High Sensitivity Beam Intensity and Profile Monitors for the SPS Extracted Beams

J. Camas, G. Ferioli, R. Jung, J. Mann
European Organization for Nuclear Research (CERN)
CH-1211 Geneva 23, Switzerland

Abstract

Secondary Emission Monitors using caesium iodide coated thin aluminium foils have been installed in the SPS transfer channels to monitor the intensity of the extracted heavy ions beams. Tests have shown an increase by a factor twenty of their sensitivity with respect to bare aluminium foils. Luminescent screens viewed with TV cameras are used to monitor the position and the profiles of the extracted beams. Various luminescent screen materials have been tested. Results on chromium doped alumina, thallium doped caesium iodide and quartz are reported. A dynamic range of 10^5 in beam intensities can be achieved by using these three materials in turn in the usual three screen tanks. Intensifiers used together with CCD cameras and video frame grabbers with incorporated projection calculations are used in conjunction with these screens. Results with heavy ions in the transfer channels and with protons extracted from circulating beams in the SPS are given. Detection sensitivities down to a few tens of protons per video frame have been observed.

I. INTRODUCTION

Oxygen and sulphur ions have been accelerated in the SPS and delivered to the users of the experimental areas in the past, and the instrumentation had been adapted to this low intensity mode [1]. After the approval of the project to accelerate lead ions in the SPS complex from 1994 onwards, the instrumentation for the transfer channels was re-examined. The instruments discussed here are for intensity, position and profile measurements in the transfer lines. The intensities are measured traditionally with secondary emission foils covering the whole aperture (BSI), the position is taken from luminescent screens (BTV) and the profiles acquired with Secondary Emission Grids (BSG). The sensitivity of the BSIs had to be improved substantially. The same was done with a BSG for test purposes, but there was still the limited resolution, the risk of non uniformity from strip to strip and the inherent complexity of the monitor electronics. With the advent of high yield luminescent screens and intensified CCD cameras, it was decided to try to use also the luminescent screens for profile measurements. The output of all these monitors is proportional to the Z^2 of the ions observed.

II. HIGH SENSITIVITY INTENSITY MEASUREMENT

The usual aluminium foils used in Secondary Emission Monitors (SEM) have a yield of 5% at the SPS beam energies. It has been known for some time that this sensitivity could be increased by coating the foils with CsI or KCl. These coatings were thick ones and experienced most of the time some hygroscopic effects and sensitivity degradation with time. As the monitors had to be used over long periods, a thin coating of CsI was tested. A 500 nm thick coating was deposited at CERN on 5 µm aluminium foils with a 100 nm Al evaporated coating. It demonstrated a yield of 100% and a relatively long lifetime. When analysed on the electron microscope, the CsI appears as approximately 0.5 µm droplets covering roughly 40% of the aluminium surface: Fig. 1.

![Fig. 1: Electron microscope photography of a CsI coating on an aluminium foil. The reference bar at the top is 2 µm long.](image)

Five BSI monitors were equipped with these foils for the sulphur run of 1991 and three more monitors were equipped for the 1992 run for monitoring the injection into the SPS and the ejections towards the North and West experimental areas. Together with a new high sensitivity front electronics, the system has a basic noise level of 10² charges with Sulphur, which is the limiting resolution. Studies were made during this period to define the sensitivity, as a function of the various beam parameters, and its variation in time. The gain factor of CsI decreases from a high value of twenty for low peak current beams down to a factor five for high peak intensity beams, the transition taking place around 1 mA peak. The foils which were not continuously submitted to high peak current proton beams of several Ampères, kept their amplification factor over the two years of experience. On the other hand, foils which had been submitted regularly to the traversal of high peak currents had their sensitivity lowered by approximately 20% from one year to the next.
III. BEAM PROFILE MONITORING

It is possible to measure beam profiles with luminescent screens. They have many advantages over SEM-Grids, i.e. high resolution with a minimum of cabling, good dynamic range, and low noise, essentially when CCD detectors can be used. The resolution is given in this case by the size of the picture elements or pixels of the chip. The CCD is a matrix of 604 x 294 pixels, 10 μm in square, made by Philips. For observing the low intensity signals associated with heavy ion operation, a DC intensifier is installed in front of the CCD camera. It has a gain which can be controlled by a low level signal, generated by a DAC under computer control and applied to the high voltage DC/DC converter. It can change the global gain from a low value of 400 up to a gain of 10^4. The Intensifier is coupled to the CCD by two lenses mounted back to back: Fig. 2. The set-up is less compact and efficient in light transmission than a fibre optic coupling, but has the advantage to be far more economical.

The CCD cameras have to be replaced by tube cameras for the high intensity proton runs to avoid radiation damage.

To achieve the best sensitivity of the system, some effort was invested in the study of the luminescent screen material. Up to the heavy ion runs, three types of screen material were used: quartz for very high density beams, Cerium doped Lithium glass and Chromium doped Alumina, the light yield increasing in that order. Thallium doped Caesium iodide crystals have interesting properties. This material has a better light yield than Al_2O_3 (Cr), is a thousand times faster which is interesting for time resolved profiles and emits light at 550 nm, in the sensitivity region of a normal CCD (450 to 1000 nm). The main disadvantage of CsI (TI) is its softness which limits its size to a disk of 80 mm in diameter for a one millimetre thickness. The spectral emission curves for the four screens are given in Fig. 3, normalised for a 10^{12} proton beam.

![Fig. 2: Intensifier (at left) coupled by two back to back lenses to the CCD camera.](image)

In order to use the screen information to measure beam profiles, the video signal in CCIR standard has to be digitised. As in beam monitoring the beam projections along the horizontal and vertical axis are to be used to calculate the beam emittances, a function which is not yet implemented in the commercial devices, it was decided to build a VME frame grabber module, which next to the digitisation calculates on board the two projections during two successive TV frames. The module has a windowing function, enabling to digitise and memorise a square area within the TV picture. The data reduction achieved permits to memorise several pictures and profiles until the image and profile memories are filled up, e.g. from one image of 256x256 pixels to six images of 100x100 pixels and up to 160 profiles over 100x100 pixels. This information is available for later retrieval. The digitisation is done by an 8 bit flash ADC converting at a rate of 7 MHz. A companion module allows to memorise the full TV image and to display it on the TV monitor until a reset pulse is received. This feature is interesting in the long cycles in use at the SPS. Four Intensified CCD cameras were installed for the 1991 heavy ion run. As they gave satisfactory results, five more were installed for the 1992 run.

![Fig. 3: Spectral emission curves of four screen materials](image)

The lithium glass which is well adapted to TV tubes cannot be used with CCDs as it emits mainly outside the spectral sensitivity of these detectors. The properties of the three screens which are used with CCDs are collected in Table 1, where the sensitivities are given for protons beams of 2 mm diameter FWHM with a screen to CCD demagnification of 10.
Table 1: Screen material characteristics

<table>
<thead>
<tr>
<th>Material</th>
<th>Activator</th>
<th>λ_0 [nm]</th>
<th>decay</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>none</td>
<td>large</td>
<td>ns</td>
<td>1×10^6</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>Cr</td>
<td>700</td>
<td>ms</td>
<td>2×10^6</td>
</tr>
<tr>
<td>CsI</td>
<td>Tl</td>
<td>550</td>
<td>μs</td>
<td>7×10^4</td>
</tr>
</tbody>
</table>

Two Csesium iodide screens were installed for test purposes in 1992. The results were promising and it was decided to install the previous three screen types in a maximum of monitors. The monitors have four positions, three for screens and an empty one for the free passage of beam: Fig. 4.

Fig. 4: Luminescent screen monitor with four positions, three for screens and one for the free passage of beam.

During the 1992 Sulphur run profiles of beams with 10^5 ions per profile were taken. A typical example is given in Fig. 5.

Fig. 5: Horizontal and Vertical profiles of 1.10^5 extracted Sulphur ions (in 20 ms) taken after splitter #1.

In the SPS ring, good quality profiles were also taken with the wire scanners, the signal being acquired with scintillators downstream of the wire.

IV. VERY HIGH SENSITIVITY PROFILE MONITORING.

Encouraged by the good results with heavy ions, a luminescent screen monitor was installed for the crystal extraction experiment in the SPS [2]. The monitor is comprised of a tank identical to that of Fig. 4 located on the proton extraction path, under air, equipped with CsI(Tl) and Al$_2$O$_3$(Cr) screens and with the standard Intensified CCD camera of Fig. 2. It permits a direct observation of the extracted beam on a TV monitor over a wide dynamic range and the digitisation of the acquired images. A lego plot of such an acquisition is given in Fig. 6.

Fig. 6: Lego plot of protons extracted from the SPS by a bent crystal.

By making comparison with scintillator counters, it appears that sensitivities down to one proton per pixel can be obtained with the CsI(Tl) screen and Intensified CCD combination.

V. ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the contribution of J. Provost to the design of the CCD acquisition system and of J. Koopman to various phases of the project.

REFERENCES

[2] S. Weisz et al.: Proton extraction from the CERN-SPS by a bent crystal, these Proceedings
High Resolution Measurements of Lepton Beam Transverse Distributions with the LEP Wire Scanners.

J. Camas, G. Crockford, G. Feroli, C. Fischer, J.J. Gras, R. Jung, J. Koopman, J. Mann
CERN CH-1211 Geneva 23, Switzerland

Abstract

A large number of improvements were carried-out on the LEP Wire-Scanners in preparation for the 1992 running period. They include modifications of the monitors mechanics to decrease the vibrations and the heating of the wire by the beam generated electromagnetic fields, improvements of the detector chain and a software re-organization at the various levels for better noise rejection, improved user interface and "off-line" data analysis capabilities. It is now also possible to acquire the profiles of each of the sixteen circulating bunches, electrons and positrons, during the same sweep. As a consequence of these actions the quality of the collected data is much improved. The results are presented and discussed.

I. INTRODUCTION

Four wire-scanners are installed in LEP straight section 1 [1] to provide transverse distributions in both horizontal and vertical planes. Figure 1 gives the lay-out of the monitors together with their associated detectors.

Fig 1: The LEP Wire-Scanners arrangement and Optics Parameters

One horizontal and one vertical monitor are symmetrically installed and are each associated with two detectors:

- a scintillator located behind a thin window, 75 meters downstream of the wire, receives the Bremsstrahlung resulting from the beam-wire interaction emitted at small angles (S.A.). It acquires the scan of the associated beam (i.e. e- profile from the monitors located on the e- injection side).
- a scintillator installed against the vacuum chamber near to the horizontal monitor collects the emission at large angles (L.A.) during the passage of the counter-rotating beam. The signal received by the S.A. scintillators [1] is attenuated by 4 orders of magnitude before transmission to a photo-multiplier which has a gain 100 times smaller than that of the L.A. detectors.

II. THERMAL AND MECHANICAL OBSERVATIONS

Fourteen wires have been destroyed from 1989 to 1992, most of them in 1989 and 1990. With the exception of two 50 μm Beryllium wires, they were 36 μm thick carbon wires. The Be wires showed clearly [1] that the wire had melted over its full length, excluding beam energy deposition as the only destruction mechanism. This is confirmed by previous measurements at the SPS where the wires survived higher intensities at comparable speeds. Moreover, permanent wire average temperature monitoring has shown several interesting features (Figure 2):

Fig 2: Long term recording of wire resistance (temperature) and beam current with wires retracted in the parking position

The temperature of the wires increase with the stored current and the vertical wires temperature increases less than that of the horizontal ones. This indicates that the heating is of electromagnetic origin, due to the wake fields generated in the wire scanner tanks. The vertical wires heat up less because they are retracted in a rectangular tube functioning as a waveguide below cut-off. The second evidence in favour of electromagnetic heating is the fact that the wire temperature changes when beam manipulations modifying the bunch length take place at constant circulating beam intensity. Finally wire temperature recordings during scans provide other evidence of heating by electromagnetic coupling (Figure 3).

Fig 3: Wire resistance change during scans of 300 μA on 300 μA circulating beams. Calculated temperatures are indicated.

As the wire approaches the beam, a temperature increase starts at approximately 40 mm from the beam centre, mainly due to coupling to the electric field. A steady state temperature is reached again when the wire is far from the beam. This results mainly from the magnetic field created by the beam passing in the loop formed by the wire and the supporting fork. The temperature increase of the