Squeezed thermal vacuum and the maximum scale for inflation

M. Gasperini and M. Giovannini
Dipartimento di Fisica Teorica, Via P. Giuria 1, 10125 Turin, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Turin, Italy

G. Veneziano
Theory Division, CERN, Geneva, Switzerland
(Received 29 March 1993)

We consider the stimulated emission of gravitons from an initial state of thermal equilibrium under the action of the cosmic gravitational background field. We find that the low-energy graviton spectrum is enhanced if compared with spontaneous creation from the vacuum; as a consequence, the scale of inflation must be lowered, in order not to exceed the observed CMB quadrupole anisotropy. This effect is particularly important for models based on a symmetry-breaking transition which require, as an initial condition, a state of thermal equilibrium at temperatures of the order of the inflation scale.

PACS number(s): 98.80.Cq, 04.30.+x, 04.60.+n

It has recently been argued that the Universe cannot be in a state of "eternal" inflation: not only is a primordial de Sitter exponential expansion, without a beginning in time, impossible [1], but also there are quantum cosmological arguments [2] suggesting for the inflationary phase just the minimum duration required to bring in causal contact scales that are not much larger than our present Hubble radius H_0^{-1}.

If this is the case, the initial state, whose perturbations are amplified by the subsequent inflationary evolution, should be fixed by the dynamics of the preinflationary era and could differ considerably from the usually assumed vacuum. This difference influences the shape of the perturbation spectrum, as first pointed out in [3] for the case of tensor perturbations (graviton production), and also discussed in [4] for the scalar perturbation case.

It is well known, in particular, that any inflationary model based on a temperature-dependent phase transition necessarily requires a homogeneous thermal state as an initial condition. The existence of initial thermal equilibrium constrains the parameters of such models, and a recent discussion [5] suggests that, in their context, a sufficient duration of inflation can be arranged only for low enough energy scales. The aim of this paper is to point out that also the conventional upper bounds on the scale arising from the gravity-wave contribution to the cosmic microwave background (CMB) quadrupole anisotropy are to be lowered, if the relic graviton background is produced from an initial thermal bath rather than from the zero-temperature vacuum.

Indeed, the inflationary amplification of the vacuum fluctuations can be properly represented, in a second-quantized formalism, as a process of pair production under the action of the external gravitational field [6], with the produced particles necessarily appearing in a final "squeezed vacuum" quantum state [6,7]. If the initial vacuum is changed into a state of thermal equilibrium, while the inflationary dynamics is left unchanged, the pair production process leads eventually to a thermal mixture of "squeezed number" states, instead of the pure squeezed vacuum. This modifies the spectral number density of the produced particles in such a way that their energy distribution deviates in general from the flat Harrison-Zeldovich spectrum, even in the case of pure de Sitter inflationary dynamics. The isotropy properties of the CMB radiation then provide a bound on the inflation scale, which depends on the temperature of the initial thermal bath.

In order to discuss this effect let us recall [6–8], first of all, that the inflationary particle production can be described in terms of Bogoliubov transformations relating, for each mode k, the $|\text{in}\rangle \langle b_k^\dagger b_k^\dagger|$ to the $|\text{out}\rangle \langle a_k^\dagger a_k^\dagger|$ annihilation and creation operators:

\[
\begin{align*}
 a_k^+ &= c_+(k)b_k^\dagger + c^\ast_-(k)b_k, \\
 a_k^+ &= c_-(k)b_k + c^\ast_+(k)b_k^\dagger.
\end{align*}
\]
The Bogoliubov coefficients \(c_\pm(k) \) depend on the dynamics of the background geometry (in particular on the transition from the inflation to the standard decelerated phase), and satisfy \(|c_+|^2 - |c_-|^2 = 1\). By parametrizing \(c_\pm \) as
\[
c_+(k) = \cosh \phi_k, \quad c_-(k) = e^{2i\phi_k} \sinh \phi_k,
\]
the relations (1) can be rewritten as unitary transformations
\[
ak = \Sigma_k b_k \Sigma_k^+ \quad \text{and} \quad a_k = \Sigma_k^* b_k^\dagger \Sigma_k^+
\]
generated by the squeezing operator
\[
\Sigma_k = \exp[(z_k b_k^2 - z_k^* b_k^\dagger^2)/2], \quad z_k = r_k e^{2i\phi_k}.
\]
The spectral properties of the relic radiation are usually derived by starting from the (in) vacuum state \(|0\rangle\), which satisfies \(b_k^\dagger|0\rangle = 0\). Then the pair production process leads, for each mode, to the squeezed vacuum state \(|z_k\rangle = \Sigma_k|0\rangle\), such that \(a_k^\dagger|z_k\rangle = 0\). The average particle number can be expressed in terms of the squeezing parameter \(r_k\) as
\[
\overline{N}_k = \langle 0|a_k^\dagger a_k|0\rangle = |c_-(k)|^2 = \sinh^2 r_k.
\]
If we start, however, with a number state \(|n_k\rangle\) in which \(n\) particles are already present in the given mode, \(b_k^\dagger b_k|n_k\rangle = n_k|n_k\rangle\), we obtain a “squeezed number” [10] state \(|z_k, n_k\rangle = \Sigma_k|n_k\rangle\), with
\[
\langle x|x'|\rangle_{\rho_{ST}} = \left(x|x'| \right)_{\rho_{ST}} = \left(x|x'| \right)_{\rho_{ST}} = \exp\left[-\frac{2\overline{N}(\overline{N}+1)}{2(\overline{N}+1)} \left(x^2 + x'^2 \sigma + 2\overline{N}(\overline{N}+1) xx'\sigma \right)\right],
\]
where \(\sigma = \exp(-2r)\), and \(\overline{N}\) is the thermal average number of Eq. (9) [for \(\sigma = 1\), Eq. (10) reduces to the usual thermal density matrix in the configuration space representation]. The computation of \(\text{Tr}(\rho_{ST}b^\dagger b)\) then reproduces exactly Eq. (8), with \(|c_-(k)|^2 = \sinh^2 r\).

Note, incidentally, that, unlike \(\overline{N}\), the entropy growth \(\Delta S\) associated with pair production is not affected by finite-temperature corrections to the initial state; for a squeezed thermal mixture, \(\Delta S\) turns out to be just the same as that obtained starting from the vacuum [12,13], namely, \(\Delta S = -\ln \sigma = 2r\). This can be easily verified by computing \(-\text{Tr}_{ST} \ln \rho_{ST}\) for the two-mode generalization of the (10), and by subtracting the initial thermal contribution.

It is also worth noting that, in the real-time formalism of the thermo-field dynamics [14], the thermal vacuum is related to the \(T=0\) vacuum by a kind of Bogoliubov transformation, with squeezing parameter \(r_\sigma = \text{arcsinh}[(e^{2\overline{N}} - 1)^{-1/2}]\). Such a transformation acts on a “doubled” Hilbert space, obtained by introducing fictitious operators associated with each physical operator. In this context, the average number of Eq. (8) can be recovered, formally, by considering the state obtained from the vacuum by the product of two SU(1,1) Bogoliubov matrices, with parameters \(r_1 = r_\sigma\), and \(r_2 = \text{arcsinh}(|c_-|)\), provided the relative phase is chosen to be \(\phi = (2m+1)\pi/4\), with \(m\) integer.

We shall now concentrate, in particular, on the stimulated emission of gravitons from an initial thermal bath, under the action of a changing background geometry which describes the transition from an inflationary phase to the subsequent radiation-dominated and matter-dominated eras.

The spectral energy density \(\rho(\omega)\), which is the variable usually adopted to characterize today’s distribution of the produced gravitons [8,15,16], is given by
\[
\rho(\omega) = \omega \frac{d\rho_+}{d\omega} \approx \omega^3 \overline{N}(\omega),
\]
where \(\overline{N}\) is defined in Eq. (8), with the corresponding \(\overline{n}\) of Eq. (9) [we have neglected numerical factors of order unity, and \(\omega\) is the proper frequency, related to the comoving one, \(k\), by \(\omega = k/a(t)\), where \(a\) is the scale factor of

\[1\] Note that, although the correct (momentum-conserving) transformation should involve the two-mode squeezing operator [9], we are considering here the simpler one-mode formalism since it gives completely equivalent results for the quantities discussed in this paper.
the background isotropic metric.

The Bogoliubov coefficients \(c_\pm(\omega) \), connecting the \(|\text{in}\rangle\) and \(|\text{out}\rangle\) graviton modes for the inflation → radiation → matter transition, have been computed by many authors \([8,16,17]\), in the sudden approximation. In such an approximation, one ignores the details of the transition among the three different cosmic phases, and the particle production is neglected for modes which never “hit” the effective potential barrier appearing in the graviton wave equation. As a consequence, the Bogoliubov coefficients are not modified, in this approximation, if an initial phase dominated by a thermal radiation bath is inserted before the de Sitter era, since the radiation-dominated evolution gives no contribution to that potential barrier.

We then insert the known expression of \(c_-(\omega) \) in Eq. (11) and measure \(\rho(\omega) \), as usual, in units of critical energy density \(\rho_\text{c} \), defining \(\Omega(\omega) = \rho(\omega) / \rho_\text{c} \). By exploiting the fact that \(|c_-| \geq 1 \) for all the modes undergoing the parametric amplification, we finally get (we follow in particular the notation of \([17]\))

\[
\Omega(\omega,t_0) \simeq G H_0^2 \Omega_\gamma(t_0) \left(\frac{\omega}{\omega_1} \right)^{2-2\alpha} \text{coth} \left(\frac{\beta \omega}{2} \right),
\]

\(\omega_2 < \omega < \omega_1 \),

\[
\Omega(\omega,t_0) \simeq G H_0^2 \Omega_\gamma(t_0) \left(\frac{\omega}{\omega_1} \right)^{2-2\alpha} \left(\frac{\omega}{\omega_2} \right)^{-2} \text{coth} \left(\frac{\beta \omega}{2} \right),
\]

\(\omega_0 < \omega < \omega_2 \).

Here \(\beta^{-1}(t_0) \) is the proper temperature of the initial thermal state, adiabatically rescaled down to the present observation time \(t_0 \) \((\beta_0 \equiv \text{in terms of the comoving temperature } \beta) \); \(\Omega_\gamma(t_0) \sim 10^{-4} \) is the fraction of the critical energy density present today in the form of radiation; \(\alpha \geq 1 \) is a coefficient parametrizing (in conformal time) the power-law behavior of the scale factor; \(H_1 \equiv H(t_1) \) is the curvature scale at the time \(t_1 \) marking the end of inflation and the beginning of the radiation-dominated era; \(\omega_0 \equiv 10^{-18} \) Hz is the minimum amplified frequency crossing today the Hubble radius \(H_0^{-1} \); \(\omega_2 \equiv 10^\alpha \omega_0 \) is the frequency corresponding to the matter-radiation transition; \(\omega_1 \), finally, is the maximum amplified frequency, related to the inflation scale by \(\omega_1 \sim 10^{11} (H_1 / M_p)^{1/2} \) Hz \((M_p \) is the Planck mass).

Equation (12) provides the present energy distribution of a gravity-wave background of inflationary origin, obtained from a primordial state of thermal equilibrium at a proper temperature \(\beta^{-1} \). In the limit \(\beta \to \infty \), and for \(\alpha = 1 \), we recover the well-known flat de Sitter spectrum obtained from the vacuum, with the usual frequency dependence \(\sim \omega^{-2} \) at low energy, due to the radiation-matter transition \([15-17]\).

The primary effect of the initial finite temperature is to enhance the low-frequency graviton production, with respect to the high-frequency sector of the spectrum. In this respect, the initial thermal vacuum mimics the effect of putting "more power on larger scales" \([18]\), typical of power-law inflation; the difference, however, is that the thermal effects are rapidly damped at high \(\omega \), for realistic values of the rescaled initial temperature \(\beta_0 \). In Fig. 1 the spectrum has been plotted for the de Sitter case \((\alpha = 1) \), in such a way as to represent, for various values of \(\beta_0 \), the maximum allowed fraction of critical energy density compatible with the CMB isotropy.

The relic graviton spectrum is mainly constrained, indeed, by three kinds of direct observations \([15]\): CMB isotropy, pulsar timing data, and critical density. However, as discussed in \([15] \) and \([17]\), the most significant constraint for flat or decreasing spectra, such as those of Eq. (12), turns out to be the isotropy bound imposed at the minimum frequency \(\omega_0 \), where it presently implies \(\Omega(\omega_0,t_0) \lesssim 10^{-10} \) \([19] \) we are making here a conservative use of the Cosmic Background Explorer (COBE) data \([19]\), as an upper limit on the graviton contributions to the quadrupole anisotropy). Such a condition, imposed on Eq. (12), provides a bound on the inflation scale \(H_1 \), which can be conveniently expressed, in terms of the usual spec-

FIG. 1. Maximum allowed spectral energy density [according to Eq. (12)] in a relic graviton background, produced after a phase of de Sitter inflation, from an initial thermal bath at finite temperature \(T = \beta^{-1} \). The rescaled temperature \(\beta_0^{-1} \) is measured here in units of \(\omega_0 = 10^{-18} \) Hz.

FIG. 2. Maximum allowed inflation scale vs the spectral index \(n \), according to Eq. (13), for three different values of the initial temperature \(\beta_0^{-1} \) (in units of \(\omega_0 \)).
tral index \(n = 3 - 2\alpha \), as

\[
\log_{10} \left[\frac{H_1}{M_p} \right] \lesssim \frac{2}{3+n} \left[29n - 39 + \log_{10} \left(\frac{\beta_0 \omega_0}{2} \right) \right].
\]

(13)

In the limit \(\beta_0 \to \infty \) this generalizes, to any value of \(n \), the usual isotropy constraint on the curvature scale of de Sitter \((n = 1) \) inflation [20], namely \(H_1 \lesssim 10^{-5}M_p \) (with an improvement of one order of magnitude with respect to \([15-17,20]\), due to the use of the more constraining COBE data). The new effect, however, is that for finite initial temperature the maximum allowed scale is in general depressed with respect to vacuum production, as illustrated in Fig. 2 (for \(\beta_0 \omega_0 \ll 1 \), in particular, \(H_1 \) scales like \(\beta_0^{2/3+n} \)). The inclusion of the thermal correction is thus expected to modify the existing relations (see, e.g., [21]) between the power index and the scale of inflation, obtained by fitting the observed anisotropy on a 10º angular scale.

In particular, for the inflationary models based on a thermal symmetry-breaking mechanism, the initial temperature \(\beta_0^{-1} \) is not independent of the scale of inflation itself. Suppose, indeed, that the inflationary phase transition occurs at an energy scale \(M \), which is the scale at which the time-independent vacuum energy becomes dominant \([M \text{ is related to the curvature scale } H_1 \text{ by } M/M_p = (H_1/M_p)^{1/2}, \text{ according to the Einstein equations} \]). At earlier times, such that \(\beta_0^{-1}(t) > M \), the symmetry is restored, and the Universe becomes radiation dominated. The temperature of the initial thermal ensemble, rescaled at the beginning \((t = t_i) \) of inflation, must therefore satisfy \(\beta(t_i)M \lesssim 1 \).

This condition, rescaled down adiabatically at the present time \(t_0 \), provides a bound on the spectral parameter \(\beta_0 \), which depends on the duration \(Z \) of the inflationary phase \([Z = a(t_1)/a(t_i), \text{ where } t_1 \text{ marks the end of inflation}]\):

\[
\beta_0 \omega_0 = M \beta_1 \left(\frac{a_0}{a_i} \right) \left(\frac{\omega_0}{M} \right) \lesssim Z \left(\frac{H_0}{M_p} \right)^{1/2}.
\]

(14)

For \(Z \to \infty \) this bound is washed out by the inflationary supercooling of the original thermal ensemble. However, for models whose parameters are adjusted to give just the minimal amount of inflation required to solve the standard problems [22],

\[
Z \approx Z_{\text{min}} = e^{33} \left(\frac{M}{10^{14} \text{ GeV}} \right)^{2/3} \left(\frac{T_{\text{th}}}{10^{10} \text{ GeV}} \right)^{1/3}
\]

(15)

(\(T_{\text{th}} \) is the reheating temperature), the bound (14) can be reexpressed in terms of the reheating efficiency, \(Q = T_{\text{th}}/M \), as

\[
2 \log_{10}(\beta_0 \omega_0) \leq \log_{10} \left(\frac{H_1}{M_p} \right) + \frac{2}{3} \log_{10} Q.
\]

(16)

For each given value of \(n \) and \(Q \) one has then a minimum allowed temperature \(\beta_0^{-1} \) and a maximum allowed scale \(H_1 \), which are fixed by the combination of the constraints (13) and (16), as illustrated in Fig. 3 for three different spectral indices. This effect represents a true "remnant" of the preinflationary Universe, in the sense of [22]. For \(Z > Z_{\text{min}} \), the maximum allowed value of \(H_1 \) scales up like \(Z^{2/3+n} \) and becomes \(Z \) independent for \(\beta_0 \gg 1 \).

In conclusion, we want to stress that the numerical results presented here should be regarded, in many respects, as semiquantitative results, because of the approximations made and of the uncertainty of the experimental data, which has not been completely taken into account in our discussion. Nevertheless, we believe that already at this qualitative level two important indications emerge rather clearly.

The first is that any fit of the CMB anisotropy in terms of the gravity wave background should include a thermal dependence in the spectrum [according to Eq. (12)], in order to take into account the possible finite temperature of the initial state.

The second indication is that, even if a thermal phase transition at the grand unified theory scale is certainly not ruled out as a possible inflationary mechanism, the effects discussed here seem to provide some motivation for investigating the same mechanism also at lower scales, such as the electroweak one [23]. The constraints on the scale imposed by our results seem to challenge, in particular, thermal models of inflation obtained in the context of string theory, where the natural scale is very near the Planck one. No difficulty seems to arise, on the contrary, in the context of a "duality-symmetric" string cosmology [24] where the inflationary phase is the dual counterpart of the present decelerating expansion, and starts naturally from a flat and cold low-energy vacuum.