0$ and N sufficiently small, a fermion mass is generated dynamically. As stated above, the dynamical generation of a fermion mass spontaneously breaks chiral symmetry and leads to the existence of a massless Goldstone boson analogous to the pion in QCD. Frequently in quantum field theory, a symmetry which is spontaneously broken at zero temperature is restored above some critical temperature. The aim of this section is to present an approximate analysis of the Schwinger-Dyson equation for the fermion self-energy at non-zero temperature and provide a simple model of chiral symmetry restoration in QED$_3$. In three-dimensional spacetime, conventional spontaneous symmetry breaking cannot occur at non-zero temperature due to the Coleman-Mermin-Wagner theorem [26, 13]. The existence of massless particles in two dimensions leads to severe IR divergences and consequently ordinary Goldstone bosons cannot occur. The same arguments also apply in (2+1)-dimensions for $T > 0$ because of the effectively two-dimensional nature of loop integrals like $\Pi_{\mu\nu}(P, \beta) = -\frac{g}{3} \sum_{n=-\infty}^{\infty} \int \frac{d^2 k}{(2\pi)^2} \frac{Tr(\tau_\mu \gamma_\nu \gamma_5)}{k^2 + \beta^2}$, entering the relevant expressions [27]. In fact this theorem does not preclude dynamical mass generation as is illustrated by the chirally-symmetric Gross-Neveu model [28, 29] (see also [27] for the (2+1)-dimensional case at finite temperature). This subtlety can be ignored if we consider instead τ_3-QED$_3$ which, as stated above, has no chiral symmetry. The following analysis applies equally to both variants.

The Schwinger-Dyson equation for the fermion propagator at non-zero temperature is given by,

$$S_{F}^{-1}(p_0, P, \beta) = S_{F}^{(0)-1}(p) -$$
\[\frac{e}{\beta} \sum_{n=-\infty}^{+\infty} \int \frac{d^2 K}{(2\pi)^2} \gamma^\mu S_F(k, K, \beta) \Delta_{\mu\nu}(q_0, Q, \beta) \Gamma_\nu \]

(2.15)

where

\[p = (p_0, p) \quad P = |p| \]
\[k = (k_0, k) \quad K = |k| \]
\[k_0 = \frac{(2n + 1)\pi}{\beta} \]
\[q = (q_0, q) \quad Q = |q| = |p - k| \]
\[q_0 = \frac{2(m - n)\pi}{\beta} \]

(2.16)

As in the zero temperature case, the equation is truncated at leading order in \(1/N \) by replacing \(\Gamma' \) by its bare value \(\epsilon_\gamma' \), and \(\Delta_{\mu\nu} \) by the \(O(1/N) \) propagator shown in Figure 3. Neglecting wavefunction renormalisation, the inverse fermion propagator is written as \(S_F^{-1} = \frac{1}{\beta} + \Sigma_m(P, \beta) \) and the trace of equation (2.15) yields a closed integral equation for \(\Sigma_m \).

\[\Sigma_m(P, \beta) = \frac{\alpha}{N\beta} \sum_{n=-\infty}^{+\infty} \int \frac{d^2 K}{(2\pi)^2} \]

(2.17)

Using the full finite temperature photon propagator, given in [11], (2.17) becomes

\[\Sigma_m(P, \beta) = \frac{\alpha}{N\beta} \sum_{n=-\infty}^{+\infty} \int \frac{d^2 K}{(2\pi)^2} \]

\[\frac{1}{q^2 + \Pi_\gamma^{m-n}(Q, \beta)} + \frac{1}{q^2 + \Pi_\gamma^{m-n}(Q, \beta)} \]

\[\frac{\Sigma_n(K, \beta)}{k^2 + \Sigma_n^2(K, \beta)} \]

(2.18)

The temporal and spatial components of the vacuum polarisation \(\Pi_A \) and \(\Pi_B \) are given by [11]

\[\Pi_A^{m-n}(P, \beta) = \frac{\alpha}{\pi\beta} \int_0^1 dx \log(4 \cosh^2(p\beta \sqrt{x(1-x)/2}) - 4 \sin^2(xm\pi)) \]

(2.19)

\[\Pi_B^{m-n}(P, \beta) = \frac{\alpha}{2\pi\beta} \int_0^1 dx p\beta \sqrt{x(1-x)} \frac{\sinh(p\beta \sqrt{x(1-x)/2})}{\cosh(p\beta \sqrt{x(1-x)/2}) - \sin^2(xm\pi)} + \frac{m\pi(1-2x)\sin(2zm\pi)}{\cosh^2(p\beta \sqrt{x(1-x)/2}) - \sin^2(xm\pi)} \]

(2.20)

Equation (2.18) is the generalisation of the integral equation (2.11) to finite temperature and it is easily checked that as \(\beta \to \infty \) the correct
zero temperature form is recovered. As at $T = 0$, (2.18) can be solved numerically, although a full solution would require significantly more computing power than the zero temperature case due to the large number of integrations required at each iteration. As in the zero temperature case, particular simplifications occur if the approximation $\Sigma_{\nu}(P) \approx \Sigma_{\nu}(0) = m(\beta)$ is adopted. In this case equation (2.18) becomes,

$$1 = \frac{\alpha}{N \beta} \sum_{n=-\infty}^{+\infty} \int \frac{d^2 K}{(2\pi)^2} \left[\frac{1}{4n^2 \pi^2/\beta^2 + K^2 + \Pi_{-n}^{-\nu}(K,\beta)} - \frac{1}{4(2n + 1)^2 \pi^2/\beta^2 + K^2 + m^2(\beta)} \right] \frac{1}{4(2n + 1)^2 \pi^2/\beta^2 + K^2 + m^2(\beta)}$$

(2.21)

The solution of the above equation coincides with (2.13) at $T = 0$ and shows how this result is modified for $T > 0$. However, even (2.21) presents a considerable numerical challenge and will not be solved directly here.

The term in the brackets in equation (2.21) represents the contribution of the interaction generated by one exchanged photon to the dynamical mass. This kernel includes parts corresponding to an instantaneous interaction ($n^2 = 0$) and to a retarded contribution ($n^2 > 0$) from both the spatial and temporal components of the photon propagator. To examine a simplified model of chiral symmetry restoration at non-zero temperature we approximate (2.21) by retaining only the part of the kernel that corresponds to the static interaction $V(R)$. A similar approximation has been used to study chiral symmetry restoration in QCD [30]. As shown in [11], the effective static interaction between fermions depends only on the temporal component of the propagator at zero frequency. $\Delta_{\nu}(k_0 = 0, K, \beta)$, so the corresponding approximate Schwinger-Dyson equation becomes,

$$1 = \frac{\alpha}{N \beta} \sum_{n=-\infty}^{+\infty} \int \frac{d^2 K}{(2\pi)^2} \frac{1}{\Pi_{-n}^{-\nu}(K,\beta)} \frac{1}{4(2n + 1)^2 \pi^2/\beta^2 + K^2 + m^2(\beta)}$$

(2.22)

The Matsubara frequency sum can now be performed analytically to give,

$$1 = \frac{\alpha}{4N \pi} \int_0^{2\pi} K dK \left[\frac{\beta \sqrt{K^2 + m^2(\beta)/2}}{(K^2 + \Pi_{-n}^{-\nu}(K,\beta)) \sqrt{K^2 + m^2(\beta)}} \right]$$

(2.23)

Equation (2.23) was solved numerically for several values of N and α/Λ. The results show clearly that the fermion mass is a monotone decreasing function of temperature up to a critical temperature, T_c, above which m vanishes identically. For convenience we give the results as functions of the equivalent number of two-component flavours $n = 2N$ The graph of m against $k_B T$ for $n = 1$ is shown in Figure 7. The values of $m(T = 0)$ and $k_B T_c$ for a range of n at intermediate and strong coupling ($\alpha/\Lambda = 1$ and ∞) are given in Tables 2 and 3 respectively. These quantities are also given at $n = 1$ for a range of α/Λ in Table 4 and, as expected, both grow as the coupling is increased. For $\alpha < \Lambda$ the fermion mass is proportional to α only and is thus insensitive to Λ. This confirms the expectation that the theory is naturally cut-off in the UV by α, unless, of course, a lower cut-off Λ is imposed. For completeness, the equation was also solved without a cutoff [31] and the results were found to confirm the stability of the numerical solution presented here. Even in the instantaneous-exchange approximation, the zero-temperature fermion mass retains its characteristic exponential dependence on n. In the strong-coupling limit, for $n > 1$, the mass is given by

$$m(T = 0) \approx 2 \Lambda \exp(-n \pi/4)$$

(2.24)
A quantity of interest for condensed matter applications is the ratio of twice the zero-temperature mass to the critical temperature, \(r = 2m(T = 0)/k_B T_c \). We find that \(r \) varies only slowly with \(n \) and \(\alpha/\Lambda \). In particular, for \(1 < n < 5 \) and \(1 \leq \alpha/\Lambda \leq \infty \), \(r \) is in the range 9.36-9.70. This ratio has also been calculated recently for the Gross-Neveu model in (2+1)-dimensions [32] where the result 2.77 was found. Another relevant comparison is with the value \(r = 3.54 \) which characterizes BCS superconductors. In both of these cases the effective two-body potential \(V(R) \) is largely independent of temperature and for comparison we have repeated our calculation for QED\(_3\) replacing \(\Pi_4(K, \beta) \) by the zero-temperature kernel \(\alpha K/8 \) in (2.23). The resulting values of the ratio are shown as \(r^* \) in Table 4 and are comparable in magnitude with the BCS value. Hence the comparatively large values of \(r \) (ie low \(T_c \) in units of \(m(T = 0) \)) shown in Tables 2 and 3 are directly due to thermal screening of the two-body potential \(V(R, \beta) \). A discussion of symmetry restoration in finite-temperature QED\(_3\) has also been given in [33] using real-time formalism and a different approximation for the gap equation in which the entropy of the fermions is not fully included.
<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m(T = 0)/\Lambda$</td>
<td>1.15</td>
<td>0.434</td>
<td>0.191</td>
<td>8.61×10^{-2}</td>
<td>3.87×10^{-2}</td>
</tr>
<tr>
<td>$k_B T_c/\Lambda$</td>
<td>0.207</td>
<td>8.94×10^{-2}</td>
<td>4.92×10^{-2}</td>
<td>1.80×10^{-2}</td>
<td>8.03×10^{-2}</td>
</tr>
<tr>
<td>$r = 2m/k_B T_c$</td>
<td>11.11</td>
<td>9.70</td>
<td>9.49</td>
<td>9.58</td>
<td>9.64</td>
</tr>
</tbody>
</table>

Table 3
The zero-temperature fermion mass and the critical temperature at $\alpha/\Lambda = \infty$ for $n = 1, 5$.

<table>
<thead>
<tr>
<th>α/Λ</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m(T = 0)/\Lambda$</td>
<td>2.42×10^{-3}</td>
<td>2.84×10^{-2}</td>
<td>0.229</td>
<td>0.803</td>
<td>1.10</td>
<td>1.15</td>
</tr>
<tr>
<td>$k_B T_c/\Lambda$</td>
<td>6.22×10^{-3}</td>
<td>6.12×10^{-3}</td>
<td>4.90×10^{-2}</td>
<td>0.159</td>
<td>0.201</td>
<td>0.207</td>
</tr>
<tr>
<td>$r = 2m/k_B T_c$</td>
<td>7.69</td>
<td>9.29</td>
<td>9.35</td>
<td>10.10</td>
<td>10.94</td>
<td>11.11</td>
</tr>
<tr>
<td>r^*</td>
<td>3.24</td>
<td>3.76</td>
<td>3.74</td>
<td>3.83</td>
<td>3.87</td>
<td>3.89</td>
</tr>
</tbody>
</table>

Table 4
The zero-temperature fermion mass and the critical temperature at $n = 1$ for a range of α.

Above we have made two approximations for the dynamically generated gap. The first was the instantaneous nature of the interaction, which lead to a significant simplification of the temperature-dependent part of the kernel of the SD equation. The second was the isotropy of the gap, which was assumed independent of the spatial momenta. In a recent work [34] we have gone beyond this second approximation and solved numerically the temperature and momentum dependent gap equation for our system, in the instantaneous approximation. It reads

\[
\Sigma(P, \beta) = \frac{\alpha}{8N\pi^2} \int d^2 k \frac{\Sigma(K, \beta)}{Q^2 + \Pi_0(Q, \beta) + \frac{16ln2}{\pi}\exp\left(-\frac{\pi}{16ln2}Q\beta\right)} \left(\tanh\frac{\beta}{2}\sqrt{K^2 + \Sigma^2(K, \beta)}\right)
\]

(2.25)

where

\[
\Pi_0(Q, \beta) = \frac{2a_0}{\pi^3} \int_0^1 dx ln(2cosh\left(\frac{Q}{x}\sqrt{x(1-x)}\right)).
\]

The numerical procedure to solve (2.25) is facilitated enormously by an excellent analytic approximation to (7), invented by Aitchison [34], which is correct to about 1.5% at worst,

\[
\Pi_0(Q, \beta) = \frac{\alpha}{8\beta}\left[Q\beta + \frac{16ln2}{\pi}\exp\left(-\frac{\pi}{16ln2}Q\beta\right)\right]
\]

(2.26)

This incorporates the correct limiting behaviour as either Q or β tends to zero or infinity. In particular, as $Q \to 0$

\[
\Pi_0(Q, \beta) \to \frac{2a_0ln2}{\pi\beta}
\]

(2.27)

which exhibits the correct thermal screening behaviour [11].

The results of the numerical analysis in [34] are summarized in Figs. 8, 9, 10 and 11. Figure 8 shows the scaled mass versus scaled momentum for several values of the number of fermion flavours N at a fixed value of β. Σ decreases strongly as N increases from $N = 1$,.
suggeosting the existence of a critical N_c. This possibility is examined in Fig. 9, which shows $\Sigma(0, \beta)$ versus N for various values of β. Due to numerical difficulties we are not able to follow Σ/α below 10^{-5} but it seems reasonable to conclude the existence of a critical $N_c(T)$ at a given temperature T, such that $\Sigma(T) = 0$ for $N \leq N_c(T)$. For low T, N_c approaches a value just greater than 2. As the temperature is raised N_c decreases. The value $N_c \approx 2$ at $T = 0$ is not in agreement with the zero-temperature case, where $N_c \approx 3.2$. This difference is due to the instantaneous approximation made in order to solve the Schwinger-Dyson equation and should not be taken seriously.

Motivated by the zero-temperature result (2.14) we have plotted in fig. 10 $-\ln(\Sigma(0, \beta))$ vs. $1/\sqrt{N_c(T)/N - 1}$; we observe that for a fixed temperature the curves approach straight lines as $N \rightarrow N_c$. This leads us to believe that indeed in this region (which is the physically interesting one) the zero-momentum mass-gap behaves like

$$\frac{\Sigma(0, \beta)}{\alpha} \propto \exp\left[-\frac{C(T)}{\sqrt{N_c/N - 1}}\right]$$

for some temperature-dependent function $C(T)$ (which is however, at the temperatures shown in fig. 10, considerably larger in magnitude than the $T = 0$ value of 2π given in (2.14)).

This implies smaller gaps (in units of the cutoff for the anisotropic case as compared to the isotropic one. At first sight this seems not to be in agreement with the large gaps measured experimentally in high temperature superconductors [35]. However for the physically interesting range of the parameters of the model the resulting gaps are of the same order of magnitude as those measured experimentally. We shall come back to this point in section 4.

The above results enable us to obtain the phase diagram for three-dimensional QED shown in fig. 11. There is a single critical line, such that for (N, T) below this line $\Sigma \neq 0$ and for (N, T) above it $\Sigma = 0$. We have only shown the region $N \geq 1$ but it seems likely that the line approaches $N = 0$ asymptotically as $T \rightarrow \infty$. In this plot we have rescaled the critical line to match the zero-temperature results of [19], namely $N_c(T = 0) \approx 3.2$.

As in the isotropic case, the dimensionless ratio \(r = 2 \Sigma (P = 0, T = 0)/k_B T_c \) is again found of order 9.5, i.e. much larger than the corresponding quantity in conventional BCS superconductivity. This is due to the fact that although the more exact equation (2.25) yields values of the mass \(\Sigma \) which are smaller by one order of magnitude as compared to the corresponding ones of the isotropic case, however the critical temperatures are also correspondingly reduced so that \(r \) remains with a value of order 10 independent of \(N \).

3. A long-wavelength theory of the two-dimensional doped antiferromagnet

3.1. The high-\(T_c \) materials

The high-\(T_c \) materials \(\text{La}_2\text{CuO}_4 \), \(\text{YBa}_2\text{CuO}_4 \) and several related compounds have a layered structure, consisting of planes of \(\text{CuO}_2 \) separated by distances much greater than the average intersite distance within the plane. Many properties of these substances exhibit a strong anisotropy in the direction perpendicular to these strata. In particular, the copper oxide layers are thought to be the essential structural feature for superconductivity which occurs when these materials are doped. Recent experiments have succeed in effectively isolating superconductivity in a single layer [36, 37]. Although interplanar effects may play an important role in determining the exact transition temperature, we will assume that superconductivity in the doped materials is an essentially two-dimensional phenomenon. As discussed in section 2, superconductivity is the direct consequence of the spontaneous breaking of the global \(U(1) \) symmetry of electromagnetism. The Mermin-Wagner theorem [13] states that a continuous symmetry of a two-dimensional system cannot be spontaneously broken by a local order parameter at non-zero temperature. Hence, the mere fact of two-dimensionality suggests that the conventional BCS theory, which involves a local condensate, cannot adequately describe this phenomenon.

The addition of Strontium impurities to pure \(\text{La}_2\text{CuO}_4 \) creates holes at both copper and oxy-
gen sites in the CuO$_2$ layers. The doping of YBa$_2$CuO$_6$ proceeds by increasing the oxygen content of this substance which also leads indirectly to the creation of holes. Below a critical temperature, the doped substances have zero electrical resistance and exhibit the usual phenomenology of superconductivity. There is an energy gap Δ in the quasi-particle spectrum, a Meissner effect and flux quantization in units of $\hbar/2e$. This value for the flux quantum and importance of doping suggest a pairing of holes analogous to Cooper pairing in BCS theory. In the BCS case this pairing is mediated by the exchange of phonons between electrons near the Fermi surface and the important role played by vibrations of the lattice is manifested in the isotope effect. Experimental investigations of the high-T_c materials have found that the isotope effect is either not present at all or highly suppressed [38]. In addition, the BCS gap equation relates the mass gap and critical temperature to the Debye energy which characterises phonon interactions. This leads to rigorous upper bounds on the transition temperatures possible for phonon-mediated pairing. The fact that these bounds are clearly violated for high-T_c superconductors together with the apparent absence of an isotope effect for these materials suggests that the pairing mechanism is non-phononic. In Section 3.3 we examine a possible candidate for such a mechanism. One of the most striking features of the BCS theory was the successful prediction of the universal ratio $2\Delta/k_B T_c = 3.54$ which characterises the traditional superconductors. The quasi-planar materials exhibit values of this ratio much greater than the BCS value, typically as large as 8 [39], and any successful theory of high-T_c superconductivity must explain this important deviation from BCS theory. High-T_c superconductors are also distinguished by their exceptionally small coherence lengths [40].

In the absence of doping impurities, the quasi-planar materials are antiferromagnetic insulators. They are believed to belong to the class of solids known as Mott insulators, for which the strong Coulomb repulsion between valence electrons at neighbouring sites effectively prevents charge transport. The potential importance of antiferromagnetic correlations for high-temperature superconductivity was first noted
by Anderson [41] who suggested that the correct model for the dynamics of electrons in the copper oxide layers was the single-band, large-U Hubbard model. The two-dimensional Hubbard Hamiltonian is written in terms of operators, $C_{i,\sigma}$ and $C_{i,\sigma}^\dagger$, which annihilate and create electrons in the $d_{x^2-y^2}$ orbital at each copper site.

$$H = -t \sum_{\langle ij \rangle, \sigma} C_{i,\sigma}^\dagger C_{j,\sigma} + U \sum_i n_{i,\uparrow} n_{i,\downarrow}$$

(3.1)

where t is the electron-hopping matrix element, U is the strong Coulomb repulsion and $n_{i,\sigma} = C_{i,\sigma}^\dagger C_{i,\sigma}$ is the occupation number at each site. In the limit $U \to \infty$, a single-occupancy constraint is rigidly imposed. The undoped case is described by the Hubbard model with half-filled band and hence the spins are the only degrees of freedom in this limit. To leading order in large-U perturbation theory, the half-filled Hubbard model is simply equivalent to the two-dimensional Heisenberg antiferromagnet [42];

$$H = J \sum_{\langle ij \rangle} S_i \cdot S_j$$

(3.2)

where $J = 4t^2/U$ and S_i is the electron spin at site i. Antiferromagnetic correlations in pure

La$_2$CuO$_4$ have been measured in neutron scattering experiments [43] and the results are reasonably well described by the 2D Heisenberg model with $J \approx 1500K$ [44]. This Hamiltonian will be the starting point for the long-wavelength effective theory of the undoped case reviewed in the next section.

Clearly, the effect of adding holes to (i.e. removing spins from) the background antiferromagnetic order is the key issue for superconductivity. Unfortunately, little is known about the Hubbard model away from half-filling and no rigorous results are available. Numerical simulation indicates that the addition of holes destroys the long-range antiferromagnetic order, although short-range correlations may survive [45]. We should also mention that the physical relevance of any simple model of interacting holes and spins is limited by the recent experimental evidence that up to 70% of the charge carriers in the CuO$_2$ layers of La$_2$(Sr)CuO$_4$ and YBa$_2$CuO$_5$ are holes in the oxygen bonds rather than at the copper sites that carry the spins [46]. The problem of constructing a realistic model involving both types of hole is a
formidable one. However, it is certainly possible that all mobile holes are coupled to some extent to the spins and the effect of the oxygen holes can be included by renormalizing the parameters of the Hubbard Hamiltonian. In Section 3.4 we will study a simplified model of the dynamics of holes in a 2D antiferromagnet and examine the possible mechanism of hole-pairing. In Section 3.3 we introduce a long-wavelength effective theory describing the interactions of holes and spins and in the Section 4 we demonstrate the occurrence of superconductivity in this model and its interpretation.

3.2. A long-wavelength action: the undoped case

As discussed in the previous section, the large-U limit of the Hubbard Hamiltonian (3.1) is just the two-dimensional, spin-$\frac{1}{2}$ Heisenberg quantum antiferromagnet. Under certain assumptions, which will be discussed below, the effective long-wavelength degrees of freedom of the antiferromagnet can be described by a 'relativistic' quantum field theory in (2+1)-dimensional space-time. In particular, the large-S limit of the spin-S Heisenberg antiferromagnet is equivalent, at large length-scales, to the quantum nonlinear σ-model [47, 48]. The relativistic covariance of the effective action arises from the linear dispersion relation for long-wavelength magnons and the spin-wave velocity plays the role of the velocity of light in this formulation. In this section we will review the derivation of the non-linear σ-model from the Heisenberg Hamiltonian and, in particular, derive the CP^1 formulation of the σ-model which leads to an equivalent description of the effective theory in terms of an abelian gauge field.

The two-dimensional, undoped, spin-S, Heisenberg antiferromagnet is described by the Hamiltonian,

$$H = J \sum_{ij} S_i \cdot S_j$$

(3.3)

where i and j are nearest-neighbour sites on a square lattice. The spin operators $S_i = (S^a_i),\ldots$ obey independent $O(3)$ commutation relations at each site:

$$[S^a_i, S^b_j] = i\varepsilon^{abc} S^c_k \delta_{ij}$$

(3.4)

At zero-temperature, the classical ground state of the antiferromagnet is just the Néel ordered state defined by $S_i = S(-1)^i \hat{z}$ where $(-1)^i$, with $I = i_x + i_y$, is the parity of the site i and \hat{z} is a unit vector.

Following Haldane [47], the Hilbert space of the system is conveniently described in terms of a basis of coherent states $|\Omega\rangle$, defined at each site by

$$|\Omega\rangle = |\theta, \phi \rangle = e^{(-i\theta S_z - S_\uparrow)} e^{(-i\theta S_\downarrow)} |\uparrow\rangle$$

(3.5)

where Ω is a unit vector with angular coordinates (θ, ϕ) and $|\uparrow\rangle$ is the eigenstate of S_z with largest eigenvalue S. The coherent state $|\Omega\rangle$ can be expressed in the eigenbasis of S_z as

$$|\Omega\rangle = \sum_{m=-S}^S C_m(\theta, \phi) |m\rangle$$

(3.6)

where $|m\rangle$ is the eigenstate of S_z with eigenvalue m and the coefficient $C_m(\theta, \phi)$ can be expressed as

$$C_m(\theta, \phi) = \exp(-im\theta) \sin^{S-m}\left(\frac{\theta}{2}\right) \cos^{S+m}\left(\frac{\theta}{2}\right) \frac{(2S)!}{(S+m)!(S-m)!}$$

(3.7)

Using (3.7), we find the inner product of two coherent states $|\Omega\rangle$ and $|\Omega'\rangle$ is given by;

$$\langle \Omega | \Omega' \rangle = \left(\cos\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta'}{2}\right) + \exp i(\phi - \phi')\sin\left(\frac{\theta}{2}\right) \sin\left(\frac{\theta'}{2}\right)\right)^{2S}$$

(3.8)

and the expectation of the spin operator, S_x, in a coherent state is

$$\langle \Omega | S_x | \Omega \rangle = S \Omega$$

(3.9)

From (3.8) it can be seen that the overlap of neighbouring coherent states decays rapidly with
angular separation in the large-\(S\) limit. A state of the system is then described in the obvious way as a direct product of coherent states \(\ket{\Omega_i}\) at each site and, using (3.3) and (3.9), the expected energy of the system in such a state is given by,

\[
E = \langle \{\Omega_i\} | H | \{\Omega_i\} \rangle = S^2 J \sum_{\{i\}} \Omega_i \cdot \Omega_j \tag{3.10}
\]

Using the standard arguments, the partition function of the system can be written as a path integral over the unit-vector field \(\Omega_i\). Assuming that the time evolution of \(\Omega\) is sufficiently smooth, then, the partition function is given by [11]

\[
Z = \int \mathcal{D}\Omega e^{-iS \sum_i \int_{C_i} (1 - \cos \theta_i) d\theta_i}
\]

\[
e^{-\frac{S^2 J}{2} \sum_{\{i\}} \Omega_i \cdot \Omega_j \sum_{(ij)} d\tau}
\tag{3.11}
\]

where the \(C_i\) is the closed path on the unit sphere given by \(\{\Omega_i(\tau) : \tau \in [0, \beta]\}\).

The integral in the first term in (3.11) is simply equal to the solid angle \(\alpha_i\) subtended by the path \(C_i\) and using Stoke’s theorem this can be written in terms of a vector potential \(A\) at each site as,

\[
\alpha = \int_A \Omega \cdot d\sigma = \oint_C A \cdot d\Omega
\tag{3.12}
\]

where \(A\) is the area enclosed by \(C\) and the vector potential obeys,

\[
\nabla \times A(\Omega) = \Omega
\tag{3.13}
\]

As usual, the potential \(A\) is not uniquely defined by (3.13) and there is a residual gauge invariance \(A \rightarrow A + \nabla \alpha\). In particular, a gauge can be chosen in which \(A(\Omega) = A(-\Omega)\). The phase factor \(iS\alpha\), which occurs in the action is known as the Berry phase [49] for the adiabatic motion of the quantum spin at site \(i\) and has important physical consequences when holes are introduced.

Haldane has derived an effective continuum field theory from the path integral (3.11) by expressing the vector field \(\Omega_i(\tau)\) in terms of a staggered order parameter \(n_i(\tau)\) [47],

\[
\Omega_i(\tau) \approx (-1)^i \left[1 - \left(\frac{a^2 L_i(\tau)}{S} \right)^2 \right]^{\frac{1}{2}}
\]

\[
n_i(\tau) = \frac{a^2}{S} L_i(\tau)
\tag{3.14}
\]

where the field \(L_i(\tau)\) describes fluctuations in the local antiferromagnetic spin density. In the limit \(S \rightarrow \infty\) the partition function for long-wavelength fluctuations can be written as a path integral over the effective continuum field \(n(x, \tau)\) as

\[
Z = \int \mathcal{D}n \exp \left[-\frac{JS^2}{2} \int_0^\beta d\tau \right.
\]

\[
\left. + \frac{1}{v_S} \int d^2x \frac{1}{\gamma} \left(\frac{1}{2} |\partial_\tau n|^2 + |\nabla n|^2 \right) \right]
\tag{3.15}
\]

This effective action describes long-wavelength spin-waves with a linear dispersion relation \(E(k) = v_S |k|\) where the spin wave velocity is given by \(v_S = 2\sqrt{2JS}\). The action has the familiar form of the \(O(3)\) nonlinear \(\sigma\)-model in \((2+1)\)-dimensional spacetime and can be written in a manifestly ‘relativistic’ form by choosing natural units in which \(v_S = 1\),

\[
S_\tau = \int d^3x \frac{1}{\gamma} (\partial_\mu n)(\partial^\mu n)
\tag{3.16}
\]

where \(\gamma = 2JS^2\). The \(\sigma\)-model action may be rewritten in terms of \(CP^1\) variables in the usual way by making the substitution \(n = \tau\sigma z\) with \(\tau z = 1\). This gives

\[
S_{CP^1} = \int d^3x \frac{1}{\gamma} \left(\partial_\mu + iS a_\mu \right) z^2
\tag{3.17}
\]

where the \(U(1)\) gauge field \(a_\mu\) is determined by its equation of motion; \(a_\mu = i\tau \partial_\mu z\). Although this abelian gauge field is non-dynamical, quantum corrections ensure that the gauge propagator acquires a pole at zero momentum and a Maxwell term for \(a_\mu\) is radiatively generated [50, 51]. The \(CP^1\) form of the nonlinear \(\sigma\)-model will be particularly convenient for describing the dynamics of the ‘spin sector’ in the doped case.
In conclusion, we have reviewed the large-S derivation of the nonlinear σ-model as an effective action for long-wavelength degrees of freedom of the Heisenberg antiferromagnet. Although the relevance of the large-S limit to the physical case $S = \frac{1}{2}$ is not clear, there are more general grounds for introducing the σ-model. The massless spinwaves are the Goldstone bosons of the spontaneously broken $O(3)$ symmetry of the antiferromagnet, and general symmetry arguments dictate that the interaction of these Goldstone modes be described by the σ-model action (3.15) [52]. The appearance of an accidental relativistic invariance motivates the application of methods and notation which are more usually associated with high-energy physics.

3.3. The dynamics of holes

The long-wavelength limit of the half-filled Hubbard Hamiltonian is relatively well understood in terms of the action derived in the previous section. Numerical simulations confirm the existence of long-range Néel order at low temperature and agree with predictions for the correlation length derived from the $O(3)$ nonlinear σ-model [44]. Unfortunately, no similar theoretical understanding exists away from half-filling. No rigorous results exist for the Hubbard model with a finite density of holes and, like lattice simulation of finite-density QCD, direct numerical simulation of the doped case is hindered by the occurrence of a complex fermion determinant [53]. Doping introduces mobile charges which hop from site to site against the antiferromagnetic background of the spins. The coupled dynamics of holes and spins in the doped system is highly non-trivial. The hopping of holes tends to disorder the spins reducing the antiferromagnetic correlation length and the spins also mediate interactions between the holes. Roughly speaking there is competition between the influence of the spins which favour a Néel-ordered ground-state and that of the holes which tend to form a Fermi liquid. A general conjecture is that a superconducting pairing of holes arises out of this competition.

Returning to the materials themselves, the Hubbard model suggested by Anderson is a purely phenomenological description of electrons in the CuO$_2$ layers and there are several alternative approaches which may be equally relevant. The approach which will be adopted here is originally due to Shankar [14] and focuses on the effect of introducing ‘holes’ in the coherent-state path-integral representation of the Heisenberg antiferromagnet given in equation (3.11). The aim will be to examine the effect of doping on the long-wavelength σ-model description derived in the previous section and construct a modified effective action describing both charge and spin degrees of freedom. Rewriting the first term in the partition function (3.11) in terms of the gauge potential A,

$$Z = \int \mathcal{D} \Omega \exp \left[\int_0^\beta \left(i S \sum_i A(\Omega_i) \frac{d\Omega_i}{d\tau} + S^2 J \sum_{ij} \Omega_i, \Omega_j d\tau \right) \right]$$

In the large-S limit, the relation (3.14) becomes

$$\Omega_i = (-1)^{i} n_i + O(a)$$

and we may rewrite (3.18) as

$$Z = \int \mathcal{D} A \exp \left[\int_0^\beta \left(i S \sum_i (-1)^i a_0(i, \tau) \right) - S^2 J \sum_{ij} \Omega_i, \Omega_j d\tau \right]$$

where a_0 is the zero component of an abelian gauge field defined by $a_\mu = A_\mu n_\mu$. The origin of this gauge field is best described in differential geometric terms. The order parameter field $n(x, \tau)$ defines a mapping from three-dimensional space-time to the unit sphere. The spacetime gauge field a_μ is the pullback of the one-form gauge potential A defined on the unit sphere. In particular, if the gauge for the vector potential A is chosen appropriately then the above definition of a_μ coincides with that of the auxiliary gauge field occurring in the $C \to \mathbb{P}^1$ formulation of the nonlinear σ-model (3.17).
Each spin contributes a Berry phase factor $i\Sigma_\tau$ to the action where α is the solid angle subtended by the closed path C_τ as discussed in Section 3.2. Using (3.19) the Berry phase for the spin at site i can be written as $i(-1)^i S \Sigma_\tau$ where Σ is the solid angle subtended by the closed path $C_\tau = \{ n_\tau : \tau \in [0, \beta] \}$. As the order parameter varies only slowly in space this means that the Berry phase contributions of spins at neighbouring sites interfere destructively. Now consider the effect of removing the spin at site i. If the spin is removed at time τ_1 and replaced at τ_2 the Berry phase contribution it would have made in this time interval, $B_\tau(\tau_1, \tau_2)$, must be subtracted from the action. Hence the contribution of a static hole is given by the Wilson line,

$$B_\tau(\tau_1, \tau_2) = i(-1)^i S \int_0^\beta d\tau a_0(i, \tau) \quad (3.21)$$

To implement this idea, Shankar introduces annihilation and creation operators for holes at each site, ψ_i and ψ_i^\dagger. These operators obey fermionic anticommutation relations

$$\{\psi_i, \psi_j^\dagger\} = \delta_{ij}$$
$$\{\psi_i, \psi_j\} = \{\psi_i^\dagger, \psi_j^\dagger\} = 0 \quad (3.22)$$

and the corresponding contribution to the action for static holes is

$$S_{\text{static}} = -i S \int_0^\beta d\tau \sum_i (-1)^i \psi_i^\dagger \psi_i a_0(i, \tau) \quad (3.23)$$

This term clearly has the required property of subtracting the appropriate Wilson line whenever a hole is present at a particular site. As the sign of this term alternates from site to site it is convenient to divide the hole-field into two species, labeled A and B corresponding to the two sublattices defined by the Néel order (see Fig. 12). As we shall see below, particle numbers for A and B type holes are conserved independently in the large-S limit. The two species are coupled with opposite sign to the gauge field a_0, and the static action is written as

$$S_{\text{static}} = -i S \int_0^\beta d\tau \sum_{i \in A} \psi_i^\dagger \psi_i a_0(i, \tau) + \sum_{i \in B} \psi_i^\dagger \psi_i a_0(i, \tau) + (A \rightarrow B, S \rightarrow -S) \quad (3.24)$$

This form of the static action suggests an attractive gauge interaction between holes of the two species. In fact this is just a consequence of the interference of Berry phases described above. The creation of an isolated hole adds an oscillating Wilson line (3.23) to the path-integral. The integration over the gauge field a_0 at that site averages to $\exp(-\beta E)$ where E is the energy of the hole. Hence the creation of two uncorrelated holes costs energy $2E$. However if two holes are created on nearest neighbour sites the two phase factors interfere destructively and the energy cost is zero [14]. This implies that the bare effective potential between two holes in their common centre of mass is just a square well of depth $2E$ and width of the order of one lattice spacing. The idea that the interference of Berry phase contributions leads to an attraction between holes is originally due to Wiegmann [15] and has been developed in an alternative approach by Lee [16]. The existence of such an attraction between holes on neighbouring sites has recently been confirmed by numerical simulation of the non-linear σ-model [54].

In a realistic model, holes are not static but hop from site to site, and a hopping term must be added to the action. The corresponding term in an extended Hubbard Hamiltonian is

$$H_{\text{hop}} = -\sum_{(ij), \sigma} t_{ij} C_{i,\sigma}^\dagger C_{j,\sigma} \quad (3.25)$$

where the sum is understood to run over both nearest neighbour (NN) and next-to-nearest neighbour (NNN) sites i and j. Such a term is responsible for the transport of an electron from site i to site j. The electron possesses both spin and charge degrees of freedom and so this transition is equivalent to the coherent transport of the electron spin from i to j accompanied by the transport of a charged hole in the opposite direction. Hence, in terms of the variables of Shankar's
Figure 12. Sublattice structure for hole-hopping.

model the appropriate matrix element for this process is:

\[
M_{ij} = \langle \Omega_i, \text{hole}(j) | H_{\text{hop}} | \text{hole}(i), \Omega_j \rangle = -t_{ij} \langle \Omega_i | \Omega_j \rangle
\]

(3.25)

If \(i \) and \(j \) are on opposite sublattices, i.e. if they are NN, then the spin states \(|\Omega_i\rangle \) and \(|\Omega_j\rangle \) are almost orthogonal by virtue of the short-range antiferromagnetic order (SRAFO). This clearly implies that intersublattice hopping is highly suppressed as long as SRAFO persists and hence the integrity of the two species of holes introduced above is preserved. In contrast, if \(i \) and \(j \) are NNN and so belong to the same sublattice, then the corresponding spin states are almost parallel and, from (3.8), \(M_{ij} = -t \exp[iS(-1)^j A_n(n_i - n_j)] \) [14]. Hence the final form of the hole-hopping action which reproduces this factor for each hole transition can be written in terms of the spatial gauge field, \(a_k(i) = A_i \partial_k n_i \) (\(k = 1, 2 \)), as

\[
S_{\text{hop}} = -t \int_0^\beta d\tau \sum_{i, A, A'} \psi_i^\dagger \exp(iS\xi A_n(i)) \psi_{i+i_x} +
\]

\[+ h.c. + (A - B, S = -S) \]

(3.27)

where \(\delta \) is the vector separating sites \(i \) and \(j \). As in the static case, the holes of the two different species couple to the spatial components of the gauge field with opposite sign. A finite density of holes is introduced by adding a chemical potential term to the action

\[
S_\mu = \mu \int_0^\beta d\tau \sum_i \psi_i^\dagger \psi_i
\]

(3.28)

where the sum is taken over both sublattices. Finally, the hole terms must be added to the \(\sigma \)-model action which describes the long-wavelength limit of the half-filled case. For the purposes of the next section, it will be convenient to use the \(CP^1 \) form of the \(\sigma \)-model action given in (3.17). In the presence of dynamical holes, the identification of the gauge field \(a_\mu \) of Shankar's model with the auxiliary gauge field of the \(CP^1 \) action is no longer exact but rather must be thought of as a kind of Born-Oppenheimer approximation.

In fact, in the presence of holes, the gauge field of Shankar's model appears not as an independent degree of freedom but rather as a function of the magnon field. This introduces complications in the continuum language. Such problems can be overcome if one starts from a \(t-J \) model [17] on a
square lattice and includes next-to-nearest neighbor interactions and hopping. The spin-charge separation is achieved by representing the electron operators $C_{i,\sigma}$ using a ‘slave-fermion’ ansatz [17, 55],

$$C_{i,\sigma}^\dagger = \psi_i z_{i,\sigma}^\dagger$$ \hspace{1cm} (3.29)

where ψ is a Grassmann field representing the absence of a spin at a given site (hole) which carries the electric charge and $z_{i,\sigma}$ is the spin degree of freedom, which can be identified [17] with the magnon field of the $C P^{1}$ σ-model. The ansatz (3.29) carries essentially all the information about local gauge invariance of the model as one can perform simultaneous local phase rotations on ψ_i and $z_{i,\sigma}$ fields with opposite couplings without changing $C_{i,\sigma}$. It is this symmetry that is responsible for the gauge nature of the interactions between holes. The physical reason for such a symmetry is the restriction of having at most one electron per lattice site. This redundancy of degrees of freedom is the characteristic feature of gauge models. In a mean-field treatment [17] this local symmetry leads to gauge fields which can be represented as phases of bilocal fields stemming from linearisation of the contact terms arising upon substitution of the ansatz (3.29) in the interaction terms of the extended t-J hamiltonian considered in [17]. We shall not give the details here to avoid repetition. We only mention the basic features. As in Shankar’s model the suppression of intrasublattice hopping for holes defines two colours of fermions coupled to a single gauge field but with opposite couplings between sublattices. The physical origin of the attraction between holes on opposite sublattices is again the overlap of the Berry-phase, and one recovers Shankar’s results in the static limit. The novel feature of this approach is that the gauge field arises as an independent degree of freedom. The effect of the mobile holes is to modify the form of the $C P^{1}$ constraint $\Xi z = 1$ by terms which are of order $O(J')$, where J' is the strength of the Heisenberg interactions between next-to-nearest neighbors. In the realistic cases one is interested in the limit $J' \rightarrow 0$ and, hence, the modifications to the usual $C P^{1}$-constraint are negligible [17].

Let us now be more explicit and present some of the manipulations involved in the above. The statistical model of [17] is described by the following hamiltonian

$$H = -t' \sum_{<ij>} \psi_i \psi_j^\dagger +$$

$$+ \sum_{[ij]} \psi_i \psi_i^\dagger \psi_j \psi_j^\dagger z_{i,\sigma}^\dagger z_{i,\sigma} z_{j,\sigma}^\dagger z_{j,\sigma} +$$

$$+ (J \rightarrow J', [ij] \rightarrow <ij>) -$$

$$- \mu \sum_i z_{i,\sigma}^\dagger z_{i,\sigma} \psi_i \psi_i^\dagger$$ \hspace{1cm} (3.30)

where $< ... > ([...])$ denote nearest (next-to-nearest) neighbors of the rectangular lattice of Fig. 12. The fields ψ_i and $z_{i,\sigma}$ are not independent, but they are subject to the constraint of at most one electron per site [17]

$$\frac{1}{2} z_{i,\sigma}^\dagger z_{i,\sigma} + \psi_i \psi_i^\dagger = 1$$ \hspace{1cm} (3.31)

The model (3.30) has a local phase symmetry

$$\psi_i \rightarrow e^{ip\theta_i} \psi_i \hspace{1cm} z_i \rightarrow e^{ip\theta_i} z_i$$ \hspace{1cm} (3.32)

which is, thus, a $U(1)$ gauge symmetry of the doped antiferromagnet.

Splitting the fermionic products $\psi_i \psi_i^\dagger$ into a vacuum part (doping concentration η) and a normal ordered quantum part

$$\psi_i \psi_i^\dagger = < \psi_i \psi_i^\dagger > + : \psi_i \psi_i^\dagger : \equiv \eta + : \psi_i \psi_i^\dagger :$$ \hspace{1cm} (3.33)

we observe that the quantum part has scaling dimension two and thus corrections like $: \psi_i \psi_i^\dagger : z^{1/2}$ will have anomalous dimension four, and hence they constitute irrelevant operators in the continuum limit by naive power counting. The continuum limit is taken by ignoring such terms.

Linearization of the quartic terms of the Hamiltonian (3.30) by means of auxiliary link variables Δ_{ij} for each sublattice (c.f. fig. 12), yields the gauge form of the resulting effective lagrangian.
The gauge potential is the phase of the link variables $\Delta_{ij} \simeq \Delta \exp(ig \oint_{ij} dl.a)$, and is the same for both sublattices, as there exist only one local phase symmetry in the model [17]. The important point is that α_{μ} is an independent field variable in a path integral formulation. This is to be contrasted with Shankar's formalism described previously.

The full partition function of the model is given as a path-integral over the Grassmann fields ψ_i and ψ_i^\dagger, the CP^1 variables z, \bar{z} and the gauge potentials α_{μ}.

$$Z = \int \mathcal{D}z \mathcal{D}\bar{z} \mathcal{D}\alpha_{\mu} \mathcal{D}\psi \mathcal{D}\psi^\dagger \exp[-S_{CP^1} - S_{\text{static}} - S_{\text{hop}} - S_{\alpha}]$$

(3.34)

This formulation seems rather odd as the spin degrees of freedom are described as continuous fields while the holes are confined to a spatial lattice. In the next section we will take a long-wavelength limit for the hole terms in the action and arrive at an effective continuum Lagrangian in (2+1)-dimensional spacetime which describes the coupled dynamics of both holes and spins.

3.4. A long-wavelength action: the doped case

The aim of this section is to find a suitable model for the electrically charged degrees of freedom of the doped antiferromagnet. At zero temperature, a finite density of fermionic holes will occupy all available states in momentum space up to some Fermi surface. The long-wavelength excitations of this system are 'quasi-hole' states, in which one hole is excited to a state above the Fermi surface leaving an unoccupied state behind. As we will see, the electrical properties of the system depend crucially on the nature of the quasi-hole excitation spectrum and, in particular, on the occurrence of an energy gap in this spectrum. Although the electrons themselves must be thought of as ordinary non-relativistic fermions, the long-wavelength quasi-holes, like the spin-waves discussed previously, have a linear, 'relativistic' dispersion relation. The limiting velocity, corresponding to the light-velocity in a conventional relativistic formulation, is v_P the Fermi velocity for holes. As in the previous section, A and B type holes are treated entirely separately: a quasi-hole has the same quantum numbers as an ordinary hole; electrical charge $+e$ and 'statistical' charge $\pm S$ depending on sublattice label.

Hence, the resulting effective action describes two species of linear-spectrum fermions coupled with opposite sign to the gauge field of the CP^1 model but with the same sign to an external electromagnetic field. In this section, as in the previous ones, we will neglect the ordinary electric charge of the holes.

In order to derive a long-wavelength effective theory of the fermionic sector of the model it will be useful to work in a Hamiltonian formalism. The relevant terms are

$$H_F = -t \sum_{i \in A} \psi_i^\dagger \exp(iS_{\text{a}}(i,\delta))\psi_{i+\delta} +$$

$$+ \hbar \epsilon \bar{c} + \mu \sum_{i \in A} \bar{c}_i^\dagger \bar{c}_i +$$

$$+ (A - B, S = -S)$$

(3.35)

The above Hamiltonian describes Grassmann fields coupled to an abelian gauge field and is reminiscent of compact $U(1)$ lattice gauge theory. Related gauge-invariant descriptions of the Hubbard model have been proposed by several authors [81, 56, 57]. Affleck and Marston linearize the quartic interactions in the Hubbard Hamiltonian by introducing a bilocal auxiliary field $\chi_{ij} \sim \langle C_i^\dagger C_j \rangle$. In the formalism of Ref [56], χ_{ij} is a gauge non-invariant quantity and so must have a zero expectation value by Itzykson's theorem [58]. In a mean-field approach, it is natural to consider the phase fluctuations of χ_{ij} which enforce this vanishing. Writing

$$\chi_{ij} \simeq |\chi_{ij}| \exp(i(\delta_{ij} - \theta_i))$$

(3.36)

the phase differences $\delta_{ij} = \theta_i - \theta_j$ can be directly related to the gauge field $a_{ij} = a(i,\delta)$ of...
Shankar's model. In all such treatments, the natural gauge-invariant parameter which characterizes configurations of the gauge field is the product of group elements around an elementary plaquette, $\Pi = \chi_{12} \chi_{23} \chi_{34} \chi_{41}$, where $1, 2, \ldots, 4$ are the corners of a unit square. A. F. Weeks and Marston [56] performed a variational calculation to determine the true ground-state of the system for a range of the Hubbard parameters and found that, for light doping and t sufficiently large, the free energy is minimized by a gauge field configuration with $\Pi = -1$. This is equivalent to a gauge flux of π passing through each plaquette and the corresponding phase of the the Hubbard model characterized by this ground-state is referred to as the 'flux phase'.

For the present purposes, we will assume that the same energetic arguments apply equally to give a flux phase for our model and initially consider a background gauge configuration with $\Pi = -1$ where Π is evaluated around a sublattice plaquette. Fluctuations of the gauge field around this background value will be restored after the long-wavelength limit has been taken. Remarkably, the background flux-phase configuration naturally supplies a γ-matrix structure and leads directly to a theory of Dirac fermions. In fact, the flux-phase Hamiltonian on each sublattice has exactly the correct form for the construction of staggered lattice fermions [59]. In the continuum, the usual doubling leads to two separate flavours of two-component spinors. Representing an arbitrary site in sublattice A as $i = n_x \delta_x + n_y \delta_y$, where δ_x and δ_y are orthogonal unit vectors of sublattice A (see Fig. 12), spinor components are defined according to the parity of the integers n_x and n_y as $\psi^\text{e} = (\text{even, even}), \psi^\text{o} = (\text{even, odd}), \psi^\text{d} = (\text{odd, even}), \psi^\text{ad} = (\text{odd, odd})$ [60]. Restricting our attention to sublattice A only, the Hamiltonian (3.35) is given in momentum space by,

$$H_A = -t \int d^2 k \psi^\dagger(k)(M(k))_{ij} \psi(k) \bar{\psi}(k) \quad (3.37)$$

where the k integration is restricted to the appropriate Brillouin zone and the 4×4 matrix $M(k)$ is given by

$$M(k) = \begin{pmatrix}
-M & S_y & -iS_x & 0 \\
S_y & -M & 0 & iS_x \\
iS_x & 0 & -M & S_y \\
0 & -iS_x & S_y & -M
\end{pmatrix} \quad (3.38)$$

here $M = \mu/t$ and $S_i = -\sin(k_i/t)$ with $k_i = k \delta_i$ and $i = x, y$. The Hamiltonian (3.37) can be recast in block diagonal form by a suitable change of basis in spinor space:

$$H_A = -t \int d^2 k \chi_a^\dagger(M(k))_{ab} \chi_b \quad (3.39)$$

where χ_a, $a = 1, 2$, is now a vector of two-component spinors given by $\chi_1 = \frac{1}{\sqrt{2}}(\psi_1 + \psi_3, \psi_2 + \psi_4)$ and $\chi_2 = \frac{1}{\sqrt{2}}(\psi_2 - \psi_3, \psi_1 - \psi_4)$ and

$$M(k) = \begin{pmatrix}
S + M I & 0 \\
0 & S + M I
\end{pmatrix} \quad (3.40)$$

where $S \equiv S_x \sigma_x + S_y \sigma_y$, σ_i are the usual Pauli matrices and I is the 2×2 unit matrix. The energy spectrum of the hopping Hamiltonian is obtained by solving the eigenvalue equation of the matrix $M(k)$:

$$E(k) = \mu \pm t(S_x^2 + S_y^2)^{1/2} = \mu \pm \epsilon(k) \quad (3.41)$$

The long-wavelength continuum limit is taken by expanding the Hamiltonian in powers of momenta around the Fermi surface and retaining only linear terms. In particular, the Fermi surface is defined by the relation $\epsilon(k) = \mu$ and the momenta may be split as $k = k_F + k'$ where k_F is a particular expansion point on the Fermi surface. New spinors χ_a and χ'_a which describe 'quasi-hole' excitations about the Fermi surface are then defined as zero modes of the matrix $M(k_F)$. The Hamiltonian can be written, to leading order in k', as

$$H_A = -t \int d^2 k' \chi'^\dagger_a(k') C_i^F \sigma_i \chi_a(k) \quad (3.42)$$

where $C_i^F = \cos(k_F \delta_i/t)$ and summation over $i = x, y$ is implied. In the one-dimensional case the dependence of this result on the Fermi momentum k_F could be absorbed by simply rescaling the coupling t by a factor C_i^F. In this case,
there is also dependence on an arbitrary choice of direction in the plane and an additional rescaling of momentum component k_x^P by a factor C_2^P/C_1^P is required to absorb this. Although such a rescaling spoils the rotational symmetry of the model, the relationship $J = 4I^2/U$ implies that $G_t \approx 1 + O(\mu^2/UJ)$ and consequently the anisotropic terms are suppressed in the physical regime of large-U and light doping [11] 3. In this approximation, all dependence on the expansion point chosen disappears and the Hamiltonian (3.42) takes on the standard Dirac form. Taking the Fourier transform and restoring the fluctuations of the gauge field around its background value gives

$$H_A = -t \int d^2x \chi_a^\dagger(\sigma^\gamma \partial_\gamma - S \sigma^\gamma a_\gamma - -S \sigma^\gamma a_0) \chi_a \quad (3.43)$$

Hence the long-wavelength limit of the hopping term for sublattice A describes a theory of two ‘flavours’ (corresponding to the index $a=1,2$) of two-component Dirac fermions minimally coupled to a $U(1)$ gauge field, with coupling S. The whole procedure is easily repeated for the Grassmann fields inhabiting sublattice B, this yields two more ‘flavours’ of Dirac fermions coupled to the gauge field with coupling $-S$. Combining A and B type fermions in a new four-component spinor, Ψ, the complete Hamiltonian for the fermionic sector of the model becomes

$$H_F = H_A + H_B = \int d^2x \Psi^\dagger(\sigma^\gamma \partial_\gamma - -S \sigma^\gamma \tau_3 a_\gamma - -S \sigma^\gamma \tau_3 a_0) \Psi \quad (3.44)$$

where the matrix τ_3 is given by $\text{diag}(1,-1)$ acting on the internal index of Ψ which labels the sublattices A and B. Thus the sublattice structure naturally provides a reducible four-component representation of the Dirac algebra, like the one discussed in Section 2.1.

3It should be noticed that in the approach of [17] the same result is reached in the limit of vanishing field strength (J') for the Heisenberg interactions between next-to-nearest neighbors, independently of the doping concentration.

Returning to a Lagrangian formalism, the effective action for quasi-holes becomes,

$$S_F = \int_0^\beta d\tau \int d^2x \frac{1}{v_F} \Psi^\dagger \partial \tau \Psi - H_F \quad (3.45)$$

The Fermi velocity for holes is approximately given by $v_F \approx n^{1/3}a$, where n is the number density of holes, and is comparable in magnitude or less than the spin-wave velocity $v_S = 2\sqrt{2}Ja$ [16]. In the general case we can set only one of these physical velocities equal to unity and should retain the ratio v_F/v_S as a parameter of the long-wavelength action. However, the analysis of [11] indicates that observable quantities relevant to superconductivity are almost independent of v_S. Hence we restrict our attention to the special case $v_F = v_S$ and work in natural units in which both velocities have unit value. Exploiting the freedom to redefine path integral variables as $\Psi^\dagger = \Psi^\dagger \gamma_\mu = \widetilde{\Psi}$, defining four-component γ-matrices appropriately, the fermionic or ‘charge’ sector of the model is described by a relativistic Lagrangian density in (2+1)-dimensional space-time:

$$L_F = \overline{\Psi}(i\not\partial - S \tau_3 \not\sigma) \Psi \quad (3.46)$$

Comparing with (15), (3.46) is just the Lagrangian density for the strong-coupling limit of τ_3-QED3 in the case $N = 2$ and the theoretical analysis of Section 2 will be applied directly in the next section. The full effective action describing the long-wavelength degrees of freedom of the doped antiferromagnet is obtained by adding the above fermionic terms to the CP^1 non-linear σ-model. In the physical case, $S = \frac{1}{2}$, the result is

$$S_{eff} = \int_0^\beta d\tau \int d^2x \frac{1}{\gamma} (\partial_\mu + ia_\mu) z^2 +$$

$$+ \overline{\Psi}_a (i\not\partial - \tau_3 \not\gamma) \Psi \quad (3.47)$$

In conclusion, we find that the addition of charged holes to the antiferromagnet is correctly modelled by coupling two flavours of four-component Dirac fermions to the gauge field.
the CP^1 action which describes the half-filled case. A reducible four-component representation of the Dirac algebra, follows directly from the local sublattice structure defined by the antiferromagnetic order and the opposite charges of A and B type holes leads to a τ_3 coupling in four-component formalism. A similar conclusion is reached in Ref [17] using a mean-field analysis of the $t-J$ model although, as mentioned above, the familiar constraint on the CP^1 variables, $\varepsilon = 1$, is also modified by doping.

In the next section, we will consider the effect of coupling the system described by (3.47) to an external electromagnetic field. Consequently, we wish to focus our attention to the effective action for the electrically charged degrees of freedom, the ‘quasi-hole’ fields, Ψ and $\overline{\Psi}$. To this end, it is convenient to integrate out the neutral magnon fields and keep only the leading terms in a derivative expansion. As is well known [50, 51], this leads to a radiatively generated Maxwell term for the auxiliary gauge field a_μ. The resulting effective Lagrangian at low momenta is:

$$\mathcal{L} = -\frac{1}{4g^2} f_{\mu\nu} f^{\mu\nu} + \overline{\Psi}_a (i\partial - S\gamma_0 a^0) \Psi_a$$

(3.48)

The dimensionful gauge coupling g^2 is proportional to $(\gamma)^{-1} \sim J$ and, as mentioned above, the equivalent temperature, $T = g^2/k_B$, is about 1500K.

4. Phenomenology of the parity conserving model

4.1. A mechanism for superconductivity

In the previous section we saw that the dynamics of holes and spins in a two-dimensional antiferromagnet could be described by an effective theory of Dirac fermions coupled to an abelian gauge field in (2+1)-dimensional spacetime. Our aim in this section is to demonstrate the occurrence of superconductivity in this continuum model. The starting point for the description of superconductivity is the effective Lagrangian,

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{kin}} + \overline{\Psi}_a (i\partial - \tau_3 \gamma_0 a^0 - \frac{\gamma_1 a^1}{v_S}) \Psi_a$$

(4.1)

$$\mathcal{L}_{\text{kin}} = -\frac{1}{4g^2} \left[\frac{\partial_0^2 a_1 - \partial_1 a_0}{v_S} \right] + \left(\frac{\partial_0 a_1 - \partial_1 a_0}{v_S} \right) + (\partial_0 a_1 - \partial_1 a_0)(\partial^0 a^1 - \partial^1 a^0)$$

(4.2)

where the (4×4) γ-matrices are those given in (2.2). To avoid confusion with the ordinary electromagnetic gauge field, we will refer to the vector field a_μ as the statistical gauge field. We have adopted natural units in which the Fermi velocity for holes, v_F, is set to unity, so that the spin-wave velocity, v_S, is less than or equal to one depending on the parameters of the microscopic theory discussed in Section 2. To illustrate the properties of this model it will be convenient to restrict our attention to the special case $v_F = v_S$. The analysis of the general case given in Appendix B of [11] indicates that the physical quantities of interest are almost independent of v_S. When the two characteristic velocities of the system are equal the effective Lagrangian has a ‘relativistic’ form and coincides with that of τ_3-QED$_3$ with $N = 2$ (see Section 2.1),

$$\mathcal{L} = -\frac{1}{4g^2} f_{\mu\nu} f^{\mu\nu} + \overline{\Psi}_a (i\partial - \tau_3 \gamma_0) \Psi_a$$

(4.3)

The gauge coupling, g^2, has the dimensions of mass and is, in general, a function of the Hubbard model parameters t, U and δ. As we shall see, g^2 sets the overall energy scale of the gap and the transition temperature for the model in much the same way as the Debye energy does for the BCS theory. Unlike the Debye energy which is related to the phonon spectrum, the energy scale of this model is set by the characteristic energy of electronic correlations which is typically of the order of a few electron-Volts. To demonstrate the occurrence of superconductivity rigorously, the Dirac fermions which describe the charged quasiholes should be coupled to a ‘real’ external electromagnetic field A_μ, as well as the ‘statistical'
gauge field a_μ. This will be done explicitly in Section 4.2. In this section we will ignore the electric charge of the holes and simply demonstrate the breaking of the global $U_E(1)$ symmetry of ordinary phase rotations and the appearance of a pole in the corresponding current-current correlator. Once the system is coupled to an external electromagnetic field this leads directly to superconductivity and the Meissner effect.

The properties of QED$_3$ were discussed in detail in Section 2 and much of the analysis can be applied directly to this case. In particular we will study the behaviour of Green's functions in the large-N expansion and hope that the conclusions remain reliable in the realistic case $N = 2$. For the quantities of interest in this section, the leading order of the $1/N$ expansion coincides with the first order in one-loop perturbation theory and, unless otherwise stated, the term 'leading order' is used below to indicate both of these. The leading order contribution to the statistical photon propagator is given by an infinite sum of diagrams, similar to those shown in Figure 3. In the Landau gauge, the result is

$$\Delta_{\mu\nu}(p) = g^2 \delta_{\mu\nu} - p_{\mu} p_{\nu} / p^2 (1 + \Pi(p))$$

(4.4)

where $\Pi(p) = g^2 N/8p$. The two-component fermions describing holes on the two sublattices, A and B, have opposite statistical charges $\pm e$. In four-component notation, this is incorporated by the τ_3 coupling in (4.3). Hence, from (14), the long-range attractive static potential between an A type hole and a B type hole is the same as that between a hole and its antiparticle and is given by

$$V_{AB}(\mathbf{R}) = V_{A\overline{B}}(\mathbf{R}) = -4/\pi NR$$

(4.5)

This result needs some explanation in the context of the microscopic model. As discussed in Section 3, holes have a tendency to sit on NN sites due to the antiferromagnetic order. In Shankar's model this short-range interaction leads to the opposite couplings of A and B type holes to an auxiliary gauge field with no bare Maxwell term. In the effective continuum theory of Dirac fermions coupled to the CP^1 σ-model, the gauge field acquires dynamics due to vacuum polarisation by the magnon fields z and \overline{z}, and also by the quasi-hole fields Ψ and $\overline{\Psi}$. The magnon vacuum polarisation generates the bare Maxwell term which appears in (4.3) and this is modified at leading order by the fermion vacuum polarisation, $\Pi(p)$. In fact the latter effect is the dominant one at low momenta and consequently, at least in the context of the large-N expansion, the resulting long-range interaction given in (4.5) is independent of the bare gauge coupling g^2 [61]. In microscopic language, fermion vacuum polarisation corresponds to virtual processes in which one hole is excited, for a short time, to a state above the Fermi surface leaving an unoccupied state (corresponding to the "antifermion") behind. Naturally a state that is "unoccupied by a hole" is filled by an electron, however it is convenient to continue to regard the holes as particles and the filled states as their antiparticles. The short-distance attraction between holes is enhanced by these quantum fluctuations in the "hole gas" and becomes long-range.

The existence of a long-range attraction between holes immediately suggests an analogy with the BCS theory, where electrons near the Fermi surface are subject to attractive forces mediated by phonon exchange. In the BCS theory this leads to a new ground-state in which electrons form s-wave bound-states or Cooper pairs. In the present case, the quantum mechanical model developed in [11] is applicable and indicates that a similar pairing between A and B type holes occurs in the physical case $N = 2$ ($< N_c = 8/\pi$). As both types of holes carry electric charge $+e$, the hole-pairs carry charge $2e$. The analogy with BCS theory suggests these bosonic hole-pairs condense at low temperature giving a superconducting ground state. However, because of the Mermin-Wagner theorem [13], this interpretation must be treated with some caution in a
two-dimensional system. In four-component formalism, the A and B type holes correspond to the upper and lower components of the spinor field \(\Psi \). As the A and B type holes correspond to spin-up and spin-down sublattices respectively, we note in passing a remarkable similarity to the quasi-particle formalism of Bogoliubov [62]. From (7), the relevant condensate for A/B pairing is \(\Psi_{73} \Psi \). This operator is doubly charged and is therefore a local order parameter for \(U_E(1) \) symmetry breaking. The Mermin-Wagner theorem states that \(\langle \Psi_{73} \Psi \rangle = 0 \) at any non-zero temperature which would suggest that the superconducting transition temperature is exactly zero. In fact the occurrence of superconductivity in the model does not require an order parameter and can be exhibited whenever the electrically neutral condensate \(\langle \Psi \Psi \rangle \) is non-zero. This operator corresponds to a Peierls-like pairing between quasiholes and their ‘antiparticles’ [63]. An analysis of the Bethe-Salpeter equation shows that bound-states poles appear in each of the channels, \(\Psi_{73} \Psi, \Psi \Psi \) and \(\Psi_{73} \Psi \), corresponding to pairs of charge \(+2e \), 0 and \(-2e \) respectively. By analogy with the Gross-Neveu model [29], we expect that the phase of the wavefunction of charged pairs varies rapidly in space causing the expectation value of the corresponding charged operators to vanish in accord with the Mermin-Wagner theorem.

The transition of the system to a new ground-state consisting of fermion bound-states is signaled by the opening of a gap, \(\Delta \), in the quasi-hole spectrum. Roughly speaking, the magnitude of the gap is the energy required to break up a pair and thereby create a free quasi-hole. In terms of the effective continuum theory (4.3) the opening of a gap corresponds to the dynamical generation of a fermion mass. As discussed in Section 2.5, this phenomenon has been investigated both by Monte-Carlo lattice simulation [22] and by several different approximate treatments of the Schwinger-Dyson equation for the fermion propagator [18, 19, 25]. In the physical case, \(N = 2 \), all these investigations agree that a fermion mass is generated. The analysis given in [34] yields the formula (2.28) for the dynamical mass. Setting \(N = 2 \) this gives \(\Delta \simeq 6.9 \times 10^{-4} g^2 \), with \(g^2 \equiv \alpha \). To get agreement with the experimental value of \(\Delta = O[30 - 60 \text{ MeV}] \) observed in the high-\(T_c \) superconductors [35] one must have a value of \(g^2 \) of order 8 eV. Such a value is still much larger than typical Heisenberg exchange energies (recall that in our model the gauge field arises in connection with the spin degrees of freedom in the original lattice Hamiltonian). If a typical Heisenberg energy is taken into account, then (2.28) would lead to an energy gap of the order of 1 meV which is comparable to the gap occurring in BCS superconductors, which is at least one order of magnitude less than the typical gap value occurring in high \(T_c \) superconductors. However, the exact gap equation is sensitive to many other factors and so this estimate is extremely crude. As usual for theories of superconductivity, the gap itself cannot be calculated with any degree of accuracy and the only reliable quantitative predictions of the model are for dimensionless ratios such as \(2\Delta/k_BT_c \). It is possible to form an estimate for \(g^2 \) in terms of the parameters of the lattice model [17] which shows that it is effectively enhanced to the desired value. The lattice analogue of the fermion kinetic energy is the “hopping term” which enters with coefficient \(t' \) in the model (3.30). If the lattice fermion operators are rescaled by \(t\delta \) (where \(\delta \) is the sublattice spacing) so as to get the correct dimensions of the fields in the continuum limit, and if space is then rescaled so as to obtain the (Dirac) kinetic energy with unit coefficient, the lattice \(U(1) \) coupling \(g \) becomes effectively replaced by \(g/(t\delta) \). An estimate of \(t\delta \) in such models may be obtained by noting that according to Baskaran et al., [64] the maximum doping concentration \(\eta_{max} \simeq t/U \), where \(U \) is the Hubbard repulsion. Since we may take \(U \simeq \delta^{-1} \) (i.e. \(U \rightarrow \infty \) in the continuum limit) we find \(t\delta \simeq \eta_{max} \), which has the epirical value of only a few percent. Assuming that the magnitude of \(g \) is set by the spin magnitude (1/2), and its length scale by the lattice spacing \(\delta \), we obtain finally for the square of the effective coupling

\[
g^2 \simeq \frac{\hbar \nu}{4 \delta \eta_{max}}
\]
having reinstated the Fermi velocity for holes \(v \) and \(\hbar \). The Fermi velocity can be found from the relation \(\xi \approx h v / \Sigma \) for the correlation length \(\xi \).
Using \(\xi \approx 30 \AA \) and \(\Sigma \approx 5 k_B T_c \) we find \(v / c \approx 5 \times 10^{-4} \), which gives \(g^2 \approx \) a few eV. Thus it is perhaps not impossible that such values could arise within the context of a model such as that of ref. [17].

For the moment we will assume only that a non-zero gap is dynamically generated for \(N = 2 \) and examine the qualitative consequences.

Before proceeding, there is an obvious question which should be asked concerning the role of the two flavours which correspond to lattice doublets in the microscopic model. Although there are energetics arguments for the dynamical generation of a mass term which is overall parity-invariant [19] which implies that two two-component species acquire positive mass and two negative, these arguments do not tell us how these signs are distributed among the ‘flavours’ and ‘colours’. However, the analysis of the quantum mechanical model of [61] indicates that the the gap must appear at the level of the microscopic model prior to the consideration of lattice doubling. In the continuum limit there may also be an additional gap term where signs alternate between flavours (doublets). However such a term does not affect the occurrence of superconductivity.

The massless Lagrangian (4.3) is invariant under statistical \(U_1 \) gauge transformations.

\[
\begin{align*}
\Psi &\longrightarrow \exp(\tau_3 A(x)) \Psi \\
\psi &\longrightarrow \psi + \partial_\mu A(x)
\end{align*}
\]

(4.7)
as well as ordinary global phase rotations \(\Psi \longrightarrow \exp(i\theta) \Psi \), denoted \(U_1(1) \), and discrete parity transformations \(P_4 \) (see Section 2.1). However, because of the \(\tau_3 \) coupling, (4.3) has no chiral symmetry in the sense of [19]. The dynamically generated four-component mass term, \(\Delta \Psi \Psi \), is fully invariant under \(U_1(1) \times U_1(1) \times P_4 \) and so is not an order parameter for the spontaneous breaking of any of these symmetries. However, exactly as discussed in Section 2.1, the matrix element of the conserved current, \(J_\mu = \bar{\Psi} \gamma_\mu \Psi \), between the vacuum state and one statistical photon becomes non-zero in the presence of a non-zero gap, \(\Delta \) [20]. The lowest order diagram contributing to this matrix element is identical, up to factors of \(\tau_3 \), to that shown in Figure 2 and gives the result,

\[
\langle 0 | J_\mu | p \rangle = -\text{sign}(\Delta) \frac{ie\gamma^\nu}{2p_0} \epsilon_{\mu\nu\rho} e^\rho
\]

(4.8)

where \(e^\rho \) is the polarisation vector of the statistical photon. The non-vanishing of this matrix element implies that the vacuum state is not invariant under \(U_1(1) \) transformations in the massive phase and, as we will demonstrate explicitly in the next section, this leads to superconductivity when the system is coupled to an external electromagnetic field. The ‘square’ of this matrix element provides a contribution to the current-current correlation function which is shown diagrammatically in Figure 13. The result is

\[
\langle 0 | J_\mu(p) J_\nu(-p) | 0 \rangle = \frac{g^2 (p_\mu p_\nu / p^2 - \delta_{\mu\nu})}{1 + \Pi(p)}
\]

(4.9)

Once an electromagnetic coupling is introduced, the global symmetry \(U_1(1) \) is promoted to a local gauge invariance and \(J_\mu \) is the corresponding conserved current. Hence, from (4.9), the Minkowski space correlator of the electromagnetic current at two separate points has a massless pole on the light-cone. This is the usual criterion for superconductivity [4].

The above arguments demonstrate that the long-wavelength model of a two-dimensional doped antiferromagnet developed in Section 3 is superconducting if and only if there is a non-zero gap in the quasi-hole spectrum. Because the corresponding condensate \(\langle \Psi \bar{\Psi} \rangle \) does not violate any symmetry of the massless action, spontaneous breaking of \(U_1(1) \) symmetry can occur without an order parameter. Thus the Mermin-Wagner theorem [13] does not apply and there
is no theoretical obstacle to a non-zero transition temperature. In fact the simple treatment of
the finite-temperature gap equation given in Section 2.3 indicates that a non-zero gap persists up
to some non-zero critical temperature T_c. Above T_c, the gap vanishes and superconductivity is ex-
tinguished. In the present case, the results of Section 2.3 suggest that the dimensionless ratio
$r = 2\Delta/k_BT_c$ is about 9.58, much larger than the BCS value. This is an encouraging result in the
eight of the large values of r measured for the quasi-planar high-T_c materials [39]. The large
value of the ratio for this model occurs because the strength of the long-range attraction between
holes decreases rapidly with temperature [31]. In contrast, the phonon-mediated attraction of BCS
theory is assumed to be temperature independent.

4.2. Electromagnetic effects in the plane

So far we have discussed the physical mechanism of hole-pairing and the resulting pattern of
symmetry breaking in the context of a purely two-dimensional effective model. In physical systems
the holes carry a 'real' electric charge $+e$ and couple to external three-dimensional electromagnetic
fields. In this section we consider the
two-dimensional system discussed above embedded in three-dimensional space and coupled to a
physical electromagnetic field which is described by the usual Maxwell action

$$S_{EM} = - \int d^3x \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$ \hspace{1cm} (4.10)

where the Lorentz indices $\mu, \nu = 0, 1, \ldots, 3$
and $z = x_3$ is the spatial coordinate perpen-
dicular to the plane of the antiferromagnet.
In the static case, the electric and magnetic fields, $E(x,y,z)$ and $B(x,y,z)$, obey the time-
independent Maxwell equations,

$$\nabla \times E = 0 \hspace{1cm} \nabla \cdot B = 0$$
$$\nabla \times B = \frac{J}{c} \hspace{1cm} \nabla \cdot E = \rho$$ \hspace{1cm} (4.11)

The static fields can be expressed in the usual way in terms of scalar and vector potentials, ϕ and A, as

$$E = \nabla \phi \hspace{1cm} B = \nabla \times A$$ \hspace{1cm} (4.12)

In discussing the electromagnetic properties of
the two-dimensional superconductor we are pri-
marily interested in the behaviour of the electro-
magnetic fields on the \((x,y)\) plane. It is convenient to consider the two-dimensional potentials, \(\phi_{2D}(x,y) = \phi(x,y,0)\) and \(A_{2D}(x,y) = (A_x(x,y,0), A_y(x,y,0), 0)\) and the corresponding electric and magnetic fields

\[
E_{2D} = \nabla \phi_{2D} \quad B_{2D} = \nabla \times A_{2D}
\]

(4.13)

As the holes are confined to move in the plane, the charge and current densities, \(\rho\) and \(J\), are non-zero only for \(z = 0\) and can be written in terms of two-dimensional sources as

\[
\begin{align*}
\rho(x,y,z) &= \delta(z) \rho_{2D}(x,y) \\
J(x,y,z) &= \delta(z) J_{2D}(x,y)
\end{align*}
\]

(4.14)

where \(J_{2D} = (J_x, J_y, 0)\). Solving the three-dimensional Maxwell equations (4.11) for the two-dimensional potentials gives:

\[
\begin{align*}
\phi_{2D} &= \int dx' dy' \frac{\rho_{2D}(x', y')}{\sqrt{(x-x')^2 + (y-y')^2}} \\
\n\frac{1}{c} A_{2D} &= \int dx' dy' \frac{J_{2D}(x', y')}{\sqrt{(x-x')^2 + (y-y')^2}}
\end{align*}
\]

(4.15)

The static fields are uniquely defined in the plane by (4.13) and (4.15) and it is natural to consider the two-dimensional equation of motion that gives rise to this solution. The factor \(1/|x-x'|\), which occurs in the integrands of (4.15), is the Green’s function of the three-dimensional Laplacian operator \(\nabla^2\). However, in two dimensions this expression is the Green’s function not of the Laplacian but rather of its ‘square-root’, written formally as \(\sqrt{\nabla^2}\) (this has an obvious meaning in Fourier space). It follows that the two-dimensional fields, \(E_{2D}\) and \(B_{2D}\), obey the equations of motion

\[
\frac{1}{\sqrt{\nabla^2}} \nabla \times B = \frac{1}{c} \nabla \times \nabla \phi = \rho
\]

(4.16)

where we have suppressed the label 2D. These field equations follow, in the static case, from the covariant (Euclidean) action.

\[
S_{EM} = -\int d^3 x \frac{1}{4\sqrt{\beta^2}} F_{\mu\nu} F^{\mu\nu}
\]

(4.17)

where \(\beta^2 = \nabla^2 + (1/c^2)\partial^2 / \partial t^2\). The arguments leading to this result have a straightforward generalisation to the non-static case, although for the present purposes all we shall require are the two-dimensional equations of motion (4.16). The action (4.17) has also been used by Rosenstein and Kovner to describe the dynamics of an electromagnetic field coupled to a planar superconductor [10]. Working in units in which \(\sqrt{\beta} = 1\), the ‘real’ velocity of light, \(c\), must be retained explicitly. The corresponding bare effective propagator for the photon is

\[
D^{(0)}_{\mu\nu}(p) = \frac{c}{\sqrt{p_0^2 + c^2 |p|^2}} \left(\begin{array}{cc} 1 & -c^2 \hat{p}_\mu \hat{p}_\nu p_0 \p \end{array} \right)
\]

(4.18)

with \(\hat{p}_\mu = (p_0/c, p)\). The propagator has a \(1/p\) behaviour, and by construction reproduces the static Coulomb repulsion between two charged holes.

\[
V_{EM}(R) = \frac{e^2}{4\pi \epsilon R}
\]

(4.19)

The \(1/R\) form of the potential allows a direct comparison between the electromagnetic repulsion and the statistical attraction (4.5). As \(c >> 1\) in the system of units we have chosen, the statistical attraction is the stronger effect by many orders of magnitude. Hence the electrostatic repulsion between holes has a negligible effect on the magnitude of the gap.

4.3. The photon mass and superconductivity

The formalism developed above allows us to describe the combined system of matter coupled to the relevant components of the electromagnetic field by a Lagrangian density in two spatial dimensions.

\[
L = L_{EM} + L_{matter}
\]

(4.20)

\[
L_{EM} = -\frac{1}{4\sqrt{\beta^2}} \left(\partial_0 A_i - \partial_i A_0 - \frac{\partial_0}{c} A_i - \partial_i A_0 \right)^2
\]

\[
+(\partial_i A_j - \partial_j A_i)(\partial^i A^j - \partial^j A^i))
\] (4.21)

\[
L_{\text{matter}} = -\frac{1}{4g^2} f_{\mu \nu} f^{\mu \nu} + \bar{\Psi}_a (i\gamma^\mu - \tau_3 \gamma^0 - \frac{e}{c} \gamma_i A_i^0 - \Delta) \Psi_a
\] (4.22)

where we have explicitly introduced the dynamically generated gap, \(\Delta\). As discussed in the previous section, the value of \(\Delta = \Sigma(0)\) is determined by the self-consistent solution of the Schwinger-Dyson equation for the fermion self-energy \(\Sigma(p)\).

We proceed by evaluating the leading order quantum corrections to the quadratic part of this action. The kinetic term for the statistical gauge field is given at low momentum by

\[
L_{\text{kinetic}} = -\frac{1 + \Pi(0)}{4g^2} f_{\mu \nu} f^{\mu \nu}
\] (4.23)

For a non-zero gap, the vacuum polarisation \(\Pi(p)\) is given at leading order by [18].

\[
\Pi(p) = \frac{g^2}{2\pi p^2} \left[2\Delta + \frac{(p^2 - 4\Delta^2)}{p} \sin^{-1} \left(\frac{p}{\sqrt{p^2 - 4\Delta^2}} \right) \right]
\] (4.24)

so that \(\Pi(0) = g^2/3\pi \Delta\). From the discussion of Section 2.5, we expect the gap, \(\Delta\), to be exponentially smaller than the dimensionful coupling \(g^2\). Hence \(\Pi(0) \gg 1\), and the coefficient of the Maxwell term is approximately \(-1/12\pi \Delta\). Thus the effective action is approximately independent of the coupling constant \(g^2\). At leading order the Maxwell term for the electromagnetic field receives a similar correction.

\[
L_A = L_{\text{EM}} \left(-\frac{e^2 \Pi(0)}{g^2} F_{\mu \nu} F^{\mu \nu} \right)
\] (4.25)

\(L_{\text{EM}}\) corresponds to an inverse propagator proportional to \(p\). The correction due to vacuum polarisation provides corrections of order \(p^2\) which are negligible at low momentum.

As discussed in Section 2.1, the four-component mass term, \(\Delta \bar{\Psi} \Psi\) is parity preserving and no Chern-Simons terms are radiatively generated, either for the statistical gauge field or for the two-dimensional electromagnetic field. However, at leading order, a 'mixed' Chern-Simons term is generated which provides a coupling between the two gauge fields. The graph which contributes to this term is shown in Figure 14, where a wavy line denotes the 'real' electromagnetic photon propagator and a curly line the statistical photon propagator. In the limit \(p \to 0\), the corresponding term in the effective action is

\[
L_{CS} = \frac{\text{sign}(\Delta)e}{2\pi} \varepsilon_{\mu \nu \rho} \hat{A}_\mu f_{\nu \rho}
\] (4.26)

where \(\hat{A}_\mu = (A_\mu, A/c)\). Due to the \(\tau_3\) structure of its coupling, the statistical gauge field \(a_\mu\) is odd under parity transformations, while the ordinary electromagnetic field \(A_\mu\) is even. Consequently, as expected, the mixed Chern-Simons term does not violate parity or time-reversal symmetry. The arguments of Coleman and Hill [65] may be applied to show that the coefficient of the mixed term is not renormalised by higher order contributions and so the result (4.26) is exact to all orders.

The mixed Chern-Simons term provides an effective coupling between the electromagnetic and statistical gauge fields when the gap is non-zero. It is then straightforward to see that this coupling contributes a mass for the electromagnetic photon and leads to the spontaneous breaking of the \(U(1)\) symmetry of electric charge. The leading order contribution to the photon propagator is

\[
D^{\mu \nu}_{\mu \nu}(p) = D^{(0)\mu \nu}_{\mu \nu}(p) - \Gamma_{\mu \nu}(p) \Delta_{\mu \nu}(p) \Gamma_{\mu \nu}(-p)
\] (4.27)

where \(\Gamma_{\mu \nu}\) is the effective two-point \(A-a\) vertex corresponding to \(L_{CS}\) and \(D^{(0)}_{\mu \nu}\) is given by (4.18). This relation is shown graphically in Figure 15.

Evaluating the expression (4.27), we find that the transverse spatial part of the propagator is
The photon mass implies that a static magnetic field inside the superconductor decays exponentially with distance from the boundary. For an externally applied magnetic field, this is the famous Meissner effect, with a penetration depth \(\lambda = c^2 \pi / 3 e^2 \Delta \).

4.4. The London Action

The behaviour of the photon propagator described demonstrates the occurrence of superconductivity at leading order. In fact, once the mixed Chern-Simons term \(L_{CS} \) is included, the matter action can be rewritten exactly in the standard London form and the phenomenology of the superconducting state can be exhibited without further approximation. The partition function of the system is defined as a functional integral over the fields

\[Z = \int \mathcal{D}a_{\mu} \mathcal{D}A_{\mu} . \]
\[\exp \left[-\int d^3 x \mathcal{L}_{EM} + \mathcal{L}_{\text{matter}}(f_{\mu \nu}) \right] \] \hspace{1cm} (4.29)

where, including the effects of vacuum polarisation to leading order, the matter Lagrangian is given by

\[\mathcal{L}_{\text{matter}}(f_{\mu \nu}) = -\frac{1}{12\pi \Delta} f_{\mu \nu} f^{\mu \nu} - \frac{e}{2\pi} \epsilon^{\mu \nu \rho} \tilde{A}_\mu f_{\nu \rho} \] \hspace{1cm} (4.30)

for \(\Delta > 0 \). The London form of the matter action can then be derived by performing the \(a_\mu \) integral exactly following the method of Banks and Lykken [9]. The final result for the partition function is

\[Z = \int DA_\mu D\phi \exp \left[-\int d^3 x \mathcal{L}_{EM} + \mathcal{L}_\phi \right] \] \hspace{1cm} (4.31)

where \(\mathcal{L}_\phi \) is a Lagrangian density of London type

\[\mathcal{L}_\phi = \kappa^2 \Delta \left(\partial_\mu \phi - \frac{e}{2\pi} \tilde{A}_\mu \right)^2 \] \hspace{1cm} (4.32)

In the above expression \(\phi \) is a massless scalar mode which is formally related to the statistical photon by [11] \(\partial_\mu \phi = \epsilon_{\mu \nu \rho} \partial^\nu a^\rho \). This action includes a spatial photon mass term \(\kappa^2 A_\mu A^\mu / 2 \) with \(\kappa^2 = 3\epsilon^2 \Delta / e^2 \pi \) which agrees with the result (4.27) given above. Note that the true photon mass is \(\kappa^2 \) rather than \(\kappa \) because the form of the modified equations of motion (4.16). In conventional BCS theory \(\phi \) is identified as the massless Goldstone mode corresponding to the spontaneous breaking of \(U(1)_G \) symmetry. The interpretation is slightly different in this case; the \(U(1)_G \) symmetry of the vacuum is broken in the low-temperature phase for which \(\Delta > 0 \), but there is no local order parameter. The statistical photon is massless in both phases but only couples to the real electromagnetic photon in the low-temperature phase where it plays the same role as a Goldstone mode and provides an electromagnetic photon mass.

4.5. Infinite conductivity

Having rewritten the matter sector of the theory in terms of the massless mode \(\phi \), the various phenomenological features of the superconducting state can be demonstrated using standard arguments [67]. The two-dimensional electromagnetic charge and current densities are given by,

\[\rho = \frac{\delta \mathcal{L}_\phi}{\delta A_0} \quad j = \frac{\delta \mathcal{L}_\phi}{\delta \mathcal{A}} \] \hspace{1cm} (4.33)

As \(\mathcal{L}_\phi \) depends on the fields in the combination \((\partial_\mu \phi - (e/2\pi) \tilde{A}_\mu) \), the charge density can be written as,

\[\rho = -\frac{e}{2\pi} \frac{\delta \mathcal{L}_\phi}{\delta (\partial_\phi \phi)} \] \hspace{1cm} (4.34)

From the above relation, the charge density \(\rho \) is the canonical momentum conjugate to the field \(\phi \). Hamilton’s equation of motion then gives

\[\partial_\phi \phi = e \frac{\delta \mathcal{H}_\phi}{2\pi} \frac{\delta \rho}{\delta \rho} \] \hspace{1cm} (4.35)

where \(\mathcal{H}_\phi \) is the Hamiltonian density for the matter sector. Following the approach of Weinberg [67], the electric voltage \(V(x) \) at a point \(x \) inside the sample is defined as the response of the energy density of matter, \(\delta \mathcal{H}_\phi / \delta \rho \), to a change of the charge density, \(\delta \rho(x) \), at that point. From (4.35), the voltage is given by

\[V(x, t) = \frac{2\pi}{e} \frac{\partial \phi(x, t)}{\partial x} \] \hspace{1cm} (4.36)

Hence, if the system remains in a steady state with a time independent electric current \(I \), the voltage vanishes at all points inside the sample. The electrical resistance of the sample, \(R \), is defined by Ohm’s law, \(V = IR \), and is clearly zero. The vanishing of electrical resistance is the most obvious property of the superconducting state and, as demonstrated above, is a direct consequence of functional form of the matter Lagrangian, \(\mathcal{L}_\phi \).

4.6. The two-dimensional Meissner effect

From (4.16) and (4.33), the two-dimensional equation of motion for a static magnetic field inside the sample is given by

\[\frac{1}{\sqrt{\mu_0}} \nabla \times B = -\frac{3e^2 \Delta}{\pi c^2} \left(\mathcal{A} - \frac{2\pi \epsilon}{e} \nabla \phi \right) \] \hspace{1cm} (4.37)
Taking the curl of both sides and using the Maxwell equation $\nabla \cdot B = 0$,

$$\frac{1}{\sqrt{\nabla^2}} \nabla^2 B = -\frac{3e^2 \Delta}{\pi c^3} B \quad (4.38)$$

To exhibit the Meissner effect we will restrict our attention to the case of a simple, effectively one-dimensional, geometry. Consider a homogeneous sample occupying the half-plane $(z = 0, x > 0)$ with an externally applied magnetic field $B = (0, 0, B_z)$ which takes the constant value $(0, 0, B_0)$ outside the sample. Inside the sample the field clearly depends on the x-coordinate only and the field equation, (4.38), becomes

$$\frac{dB_z}{dx} = -\frac{3e^2 \Delta}{\pi c^3} B_z \quad (4.39)$$

Applying the boundary condition, $B_z(0) = B_0$, the solution is,

$$B_z(x) = B_0 \exp \left(-\frac{x}{\lambda} \right) \quad (4.40)$$

where $\lambda = \pi e^2 / 3e^3 \Delta$. Thus the magnetic field strength perpendicular to the sample is exponentially small in the interior of the sample. As the superconductor is cooled below the transition temperature, magnetic flux is expelled and only penetrates a distance of order λ from the edge. This is a two-dimensional version of the ordinary Meissner effect which occurs in all known superconductors. The penetration depth agrees with the leading order result from the photon propagator (4.28) and, even in the general case $r_s \neq r_F$ (see Appendix B of [11]), only depends on the parameters of the microscopic model through the gap, Δ. Thus the model provides a numerical prediction for the product $P = \Delta \lambda$. Restoring factors of \hbar the result is $P = 2.25 \times 10^{-6}$ eVnm. The coherence length, ξ, of the superconductor is approximately $h c / \Delta$. Thus the corresponding Landau-Ginzburg constant is given by $\kappa = \lambda / \xi = \pi \hbar c / 3e^2 v_F \approx 10 / (\epsilon^2 v_F) >> 1$, implying that the superconductor described by this model is strongly type-II. We note that the quasi-planar high-T_c materials are all type-II superconductors by virtue of their exceptionally short coherence lengths.

4.7. Flux quantization

As in traditional superconductors, the phenomenon of infinite conductivity and the Meissner effect follow directly from the London form of the action. In contrast, we will demonstrate that the quantisation of magnetic flux in the model considered here has a quite different origin to that occurring in the conventional theory. At any finite temperature, $\beta = (k_B T)^{-1} < \infty$, statistical gauge transformations are divided into topological classes according to their winding number, n, around the compactified time direction.

$$a_\mu \rightarrow a_\mu + \partial_\mu \Lambda$$

$$\Lambda(\beta) = \Lambda(0) + 2n \pi i \quad (4.41)$$

where Λ is taken to be constant in two-dimensional space. The action corresponding to the mixed Chern-Simons term is

$$S_{CS} = \frac{ie}{\pi} \int_0^\beta dt \int d^2 x \xi^{\mu \nu} \partial_\mu a_\nu \partial_\rho \hat{A}_\rho \quad (4.42)$$

This term is not invariant under topologically non-trivial ($n > 0$) statistical gauge transformations and has variation

$$\delta S_{CS} = \frac{ie}{\pi} \int_0^\beta dt \partial_\rho \Lambda \int d^2 x \xi^{\mu \nu} \partial_\mu \partial_\nu \hat{A}_\rho$$

$$= 2 \pi n e \int d^2 x \epsilon_{ij} \partial_1 \hat{A}_j \quad (4.43)$$

As every other term in the action is fully gauge-invariant, δS_{CS} must be an integer multiple of $2\pi i$ to ensure the invariance of the partition function. Now consider a superconducting annulus in the plane centered at the origin, with the difference between the inner and outer radii much larger than the penetration depth. Let S be a region bounded by a closed path C which winds around the origin once in the interior of the sample. Because of the Meissner effect, the total magnetic flux through S is equal to the total flux, Φ, passing through the non-superconducting region bounded by the inner radius,

$$\Phi = \int_S (\nabla \times A) \cdot dS \quad (4.44)$$
Taking S to be the whole sample, equation (4.43) implies that $\Phi = (e/2\pi)\delta S_{CS}$. Restoring factors of $h = 2\pi$, the invariance of the partition function under `large' gauge transformations implies that the magnetic flux trapped in the annulus obeys the quantization condition,

$$\Phi = m \frac{hc}{2e}$$ \hspace{1cm} (4.45)

where m is an integer. This coincides with the experimentally observed flux quantum both for traditional superconductors and the high-T_c materials. In the conventional Landau-Ginzburg theory flux quantization follows when the scalar field ϕ is identified with the phase of the charge $2e$ order parameter. From the field equation (4.37) the quantity $\nabla \phi - (e/2\pi)A$ is vanishingly small in the interior of the sample. Hence, using Stoke's theorem,

$$\Phi = \int_S (\nabla \times A) \cdot dS = \int_C A \cdot dl$$

$$= \frac{2\pi e}{c} \int_C \nabla \phi \cdot dl = \frac{2\pi e}{c} \delta \phi$$ \hspace{1cm} (4.46)

where $\delta \phi$ is the change in ϕ on traversing C. Reversing the usual argument, the quantization condition implies that the field

$$\chi = |\chi| \exp \left(\frac{2ie}{c} \phi \right)$$ \hspace{1cm} (4.17)

is single-valued on C. Hence, for our model, ϕ may be identified as the phase of a charge $2e$ condensate, χ. The obvious candidate is $\chi = \langle \Psi \gamma_5 \Psi \rangle$ consistent with the pairing of A and B type holes conjectured in the Section 4.1. However, by analogy with the Kosterlitz-Thouless transition [21], we expect that rapid spatial fluctuations in ϕ enforce the vanishing of the order parameter at finite temperature as demanded by the Mermin-Wagner theorem.

4.8. Non-perturbative effects

So far we have essentially restricted ourselves to perturbation theory. The symmetry breaking patterns that lead to superconductivity have been discussed in the context of Feynman graphs and are inherently perturbative. However superconductivity is an \textit{exact} phenomenon which should be valid beyond perturbation theory. If our model has a possibility of describing high T_c superconductivity it should yield exact results. Notice that due to the fact that our gauge theory model is obtained as a long wavelength limit of a lattice model, the statistical gauge field is a \textit{compact} dynamical variable. As such it can have non-perturbative configurations, such as monopoles etc. Indeed the zero doped limit of the theory is described by CP^1 σ-models which are known to have hedgehog configurations [68] that essentially correspond to monopole-like configurations for the CP^1 gauge field. Of course due to infrared infinities such configurations can only appear in pairs of monopole-antimonopole. Due to spin alignment at infinity the configuration space of the σ model is compactified to a two sphere, S^2. The monopoles can live in the center of that sphere, thereby not belonging to the real space. However they are connected to the antimonopole that lies outside S^2 through a Dirac string that carries the magnetic flux of the monopole. We assume that the monopole configurations carry units of flux, although this is not essential for the subsequent arguments. The intersection point of the Dirac string with S^2 defines a so called baby skyrmion [69] (the name is attributed to the unit of flux it carries). The effect of these skyrmions has been argued to be an induced anomaly in the topological statistical current $j_{\mu} \equiv \epsilon_{\mu\nu\rho} \partial_{\nu} a_{\rho}$, which can no longer be conserved but it yields a divergence proportional to the monopole density. The arguments of [69] were based on lattice simulations. These simulations have been questioned recently by Bitar and Manousakis [54] on the basis of the incorrect algorithm used in [69] to detect the presence of monopoles. The reason is that the monopole has a long range structure, while the lattice cubes used in [69] are very small in this respect. Refining the analysis the authors of [54] have observed that monopole configurations have no effect on the dynamics of the CP^1 model. This is a nice result since the flux symmetry has been argued to be responsible for the masslessness of the statistical photon [70], which is viewed as the Goldstone boson pertaining to the sponta-
neous breaking of the topological symmetry (in the sense of [70]). If the arguments of [69] were correct, monopole configurations could in this way destroy superconductivity of the model, even at zero temperature, by giving the statistical photon a mass.

However is this the end of the story? In other words is it only the masslessness of the statistical photon that is important for superconductivity? Certainly not! There are other exact properties such as Meissner effects and flux quantisation whose validity could be affected by non-perturbative effects even in the case where the latter induce no anomaly in the topological current. Below we shall re-examine the issue of the effects of monopole configurations of the statistical gauge field in the case of interest, i.e. in the presence of electrically charged fermions coupled, in addition to statistical photons, to an external electromagnetic field.

Let us concentrate in the term that couples the external field to the statistical photon in the low energy effective action obtained from a derivative expansion of the Dirac determinant that arises from fermion integration. The term has the form:

\[
\int dt d^2 \mathbf{x} \frac{ie}{\pi} \varepsilon_{\mu \nu \rho} a_\mu \partial_\nu A_\rho
\]

(4.48)

If Hwang et al were correct then the statistical current could not be globally represented by \(\varepsilon_{\mu \nu \rho} \partial_\mu a_\rho \), since it would obey the divergence equation \(\partial^\mu j_\mu = (\text{const}) \rho \), where \(\rho \) is the monopole density. From the definition of the electromagnetic current \(J_\mu(A) \) it follows naively that \(J_\mu = j_\mu \) at low energies. Hence an anomaly in the statistical current would induce an anomaly in the external electromagnetic current! This of course is unacceptable since the external field simply obeys Maxwell equations. To remedy this one should couple to the external photon only the conserved quantity constructed out of the anomalous topological \(j \)-current. This means that the term (4.48) should be replaced by

\[
\int dt d^2 \mathbf{x} \left(\varepsilon_{\mu \nu \rho} a_\mu \partial_\nu A_\rho - A_\mu \frac{\partial_\nu}{\partial^2} a(x, t) \right)
\]

(4.49)

Consider now the case, relevant to superconductivity, where the space is a thick annulus (or rather a cylindrical annulus in realistic cases). In this case, as discussed in Section 4.7, the electromagnetic flux is quantised as in (4.49). We assume for simplicity that the annulus is extended to spatial infinity. If we make a gauge transformation on the monopole \(a_\mu \rightarrow a_\mu + \partial_\nu \Lambda \) then \(\Lambda \) does not vanish at infinity but rather winds around \(m \) times. In section 4 on the basis of this we argued that invariance of the action under large gauge transformations is consistent with a flux quantum \(2\pi \). Here we shall examine whether such configurations are compatible in a quantum treatment. Our approach will be that of [71] where it has been argued that monopole configurations are not compatible with fixed boundary conditions at infinity, but require free ones. In a path integral language this implies an integration over all possible `phases' \(\Lambda \). The mixed term (4.49) changes under large statistical gauge transformations as (in units \(\hbar = 2\pi, c = 1 \))

\[
\delta S_{\text{CS}} = \frac{ie}{\pi} A_\mu \frac{\partial \Lambda}{\partial c} = im\Lambda
\]

(4.50)

We observe that upon integrating over \(\Lambda \),

\[
\int_0^{2\pi} d\Lambda e^{im\Lambda}
\]

(4.51)

any non-trivial flux configuration for the electromagnetic field is washed out since the result is \(\delta_{m,0} \). The vanishing of the electromagnetic flux, implied by the existence of isolated monopoles in a quantum theory, is physically unacceptable. It would imply that the spin monopoles which occur in the sample annihilate the electromagnetic flux lines in the hole of the Corbino disc used to demonstrate flux quantization. Hence, a non-trivial flux for the \(A \)-field is compatible only with zero \(\Lambda \). This means that only monopole-antimonopole pairs confined inside the sample are allowed in the case of non-trivial electromagnetic fluxes. Thus the potentially dangerous configurations of [69] are ruled out. A similar conclusion can be reached by considering the model in finite temperatures. As we will discuss in Section 4.9, temperature dependent corrections to the coefficient of the term (4.48) occur, which means that in case of topologically non-trivial configurations of the \(a \)-field with fixed boundary
conditions the exponentiated action is not invariant under large gauge transformations, unless the electromagnetic flux quantum is temperature dependent, which of course cannot happen since it would violate Dirac’s quantisation condition.

The conclusion of the above discussion therefore is that if monopoles were not confined in pairs with their antimonopoles, the electromagnetic flux penetrating a superconducting annulus-shaped sample would be necessarily vanishing! It is therefore essentially the effect of fermions that ensures the confinement of the monopole configurations, and therefore the absence of any would-be anomaly associated with them. Thus the exactness of our superconductivity is established, on the basis of quite general arguments. We note in passing that the scenario of fermions ensuring masslessness of photons in (2+1)-dimensions has been known for some time in the context of three-dimensional Georgi-Glashow model [72]. In compact QED_3 gauge theory instanton effects were responsible for an explicit breaking of the fermion number symmetry, whose spontaneous breaking in perturbation theory ensured masslessness of photon, the latter being the pertinent Goldstone boson. The effect of instantons was therefore to give a non-perturbative mass to the photon, which however in the particular model of [72] was cancelled exactly by the effects of fermions. In our case the role of fermions would be similar if Hwang et al were right.

A final comment I would like to make concerns a (conjectural) interpretation of monopole-instantons in our model as representing effectively intrasublattice hopping. Indeed, even in the zero-topological-charge sector, which is the dominant configuration at low energies as argued above, the effects of monopole-instantons are to yield processes that violate fermion number. In four-dimensional gauge theories such effects are produced by instanton-anti-instanton interactions that induce the so-called distorted instanton, an approximate background configuration of the zero-topological-charge sector that serves as an improved expansion point of the theory. Fermion-number violating effects, which are exponentially suppressed at low energies, have been argued to be enhanced at very high-energies [77]. A typical process of this kind in the electroweak sector of the standard model is

$$f_1 + f_2 - n_a W + n_b H$$ (4.52)

where f_i denote fermions, W is an $SU(2)$ gauge boson and H is a Higgs (scalar) particle. At energies higher than the energy scale of the sphaleron (a classical solution of the electroweak theory that represents the barrier separating topologically non-trivial vacua), the authors of ref. [77] have presented arguments for an enhancement in the total cross section for fermion-number violating processes, which might be up to an experimentally observable size.

What do all these have to do with our case? An immediate answer would of course be: very little. However I would like to be speculative at this stage and argue that the connection of the above results with superconductivity in planar oxides might be much stronger than one naively thinks! In our model of superconductivity there are all the ingredients to lead to processes like (4.52). The role of fermions is played now by the holes, the role of gauge bosons by the carrier of the spin-spin interactions (statistical gauge potential a_μ) and the analogue of the Higgs particle is the magnon z of the CP^1 part of the theory. To make things clearer I will examine the fermions on a single sublattice. This effectively implies that the fermions 'see', in addition to the CP^1 part, a parity and time-reversal violating Abelian Chern-Simons term for the gauge potential a_μ, arising in a low energy expansion of the Dirac determinant that represents integration over the fermions of the other sublattice. It has been shown in ref. [78] that monopole solutions in three-dimensional pure Abelian Chern-Simons theories lead (at least in a dilute-gas approximation) to $U(1)$-charge violating processes described by an effective 'lagrangian' of the form

$$\mathcal{L} = K \epsilon^{-\theta + i \alpha} \Phi^* \Phi + h.c.$$ (4.53)
where B is the usual exponential suppression factor, K is a one-loop correction and α is a phase factor. Φ_{m} is the gauge-invariant charge and magnetic flux creating operator. The physical reason behind 'charge' violation in Chern-Simons theories is precisely the dual role of Φ as 'magnetic' flux and 'electric' charge creating operator due to the structure of the Chern-Simons term which implies that the magnetic field is proportional to the charge density. In three-dimensions monopoles are space-time events and therefore are like instantons in higher-dimensional models. Since monopole-instantons induce transitions between sectors of the theory with different magnetic flux, this automatically implies charge violation.

In our case we are interested in a model with fermionic matter. Due to the dominance of the zero-topological-charge sector of the theory, we are forced to consider processes in the presence of instanton-anti-instanton configurations. In analogy with four-dimensional gauge theories [77] we expect fermion number violating processes (4.52), which will cancel the effect of charge ('anyon-number') violation on the pure gauge part of the theory. In the effective theory of a single-sublattice this induces 'disappearance' of holes. In the original planar lattice model this can only be interpreted as intra-sublattice hopping (1). In the limit of many fermionic particles (strong doping) one should expect an enhancement of this effect, in much the same way as fermion-number-violating processes are enhanced in four dimensions at high energies. Thus in this interpretation superconductivity will disappear once the doping concentration becomes strong enough so that intra-sublattice hopping is significant. In such a situation one is no longer permitted to use two-coloured τ_i-QED as a model for the lattice system. In a similar spirit, one could also view interplanar hopping as an instanton effect in the effective theory of a superconducting plane. In this way one can probably explain the existence of components of the superconducting gap along the direction perpendicular to the Cu – O planes, which seems to be observed experimentally in high-T_c materials [35]. The single critical temperature in the model is then a result of deconfinement of topological defects on the plane (Kosterlitz-Thouless [21] phase-transition). At present these are just conjectures. To prove or disprove them, one should re-examine the whole issue of dynamical mass generation in our model in the presence of non-perturbative effects. This is a highly complicated process and at present I do not have much to announce, unfortunately. I, therefore, leave these issues and proceed to a comparison of the results obtained so far within the framework of our parity-conserving model with those obtained in the anyonic models of superconductivity.

4.9. Comparison with the anyonic model

Such a comparison will illustrate - as I hope - the attractive phenomenological features of the long-wavelength theory developed above. Like the model considered here, a relativistic anyonic superconductor can be described by four-component Dirac fermions coupled to an abelian gauge field in (2+1)-dimensional space-time. When the anyonic theory is coupled to an external electromagnetic field the appropriate Lagrangian density is

$$\mathcal{L} = \mathcal{L}_{EM} + \mathcal{L}_{anyon}$$

where \mathcal{L}_{EM} is given by (4.21) and

$$\mathcal{L}_{anyon} = \frac{-1}{4g^2} f_{\mu\nu} f^{\mu\nu} + \bar{\Psi}_a (i\gamma^\mu \partial_\mu - \varepsilon) \tau_i A^i + \frac{\gamma}{8\pi} \varepsilon^{\mu\nu\rho} a_\mu \partial_\nu a_\rho$$

where $a = 1, \ldots, N$. The anyonic Lagrangian differs from the long-wavelength Lagrangian \mathcal{L}_{matter}, given by (4.22), in three obvious respects. Firstly \mathcal{L}_{anyon} has a bare Chern-Simons

\footnote{I was informed recently by Kimmyung Lee that similar thoughts concerning interplanar coupling have also occurred to A. Zee.}

\footnote{We work in the zero anyon density limit so as to make the comparison to our model direct. The conclusions remain the same if a chemical potential is introduced.}
term which explicitly breaks parity and time-reversal symmetry. This term alters the bare statistics of the spin-1/2 fields, Ψ and $\bar{\Psi}$, which become ‘anyons’ [2]. The wavefunction of two identical spin-1/2 particles acquires a phase $\pi(1 + 2/\gamma)$ when the particles are interchanged. Secondly, the mass term is the four-component parity-violating term $\Delta p \bar{\Psi} \Psi$ discussed in Section 2.1. Lastly, the gauge coupling omits the factor of τ_3 which occurs in (4.22) indicating that the upper and lower components of the spinors Ψ_a couple to the gauge field with the same sign.

The quantum corrections to L_{anyon} are similar to those occurring for L_{matter}. At leading order, a mixed Chern-Simons term is generated and the bare Maxwell terms are corrected by vacuum polarization. The key difference is that, because the mass term contains an extra factor of τ_3, the antisymmetric part of the vacuum polarization is non-vanishing and generates a Chern-Simons term for the electromagnetic gauge field,

$$L_{\gamma}^S = \frac{N}{4\pi} \varepsilon^{\mu\nu\rho} \hat{A}_\mu \partial_\nu \hat{A}_\rho,$$

(4.56)

and also provides a radiative correction to the bare Chern-Simons term for the statistical gauge field,

$$L_{\gamma}^S = \frac{(\gamma + 2N)}{8\pi} \varepsilon^{\mu\nu\rho} a_\mu \partial_\nu a_\rho$$

(4.57)

In the special case, $\gamma = -2N$, the bare Chern-Simons term is cancelled by the radiatively generated one. Only when this cancellation occurs does the anyon model exhibit superconductivity [4]. In this case the one-loop effective action is formally identical to (4.30) and the London action (4.32) may be derived exactly as in Section 4.4 [9]. When $N = 2$, the value suggested by the Hubbard Model, the cancellation implies that matter particles have an interchange phase $i\pi/2$, half the value for fermions. This scenario is known as ‘semionic’ superconductivity [9].

There are several outstanding difficulties in applying the anyonic theory to the high-T_c materials. Firstly, the introduction of a bare Chern-Simons term has no motivation at the microscopic level. There is no evidence that such a term arises from the long-wavelength limit of the Hubbard model [6]. Also, the radiatively generated Chern-Simons term for the electromagnetic field leads to observable P and T violating effects [5]. All experimental searches for such effects have so far been either negative or inconclusive. However, the most serious difficulty with the anyonic scenario is a theoretical one. At finite temperature the coefficient of the radiatively generated Chern-Simons term for the statistical gauge field is no longer equal to $N/4\pi$ but is given by $N/4\pi \tanh(\Delta \beta/2)$ [73]. The cancellation of the bare term is then not exact and the residual Chern-Simons term provides a topological mass for the statistical gauge field which destroys superconductivity. Hence the choice $\gamma = -2N$ only ensures superconductivity at exactly zero temperature. We note that the unconventional anyonic scenario considered in [8], involving only dynamical generation of parity violating effects, avoids this restriction and can give a non-zero transition temperature. In the model of ref. [8] the parity violating mass-gap was generated dynamically via Gross-Neveu type four-fermi interactions. This however in three-dimensions yields a mass-gap-to-critical-temperature ratio

$$r' \equiv \Sigma(0, 0)/k_B T_c = 2\ln 2$$

(4.58)

which is smaller in magnitude than the corresponding BCS ratio, and hence disagrees with the experimental data. Of course it might well be that more sophisticated interactions than those considered in [8] yield r' of order 10.

The model developed in this section has none of the above difficulties. In particular, the exact cancellation of the Chern-Simons term for the statistical gauge field is an automatic consequence of the parity-conserving mass term and the transverse components of the statistical photon remain massless at finite temperature [31]. Moreover, as a result of the finite loop corrections of the gauge interaction the mass-gap-to-critical-temperature ratio r is much larger than the corresponding
BCS ratio, in agreement with experiments on high T_c superconductors.

5. Conclusion

In Section 4 we presented a field theoretic model of a two-dimensional relativistic superconductor. In its most general form the model is described by the Lagrangian density,

$$\mathcal{L} = \mathcal{L}_{EM} + \mathcal{L}_{\text{matter}}$$

$$\mathcal{L}_{EM} = - \frac{1}{4 \sqrt{\beta^2}} \left(\frac{\partial_0}{c} A_i - \partial_i A_0 \right) + (\partial_0 A_i - \partial_i A_0)(\partial^0 A^i - \partial^i A_0) + (\partial^i A_i - \partial_i A_i)$$

$$\mathcal{L}_{\text{matter}} = - \frac{1}{4 g^2} f_{\mu \nu} f^{\mu \nu} + \overline{\Psi}_a (i \gamma^\mu \partial_\mu - c \gamma_0 A^0 - c \gamma_i A_i - \Delta) \Psi_a$$

We have restricted our attention to the case where the gap Δ is dynamically generated by the gauge interactions, but in fact the above model can be considered in a more general context where the origin of the gap is not specified (in other words, Δ is considered as a bare mass). We note that Kovner and Rosenstein [10] have recently considered this model in the limit $\Delta > g^2$ and argued that it coincides with the two-dimensional Coulomb gas [21] which is known to exhibit a phase transition of Kosterlitz-Thouless type.

Irrespective of the origin and magnitude of the gap, the model exhibits genuinely two-dimensional superconductivity with a non-zero transition temperature and no violation of either parity or time-reversal symmetries. For these reasons alone, it is natural to consider the above model as a candidate theory of high-temperature superconductivity or, more precisely, as a candidate theory of superconductivity in an isolated copper oxide layer. Effective two-dimensionality is experimentally realised only for samples in which single layers of YBa$_2$CuO$_6$ are isolated from each other by many intervening layers of an insulating material in a ‘super-lattice’ structure [37]. Such materials are a very recent development and measurements of the parameters of the two-dimensional superconducting state have not yet appeared in the literature. Thus, for the time being, it is only possible to make a qualitative comparison between the predictions of the two-dimensional model and experimental results. Alternatively, the model could be generalised to include an explicit interplanar coupling allowing a direct comparison with experiments on multilayer samples.

Perhaps the most encouraging phenomenological feature of the model is that, irrespective of the values of the microscopic parameters, it describes a type-II superconductor. A superconductor is characterised as type-I or type-II depending on whether the Landau-Ginzburg constant, $\kappa = \lambda / \xi$, is less than or greater than $1 / \sqrt{2}$ respectively [74]. In addition to the superconducting and normal states, type-II superconductors exhibit an intermediate ‘mixed’ state when a sufficiently strong external magnetic field is applied. In BCS superconductors, the typical radius of a Cooper pair can be many thousands of lattice spacings and the coherence length is often as large as 104Å, comparable with the penetration depth. One of the most distinctive properties of the high-T_c materials is their extremely short coherence length, typically about 10Å [40]. In contrast, the penetration depth for high-T_c superconductors is of the same order as the BCS value. Consequently the new materials are strongly type-II with $\kappa >> 100$. As discussed in Section 4.6, this feature is correctly captured by the model. Starting from the Lagrangian (5.3), it should be possible to derive an effective description of the mixed state and predict the critical external field.
Section 3 was devoted to motivating the model as a long-wavelength limit of the doped antiferromagnet which is itself an idealized model of the dynamics of electrons in the CuO2 layers of the high-Tc materials. Although the arguments leading from the doped antiferromagnet to the gauge theory considered here involve many assumptions and approximations, certain general features may survive a more rigorous analysis. The description of quasi-holes as Dirac fermions in the continuum limit assumes a flux-phase ground state for the antiferromagnet. However, like the anyonic model, we expect that the mechanism considered here can be generalized to include non-relativistic fermions. In general, antiferromagnetism leads to the attractive gauge interaction between holes on the two sublattices providing an analogy with the familiar, phonon attraction of BCS theory. Pursuing this analogy further, it is natural to think of the gauge attraction as dynamically generating the superconducting gap. The parity-conserving structure of the four-component gap term has an obvious interpretation in terms of the antiferromagnetic order of the microscopic model.

The gap equation of Section 2.3 relates the magnitudes of the gap and the transition temperature to that of the dimensionful gauge coupling. The coupling is naturally identified with the characteristic energy of antiferromagnetic correlations, typically equivalent to a temperature of about 1500 K. In traditional superconductors, the energy scale of the gap and transition temperature is governed by the Debye temperature \(\hbar \omega_D / k_B \) which is much lower. In particular, the BCS theory sets a theoretical upper bound on the transition temperature of about 30 K. Such an upper limit does not apply to the present model which potentially explains the high transition temperatures of the new materials. In fact, given that \(J / k_B \approx 1500 K \), the relevant question is not why is \(T_c \) so high, but rather why is it so low! The analysis of the zero-temperature gap equation given in [11] suggests that the gap is related to the dimensionful coupling as,

\[
\Delta \approx g^2 \exp \left(-\frac{2 \pi}{\sqrt{N_e / N - 1}} \right)
\]

(5.4)

For \(N = 2 \) the constant of proportionality, \(\Delta / g^2 \), is extremely small and, in order to produce gaps of order \(O[30 MeV] \) one needs a large value of \(g^2 \), of \(O[few \ eV] \). For typical Heisenberg energy value of \(g^2 \) the corresponding gap is smaller than the experimental one by two orders of magnitude. However, the formula (5.4) is the result of a very crude approximation to the Schwinger-Dyson equation for the fermion propagator and alternative treatments of these equations produce different results. Moreover, as we have discussed, even within the \(O(1/N) \) framework studied above one can get enhancement factors (up to the experimentally desired values of the gap) by appropriately accounting for the effect of doping on the parameters of the statistical model from which the continuous theory is derived. In this way the value of \(g^2 \) can become much bigger than the one pertaining to a typical Heisenberg exchange interaction, thereby leading to much larger values of the energy gap. However, one should bear in mind that the gap is non-perturbative in \(1/N \) and the only reliable determination would be from Monte-Carlo simulations of non-compact lattice QED3. The gap cannot be measured directly on the lattice but could be inferred from the mass of the lowest lying scalar bound-state [75], while the critical temperature could be determined by simulation on an asymmetric lattice. In the absence of these results, the question of whether a model based on QED3 can account for the experimentally measured values of \(\Delta \) and \(T_c \) is still open.

As discussed in Section 2.3, the scenario of a dynamically generated superconducting gap suggests an explanation for the high values of the ratio \(2\Delta / k_BT_c \) exhibited by the high-\(T_c \) materials. Despite the disparity between different approximate calculations of the gap and the critical temperature, the ratio of these quantities displays a remarkable stability [34, 76]. Essentially, the diff-
ference between the ratio for QED$_3$ and the BCS value is due to the rapid decrease in the range of the gauge attraction between holes as the temperature is raised. We expect this qualitative feature to persist in a more accurate treatment. Again, this feature of the model could be tested by lattice simulation.

In conclusion, the model we have presented describes a new class of two-dimensional, parity-conserving superconductors which overcome many of the phenomenological difficulties of anyonic superconductivity. The model has a physical interpretation as the long-wavelength limit of a doped planar antiferromagnet and correctly describes certain qualitative features of high-temperature superconductivity. As we have outlined above, much more work, both theoretical and experimental, is required to determine whether or not this model is realised in Nature.

Before ending this discussion I would like to stress that if the present model of high T_c superconductivity is realised somehow in Nature, it will be another example of the interplay between Particle and Condensed Matter Physics. In the course of this workshop we have seen how many different areas of Physics can merge in order to provide techniques and concepts for treatments of physical problems pertaining to areas that at first sight look totally disconnected. We have heard in this meeting how infinite-dimensional conformal algebras (\mathcal{W}-algebras), that initially appeared in two-dimensional models of relevance to string theory, can be used as a way of understanding the Quantum Hall Effect [79]. This does not come as a surprise if one believes in the argued [80] similarity of the latter to the String Universe, and the special role of the \mathcal{W}-symmetries in coherence maintaining (gauge) symmetries in stringy black holes [81]. Stringy black holes and other singularities have a natural description in terms of three-dimensional QED with complex fermions, similar to that of the Quantum Hall Effect. The P- and T- violation of the associated vacuum correspond to the decay of the black holes and the cosmological arrow of time [80]. In this talk I described another application of ideas developed by particle physicists, again in connection with QED$_3$ (1), to a Condensed Matter problem: A variant of QED in three-dimensions yields superconductivity at high temperatures. Whether this model can have any relevance to another area of physics, apart from Solid State Physics, like the Hall system does for Gravity, remains to be seen. Nevertheless, the above results indicate that gauge theories might find important applications outside Particle Physics in the future.

I would, therefore, like to conclude by repeating a statement that J. Ellis made [82] in his concluding talk in the first CERN-Torino meeting on interdisciplinary topics between Particle and Condensed Matter Physics. “If physicists are to develop and apply these and other tools expeditiously”, he said, “we must maintain connections between theorists and phenomenologists and between the different subfields of Physics. As at this meeting, we must strive to talk to each other and at least understand each others’ languages, even if we do not speak them fluently. Otherwise we will not be able to avoid in Physics the fate of the builders of the first Tower of Babel…”

Acknowledgements

It is a particular pleasure to thank the organizers of this meeting, L. Alvarez-Gaumé, A. Devoto, C. Trugenberger and S. Fubini, for inviting me to this very interesting meeting and for providing a very stimulating atmosphere for discussions during the workshop. It is also with great pleasure that I acknowledge discussions with I.J.R. Aitchison, N. Dorey and M. Klein-Kreisler who co-authored a number of works, which the present talk is, in its major part, a mere accumulation of. Particular thanks are due to J. Ellis and D. Nanopoulos, for numerous discussions on many of the topics covered in this talk. I would also like
to thank Kimyeong Lee for discussions concerning his work. Finally I thank P. Sorba and the theory group of LAPP (Annecy-le-Vieux, France) for the hospitality during the last stages of this work.

REFERENCES

The effect on the circular dichroism seen by the first experiment, which was originally thought of as evidence for T-violation, was disputed by the second experiment of Spielman et al. In support of the absence of P- or T-violation in high Tc superconductors is also the experiment on muon-spin relaxation: R.F. Kiefl et al., Phys. Rev. Lett. 64 (1990) 2982.

8. N. E. Mavromatos, University of Oxford preprint: OUTFP-90-04P.
15. P. B. Wiegmann, Physica (Amsterdam) 153-
155c (1988) 103.

50 A. M. Polyakov, ‘Gauge Fields and Strings’ (Harwood 1987).

76 A. C. Rose-Innes and E. H. Roderick, Introduction to Superconductivity (Pergamon 1969).
77 J. B. Kogut, private communication.
78 M. Klein, private communication.
82 J. Ellis, Concluding Talk presented at the First CERN-Torino Meeting on Current trends in Particle and Condensed Matter Physics', Torino (Italy), May 11-13, 1992; CERN preprint CERN-TH.6723/92 (1992), to be published in Mod. Phys. A.