CORRECTION DES INSTABILITÉS TRANSVERSALES DES FAISCEAUX DE PROTONS DE HAUTE DENSITÉ, DANS L'ACCÉLÉRATEUR PS

J. L. Gonzalez

Résumé

Dans l'accélérateur PS, lorsque la densité des faisceaux de protons dépasse le seuil de 5.10^{12} particules par paquet, la présence de champs de sillage induits par le faisceau sur la paroi résistive de la chambre à vide donne lieu à des instabilités transversales de paquets couplés, dites de type multi-tour, qui apparaissent dans le plan horizontal.

Ce rapport introduit d'abord quelques principes théoriques qui permettent d'expliquer l'origine des oscillations, stables ou instables, des faisceaux accélérés. L'analyse spectrale des faisceaux groupés en paquets justifie ensuite l'utilisation de filtres coupe-bande, destinés à rejeter les harmoniques de la fréquence de révolution lors du processus de correction des instabilités.

Cependant, puisque dans le PS la fréquence de révolution varie pendant le cycle d'accélération, cette correction nécessite le réglage automatique du calage des filtres ainsi que du retard total du régulateur. Une façon de résoudre ces deux problèmes consiste à effectuer un traitement numérique des signaux, en les échantillonnant à la fréquence d'accélération.

La dernière partie de cet exposé décrit les différents éléments qui constituent le régulateur, examine l'influence de l'ensemble sur la stabilité des faisceaux et présente les résultats obtenus. Les possibilités offertes pour réaliser d'autres applications sont également évoquées.

En conclusion, après une brève inspection du système actuel, nous suggérons de modifier le déflecteur, afin de l'adapter à l'impédance de sortie des amplificateurs, et nous proposons des solutions pour accroître la stabilité de la boucle de correction.

CERN, Geneva, Switzerland
April, 1993

1Ce travail a servi de support à la rédaction et à la soutenance d'un mémoire, en vue de l'obtention du diplôme d'ingénieur en automatisme du Conservatoire National des Arts et Métiers (C.N.A.M.).
Table des matières

Principaux termes et symboles utilisés .. v
1 Introduction ... 1
2 L'accélérateur de particules ... 5
 2.1 Relations fondamentales ... 6
 2.1.1 Caractéristiques de la particule chargée ... 6
 2.1.2 Paramètres de l'accélérateur .. 6
 2.2 Action du champ électrique ... 8
 2.2.1 Les oscillations synchrotroniques .. 8
 2.3 Action du champ magnétique ... 9
 2.3.1 Les oscillations bétatroniques ... 10
 2.3.2 Déflexion et matrice de transfert du mouvement de la particule 12
 2.3.3 L'oscillation bétatronique dans le plan de phase 13
 2.3.4 L'amortissement des oscillations cohérentes ... 14
 2.4 Observation du faisceau .. 16
 2.4.1 Principe du pick-up électrostatique .. 16
 2.4.2 Le pick-up de position .. 17
 2.4.3 Fonction de transfert du pick-up ... 19
 2.4.4 Fonction de transfert échantillonnée ... 21
 2.5 Analyse spectrale du faisceau .. 25
3 Les instabilités transversales ... 28
 3.1 Effets collectifs ... 28
 3.2 Impédance transversale et instabilités ... 29
 3.3 Caractéristiques des instabilités de paroi résistive du PS 30
 3.4 Mesure des instabilités des faisceaux de protons, dans le PS 32
 3.5 Contre-réaction transversale .. 37
4 Le régulateur de correction des instabilités ... 38
 4.1 Schéma de principe .. 38
 4.2 La normalisation des signaux du pick-up ... 39
 4.3 Les convertisseurs ... 40
 4.3.1 Convertisseur analogique numérique (ADC) ... 40
 4.3.2 Convertisseur numérique analogique (DAC) ... 40
 4.4 Les préamplificateurs ... 41
 4.5 Les amplificateurs de puissance ... 41
 4.6 Le déflecteur à ligne de transmission .. 42
 4.6.1 Caractéristiques du déflecteur ... 43
 4.6.2 Réponse de l'amplificateur chargé par le déflecteur 50
5 Le traitement numérique des signaux .. 51
 5.1 Le filtre numérique en peigne .. 52
 5.2 Réalisation du filtre coupe-bande numérique ... 53
 5.3 Réglage de phase de la boucle de correction .. 64
6 Stabilité du système ... 69
 6.1 Système idéal sans retard .. 70
 6.1.1 Installation actuelle ... 72
 6.1.2 Autres configurations .. 72
 a) Pick-up installé dans la section 98 ... 72
 b) Pick-up installé dans la section 97 ... 73
c) Pick-up installé dans la section 96 .. 73
6.2 Système réel avec gain et retard ... 74
 6.2.1 Gain de la boucle avec le filtre numérique 74
 6.2.2 Influence du retard de la boucle 77
 6.2.3 Remarque à propos de l'étude de la stabilité 80
7 Mise en œuvre et résultats .. 81
 7.1 Installation .. 81
 7.2 Réglage du retard de la boucle 83
 7.3 Correction des faisceaux de haute densité 84
 7.4 Analyse spectrale de l'action du régulateur 86
8 Autres objectifs .. 88
 8.1 Le contrôle adaptatif .. 88
 8.2 Excitation du faisceau .. 89
 8.2.1 Régulateur et excitateur 89
 8.2.2 Excitation en boucle ouverte 90
9 Conclusion ... 91
10 Remerciements .. 93
11 Références bibliographiques .. 94
12 Annexes ... 97
 12.1 Les unités de la physique des particules 97
 12.2 L'amplificateur de puissance 98
 12.3 Calcul des lignes microstrip du déflecteur 99
 12.4 Filtrage numérique .. 102
 12.4.1 Filtres non récursifs 103
 12.4.2 Filtres récursifs ... 104
 12.4.3 Filtres en peigne ... 107
13 Schémas ... 109
Principaux termes et symboles utilisés

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>convertisseur analogique numérique (Analog to Digital Converter)</td>
</tr>
<tr>
<td>\vec{B}, B</td>
<td>vecteur et module de l'induction magnétique [T]</td>
</tr>
<tr>
<td>Bucket</td>
<td>terme anglais utilisé pour désigner l'espace de capture des particules, dans une même paquet, par la tension d'accélération</td>
</tr>
<tr>
<td>c</td>
<td>vitesse de la lumière [299792458 m/s]</td>
</tr>
<tr>
<td>C_0</td>
<td>circonférence de l'anneau</td>
</tr>
<tr>
<td>Cavité</td>
<td>générateur de la tension haute fréquence destinée à accélérer les particules</td>
</tr>
<tr>
<td>CERN</td>
<td>Organisation Européenne pour la Recherche Nucléaire</td>
</tr>
<tr>
<td>d</td>
<td>déviation de la particule [m]</td>
</tr>
<tr>
<td>DAC</td>
<td>convertisseur numérique analogique (Digital to Analog Converter)</td>
</tr>
<tr>
<td>Dipôle</td>
<td>élément magnétique de courbure de la trajectoire du faisceau</td>
</tr>
<tr>
<td>Discret</td>
<td>terme qui exprime l'échantillonnage</td>
</tr>
<tr>
<td>e</td>
<td>charge élémentaire [1,6021.10^{-19} C]</td>
</tr>
<tr>
<td>e^+, e^-</td>
<td>symboles des électrons et des positons</td>
</tr>
<tr>
<td>E, E_c, E_0</td>
<td>énergie totale, énergie cinétique et énergie au repos [J, eV]</td>
</tr>
<tr>
<td>f_B</td>
<td>fréquence des oscillations bétagénériques(^2) des particules [Hz]</td>
</tr>
<tr>
<td>f_{rev}</td>
<td>fréquence de révolution des particules [Hz]</td>
</tr>
<tr>
<td>f_{RF}</td>
<td>fréquence du signal H.F. d'accélération des particules [Hz]</td>
</tr>
<tr>
<td>F_E, \vec{F}_B</td>
<td>force électrostatique et vecteur force magnétique de Lorentz [N]</td>
</tr>
<tr>
<td>Gap</td>
<td>fente d'une cavité accélératrice, sur laquelle se développe la tension d'accélération, dans la chambre à vide</td>
</tr>
<tr>
<td>h</td>
<td>nombre harmonique caractérisant la fréquence d'accélération par rapport à la fréquence de révolution</td>
</tr>
<tr>
<td>h_m</td>
<td>spectre en fréquence d'un paquet de particules</td>
</tr>
<tr>
<td>H</td>
<td>champ magnétique [A/m]</td>
</tr>
<tr>
<td>$i, l, i(t)$</td>
<td>courant électrique [A]</td>
</tr>
<tr>
<td>j</td>
<td>complexe : $\sqrt{-1}$</td>
</tr>
<tr>
<td>Kicker</td>
<td>déflecteur électrostatique, magnétique ou électromagnétique</td>
</tr>
<tr>
<td>l</td>
<td>longueur de l'élément de déflexion [m]</td>
</tr>
<tr>
<td>L</td>
<td>longueur d'un paquet de particules</td>
</tr>
<tr>
<td>LEP</td>
<td>(Large Electron-Positron Collider) collisionneur à électrons et positons, dont l'énergie est comprise entre 55 et 90 GeV</td>
</tr>
<tr>
<td>m, m_0</td>
<td>masse de la particule, en mouvement et au repos [kg]</td>
</tr>
<tr>
<td>M</td>
<td>nombre de paquets de particules accélérés dans un même cycle</td>
</tr>
<tr>
<td>n</td>
<td>selon le contexte, ce symbole caractérise les modes d'oscillation instables du faisceau ou désigne l'indice des échantillons dans les systèmes discrets</td>
</tr>
<tr>
<td>N</td>
<td>nombre de particules accélérées dans un paquet</td>
</tr>
<tr>
<td>Normalisation</td>
<td>calcul de la position réelle du faisceau à partir des signaux de position et d'intensité fournis par le pick-up</td>
</tr>
<tr>
<td>Octupôle</td>
<td>élément magnétique d'un accélérateur</td>
</tr>
</tbody>
</table>

\(^2\)Oscillations bétagénériques : mouvement pseudo-sinusoidal effectué par les particules autour de l'orbite idéale, dans un accélérateur circulaire.
Orbite circonférence moyenne, décrite par les particules pendant leurs révolutions successives dans l'anneau (souvent appelée orbite fermée)

\(\vec{p}, p \) vecteur et module de la quantité de mouvement de la particule [kg.m/s]

Pick-up détecteur utilisé pour mesurer la position ou l'intensité du faisceau

PS \((Proton-Synchrotron)\) Synchrotron à protons. Accélérateur de 26 GeV

\(q \) selon le contexte, charge exprimée en coulomb ou partie décimale du nombre d'ondes bétastroniques \(Q \)

\(Q \) nombre d'ondes bétastroniques : quantité d'oscillations effectuées par les particules pendant un tour de l'anneau

\(Q_{opt} \) nombre d'ondes bétastroniques optimum, pour une distance donnée entre le pick-up et le défecteur

\(Q_s \) nombre d'ondes synchrotroniques : oscillations longitudinales en un tour

Quadrupôle élément magnétique de focalisation

\(R \) rayon moyen de l'accélérateur [m]

\(s \) selon le contexte, coordonnée longitudinale du mouvement du faisceau ou variable de Laplace

Sextupôle élément magnétique d'un accélérateur

SPS \((Super Proton-Synchrotron)\) super synchrotron à protons de 450 GeV

\(t \) temps [s]

Trajectoire terme utilisé pour exprimer le mouvement des particules en général, ou plus particulièrement pendant un tour de l'accélérateur

\(u(t), U \) tension électrique [V]

\(\vec{v}, v \) vecteur et module de la vitesse de la particule [m/s]

\(V_{RF} \) tension d'accélération fournie par les cavités

\(Z_1, Z_\parallel \) impédances transversale et longitudinale de la chambre à vide

\(\alpha \) angle de courbure magnétique [rad]

\(\alpha_p \) facteur de compactage de la quantité de mouvement (valeur caractéristique de chaque accélérateur)

\(\beta \) rapport de la vitesse de la particule à la vitesse de la lumière

\(\beta(s), \beta_n \) fonction amplitude bétastronique [m]

\(\delta \) profondeur de l'effet pelliculaire du courant image du faisceau qui circule sur la paroi de la chambre à vide

\(\delta(t) \) impulsion de Dirac

\(\Delta x' \) angle de déflexion infligé au faisceau par le défecteur

\(\Delta \Phi_\beta \) erreur de phase bétastronique

\(\Delta \omega_\beta \) variation complexe de la pulsation bétastronique

\(\gamma, \gamma_t \) énergies normalisées : \(\gamma \) est le rapport de l'énergie totale (ou de la masse) de la particule en mouvement à son énergie (ou sa masse) au repos; \(\gamma_t \) correspond à l'énergie de transition\(^3\)

\(\theta \) selon le contexte, angle de déflexion ou écart angulaire entre pick-up et défecteur [rad]

\(\mu, \mu_r, \mu_0 \) perméabilités magnétiques : absolue, relative, du vide \((4\pi \cdot 10^{-7})\) [H/m]

\(^3\)Energie de transition : niveau d'énergie \(E_t \) pour lequel les particules d'un paquet ont le même temps de révolution \((df_{rev}/dp = 0)\). En dessous de \(E_t \), l'élévation d'énergie de la particule se traduit surtout par l'augmentation de sa vitesse. Au-dessus, l'accroissement de sa masse devient prépondérant.
ρ selon le contexte : rayon de courbure de la trajectoire des particules [m] ou résistivité [Ω.m]

τ constantes de temps ou retard total du correcteur [s]

ω pulsation ou fréquence angulaire (par abus de langage on dit également fréquence) [rad/s]

ωₚ, ωₛ, ωₓ pulsations bétatronique, synchrotronique et chromatique [rad/s]

ωₑₑ pulsation de révolution [rad/s]

ξ chromaticité de l'accélérateur. Elle correspond à la variation relative du nombre d'ondes bétatroniques \(Q \), provoquée par la variation relative de la quantité de mouvement \(p \) du faisceau : \(\xi = \frac{\Delta Q/Q}{\Delta p/p} \)
1 Introduction

Le CERN\(^1\), laboratoire européen de *physique des particules* (dite aussi des *hautes énergies*), permet aux physiciens venus du monde entier d’explorer la structure intime de la matière. Pour cela ils disposent d’une gamme d’accélérateurs où les particules interagissent à des densités et des niveaux d’énergie très élevés, de plus en plus élevés lorsqu’il s’agit d’observer les structures les plus fines.

L’unité d’énergie de la physique des particules est l’électronvolt (eV). La figure 1 montre que quelques eV suffisent à arracher les électrons aux atomes, dans les réactions chimiques, et que des énergies un million de fois plus élevées (MeV) interviennent dans les phénomènes relatifs à l’atome, tels que la fission nucléaire. Cependant, quand il s’agit de mettre en évidence les quarks, *entités élémentaires* qui constituent les protons et les neutrons, il faut disposer d’énergies de l’ordre de la centaine de GeV (Annexe 12.1).

Actuellement, les principaux accélérateurs du CERN sont :

- le PS\(^2\), synchrotron à protons de 26 GeV, auquel sont associés des pré-injecteurs et des anneaux de stockage,
- le SPS\(^3\), super synchrotron à protons de 450 GeV et
- le LEP\(^4\), collisionneur à électrons et positons, prévu pour des énergies de 45 à 90 GeV.

Le PS est exploité principalement en tant que pré-accelérateur de protons, d’ions lourds et de leptons (électrons et positons) destinés au SPS, toutefois, il permet aussi de décelétrer des

\(^1\)CERN : abréviation de l’ex-Conseil européen pour la recherche nucléaire.

\(^2\)PS (*Proton-Synchrotron*) : Accélérateur de 200 mètres de diamètre (100 aimants).

\(^3\)SPS (*Super Proton-Synchrotron*) : Accélérateur de 2,2 km de diamètre (1000 aimants).

\(^4\)LEP (*Large Electron-Positron Collider*) : Accélérateur de 27 km de circonférence (4000 aimants environ).
faisceaux d’antiprotons. Les protons et les ions, fournis par deux injecteurs linéaires, sont d’abord accélérés par un élançeur de 50 mètres de diamètre (Booster), jusqu’à une énergie cinétique de 1 GeV. Les leptons, produits dans LIL et accumulés dans EPA à 0,6 GeV, sont portés par le PS à 3,5 GeV, puis à 22 GeV par le SPS, avant d’être injectés dans le LEP.

Les particules accélérées dans le PS sont concentrées dans des paquets filiformes qui ont une longueur de 15 mètres environ et un diamètre de 1 à 2 centimètres. La gamme d’intensité de ces faisceaux varie entre quelques 10^8 ions par paquet et 2.10^{13} protons distribués dans 20 paquets.

Pour les faisceaux les plus denses, un soin exceptionnel doit être apporté aux champs électromagnétiques qui guident, focalisent et accélèrent les particules, afin de réduire les pertes dans l’accélérateur et préserver les qualités exigées du faisceau. Néanmoins, à cause de cette forte densité des paquets, des effets collectifs, tels que la radiation électromagnétique associée au mouvement relativiste des particules, donnent naissance à des instabilités destructrices. Ce phénomène peut s’expliquer de la manière suivante : les faisceaux qui circulent dans la chambre à vide métallique induisent des charges, et par conséquent des courants images, sur la paroi interne de celle-ci. Ces courants génèrent, à leur tour, des champs électromagnétiques suffisants pour que la trajectoire des particules s’en trouve modifiée. Dans le cas de faisceaux relativistes, ces champs se propagent dans le sillage des particules qui les créent, d’où le nom qui leur est communément attribué de champs de sillage.

Au PS, deux sortes d’effets collectifs ont été observés sur les faisceaux de protons [1] :

- les instabilités de paquet unique (head-tail instabilities) qui sont dues aux champs de sillage à décroissance rapide. Leur correction est assurée en agissant sur la chromaticité de l’accélérateur et elles ne seront pas traitées dans cet exposé.

- les instabilités de paquets couplés, dites instabilités transversales (resistive-wall instabilities), qui sont provoquées par les champs de sillage à décroissance lente. Celles-ci se manifestent par des oscillations bêtatroniques et sont à l’origine de pertes importantes de particules, pendant l’accélération des faisceaux denses. Ce sont ces instabilités que nous désirons corriger.

Jusqu’à présent, les instabilités transversales n’ont été observées que dans le plan horizontal. Dans le plan vertical, on suppose que la charge d’espace, qui est beaucoup plus importante, associée à des instabilités autres que dipolaires, conduit à un amortissement plus efficace de ces instabilités (phénomène de Landau damping).

5LIL (Linear Injector for LEP): Injecteur linéaire de 0,6 GeV et de 100 mètres de long.
6EPA (Electron-Positron Accumulator): Accumulateur d’électrons et de positons.
7Chromaticité: Variation relative du nombre d’ondes bêtatroniques Q, provoquée par la variation relative de la quantité de mouvement p du faisceau:

$$\xi = \frac{[\Delta Q/Q]}{[\Delta p/p]}$$
La fréquence $f_{b,n}$ des instabilités transversales est fonction du nombre d'ondes bétatroniques Q et de la fréquence de révolution f_{rev} des particules

$$f_{b,n} = (n - Q) f_{rev}.$$

La fréquence de révolution s'exprimant aussi à l'aide de la fréquence d'accélération f_{RF} :

$$\begin{cases}
 n = 7, 8, 9, 10, \ldots \quad 6,1 \leq Q \leq 6,45 \\
 8 \text{ MHz} \leq f_{RF} \leq 10 \text{ MHz} \quad f_{rev} = \frac{f_{RF}}{20}
\end{cases}$$

Actuellement, seule la correction des trois premiers modes ($n = 7, 8$ et 9) est jugée nécessaire, l'amplitude des autres étant estimée insuffisante pour provoquer des effets mesurables.

Afin de faciliter la compréhension de l'étude du régulateur destiné à corriger ces instabilités transversales, nous présentons d'abord brièvement l'accélérateur PS, puis nous introduisons un minimum de théorie pour expliquer le mouvement bétatronique ainsi que les causes des oscillations instables des faisceaux accélérés.

La mesure de ces phénomènes étant essentielle dans le processus de correction, nous descrivons ensuite le capteur électrostatique de position (couramment appelé pick-up) qui détecte les oscillations du centre de masse du paquet de particules. Ce signal, fourni aux amplificateurs de puissance après un traitement adéquat, est finalement appliqué au faisceau à l'aide d'un déflecteur électromagnétique.

L'analyse spectrale du faisceau permet en outre, non seulement de mettre en évidence l'existence des instabilités, mais aussi de montrer que l'amplitude des harmoniques de la fréquence de révolution f_{rev} des paquets de particules a pour effet de saturer inutilement les amplificateurs.

Comme tout régulateur, ce système de correction comporte un détecteur, le capteur de position, un amplificateur du signal d'erreur, un réglage de phase, ici un retard total réglable, et un actionneur, le déflecteur électromagnétique. Toutefois, pour ne pas surdimensionner la puissance des amplificateurs, il est nécessaire de rejeter les fréquences f_{rev} qui ne contiennent aucune information utile. C'est pourquoi, le correcteur comporte aussi un filtrage coupe-bande.

À la différence du régulateur classique, la difficulté de réalisation de celui-ci provient du fait que la fréquence d'accélération f_{RF} et le nombre d'ondes bétatroniques Q varient pendant le cycle d'accélération. Dans ces conditions, les filtres coupe-bande et le retard total de la boucle de correction doivent automatiquement s'adapter pour pouvoir rejeter les harmoniques de la fréquence de révolution et corriger les oscillations instables. Pour accomplir cette tâche nous avons recours au traitement numérique des signaux, en utilisant la fréquence d'accélération comme horloge d'échantillonnage, ce qui permet d'effectuer les calculs de la correction en temps réel. Signalons à ce propos que, pendant 2 microsecondes environ, il faut traiter les données correspondant aux oscillations des 20 paquets de particules qui peuvent circuler dans l'anneau de l'accélérateur.

Un chapitre entier est consacré à l'étude du filtre et du retard numériques, suivi ensuite de l'analyse des conditions de stabilité de la boucle de contre-réaction (communément appelée transverse feedback, dans le jargon des accélérateurs). Finalement, pour compléter cet exposé, nous présentons les résultats obtenus.
Les futures applications envisagées pour cet ensemble, non plus en tant que correcteur mais comme élément d'excitation pour mesurer certains paramètres de la machine ou du faisceau, sont mentionnées à la fin du rapport. Puis, en guise de conclusion, nous suggérons une modification du déflecteur afin de réaliser une meilleure adaptation de l'impédance de sortie des amplificateurs, ainsi que le déplacement du capteur actuel ou l'utilisation combinée de deux capteurs pour accroître la stabilité lorsque Q est proche de 5,1.

Pour clore cette introduction nous voulons préciser que, bien que le sujet de ce mémoire ne concerne que la correction des instabilités transversales des faisceaux de protons dans le plan horizontal, le système a été conçu en vue de corriger également leurs instabilités verticales éventuelles. Il est d'ailleurs utilisé actuellement, dans le plan vertical, pour amortir les oscillations des électrons, provoquées par les ions qui demeurent dans la chambre à vide et qui sont piégés dans le paquet pendant l'accélération [2]. Cependant, comme la fréquence d'accélération des électrons est constante ($f_{RF} = 114,51$ MHz et $f_{rev} = f_{RF} / 240 = 477,13$ kHz) et que le nombre d'ondes bétastroniques Q_v dans le plan vertical est de 6,31 environ, puisque le seul mode observé est $n = 7$, le traitement est relativement simple. Il consiste, en effet, en un filtrage purement analogique et un réglage de phase fixe.
2 L’accélérateur de particules

Le PS est un accélérateur circulaire (fig. 2.1). Les faisceaux, injectés à l’aide de déflecteurs spéciaux nommés kickers\(^1\) d’injection, sont accélérés par un ensemble de cavités accélératrices réparties sur le pourtour de l’anneau avant d’être éjectés vers les lignes de transfert grâce à des septa\(^2\). La chambre à vide, dans laquelle circulent les particules, est un tube en acier inoxydable de section elliptique, où le vide est entretenu par des pompes ioniques qui maintiennent en permanence une pression inférieure à \(10^{-8}\) Pa.

![Fig. 2.1 : L'anneau PS](image)

Le maintien du faisceau sur l’orbite de 200 mètres de diamètre nécessite l’utilisation d’un électroaimant de structure annulaire constitué de 100 unités magnétiques, réalisant chacune les fonctions d’aimant de courbure et de lentille de focalisation, car elles sont formées de deux demi-sector, l’un focalisant et l’autre défocalisant, assemblés de manière rigide.

Des sections droites, dépourvues de champ magnétique, sont intercalées entre ces unités afin de permettre l’installation d’éléments d’observation ou de correction du faisceau.

Quant aux effets des variations de champ entre aimants, ainsi que quelques autres types d’erreurs, ils sont supprimés en utilisant soit des aimants auxiliaires, montés dans les sections droites (dipôles, quadrupôles, sextupôles et octupôles), soit des enroulements supplémentaires placés sur les pôles des aimants ou autour des culasses.

La durée du cycle d’accélération du PS varie entre 1,2 et 2,4 secondes et la vitesse des particules atteint pratiquement celle de la lumière.

\(^1\)Kicker : déflecteur électromagnétique ou électrostatique.

\(^2\)Septum (pl. Septa) : terme latin qui signifie diaphragme ou lame mince. Il désigne ici un électroaimant qui comporte deux régions de champs différents, séparées par un conducteur fin. Le septum est utilisé pour l’éjection d’une partie du faisceau, celle qui passe dans le champ d’extraction, sans altérer le faisceau circulant dans l’autre partie.
2.1 Relations fondamentales

2.1.1 Caractéristiques de la particule chargée

En statique, si \(m_0 \) représente sa masse au repos et \(c \) la vitesse de la lumière, la particule est définie par :

- \(E_0 = m_0 c^2 \) : l'énergie au repos, en eV
- \(q \) : la charge électrique, en Coulomb

En cinétique, elle est caractérisée par :

- \(v \) : la vitesse, en m/s
- \(\beta = v/c \) : la vitesse normalisée
- \(E = E_c + E_0 = m c^2 = \gamma E_0 \) : l'énergie totale, en eV. \(E_c \) représente l'énergie cinétique et \(m \) la masse de la particule : \(m = m_0 / \sqrt{1 - \beta^2} \)
- \(\gamma = E/E_0 = 1/\sqrt{1 - \beta^2} \) : l'énergie normalisée. Pour la particule au repos : \(E = E_0 \) et \(\gamma = 1 \)
- \(p = mv = \beta \gamma E_0/c \) : la quantité de mouvement, en eV/c. Ce paramètre peut être exprimé en fonction de \(E \) et \(E_0 \) avec la relation \(E^2 = E_0^2 + (pc)^2 \)

2.1.2 Paramètres de l'accélérateur

Les paramètres qui caractérisent le synchrotron sont [3] :

- \(R \) : le rayon moyen de l'anneau, en mètres
- \(\rho \) : le rayon de courbure de la trajectoire, en mètres
- \(B \) : l'induction magnétique, en Tesla
- \(\xi = (\Delta Q/Q)/(\Delta p/p) \) : la chromaticité de l'accélérateur
- \(\gamma_t \) : l'énergie de transition normalisée, correspondant au niveau d'énergie \(E_t \) pour lequel les particules d'un paquet ont le même temps de révolution \((df_{rot}/dp = 0) \)
- \(\alpha_p = 1/\gamma_t^2 \) : le facteur de compactage de la quantité de mouvement
- \(\eta = \gamma_t^{-2} - \gamma^{-2} \) : le facteur de glissement de fréquence
La pulsation et la fréquence de révolution de la particule sont obtenues avec

$$
\omega_{\text{rev}} = \frac{v}{R} = \frac{p c}{m} = \frac{e B}{m} \Rightarrow f_{\text{rev}} = \frac{\omega_{\text{rev}}}{2\pi}
$$

Le tableau 2.1 résume les principaux paramètres du PS ainsi que les caractéristiques de quatre faisceaux de particules qui y sont accélérés. Les indices \(H \) et \(V \) désignent respectivement le plan horizontal et vertical du mouvement des particules.

Tableau 2.1 : Paramètres du PS et de quelques types de faisceaux.

<table>
<thead>
<tr>
<th>Paramètres du PS</th>
<th>(R)</th>
<th>(\rho)</th>
<th>(\gamma)</th>
<th>(\alpha_p)</th>
<th>(Q_{H\text{nom}})</th>
<th>(Q_{V\text{nom}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayon moyen</td>
<td>100 m</td>
<td>70,079 m</td>
<td>6.13</td>
<td>2.66(\times 10^{-2})</td>
<td>6.19</td>
<td>6.30</td>
</tr>
<tr>
<td>Rayon de courbure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie de transition normalisée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facteur de compactage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particules accélérées</th>
<th>hadrons (protons, antiprotons)</th>
<th>leptons (électrons, positons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse au repos (m_0)</td>
<td>1,67256.10^{27} kg</td>
<td>9,11.10^{31} J</td>
</tr>
<tr>
<td>Energie au repos (E_0)</td>
<td>1,50322.10^{10} GeV</td>
<td>8,1868.10^{14} GeV</td>
</tr>
<tr>
<td>((1 \text{ eV} = 1,6021.10^{-19} \text{ J}))</td>
<td>0,93828</td>
<td>5,11003.10^{4} GeV</td>
</tr>
<tr>
<td>Quantité de mouvement (p)</td>
<td>1.968 GeV/c</td>
<td></td>
</tr>
<tr>
<td>Energie cinétique (E_c)</td>
<td>1.25 GeV</td>
<td></td>
</tr>
<tr>
<td>Energie totale (E)</td>
<td>1.938 GeV</td>
<td></td>
</tr>
<tr>
<td>Vitesse normalisée (\beta)</td>
<td>0.875 GeV</td>
<td></td>
</tr>
<tr>
<td>Energie normalisée (\gamma)</td>
<td>2.06 GeV</td>
<td></td>
</tr>
<tr>
<td>Facteur de glissement de fréquence (\eta)</td>
<td>-0.209</td>
<td>0.025</td>
</tr>
<tr>
<td>Champ magnétique (B)</td>
<td>0.0807 T</td>
<td></td>
</tr>
<tr>
<td>Champ magnétique moyen (B_m)</td>
<td>0.0566 T</td>
<td></td>
</tr>
<tr>
<td>Rigidité magnétique (B \rho)</td>
<td>5.66 T.m</td>
<td></td>
</tr>
<tr>
<td>Chromaticité (\xi_{H,V})</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Fréquence de révolution (f_{\text{rev}})</td>
<td>417.5 kHz</td>
<td></td>
</tr>
<tr>
<td>Nombre harmonique (h)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Fréquence d'accélération (f_{RF})</td>
<td>8.35 MHz</td>
<td></td>
</tr>
<tr>
<td>Fréquence synchrotronique (f_s)</td>
<td>1.61 kHz</td>
<td></td>
</tr>
</tbody>
</table>
Les forces qui s'exercent sur la particule chargée peuvent être classées en deux catégories :

- les **forces longitudinales** qui affectent l'énergie de la particule, car elles agissent dans le sens du mouvement. Elles proviennent en général des cavités accélératrices.

- les **forces transversales** qui, étant perpendiculaires au sens du mouvement, modifient la trajectoire. Elles résultent soit de l'une des composantes de la force électrique, soit des différents éléments magnétiques.

2.2 Action du champ électrique

La force électrostatique qui permet de modifier l'énergie de la particule de charge q (accélération ou décélération) est exprimée par la relation

$$\vec{F}_E = q \vec{E}$$

Le champ électrique \vec{E} est généré par la tension V_{RF} à haute fréquence qui se développe sur la fente des cavités accélératrices (fig. 2.2). Cette tension est une harmonique de la fréquence de révolution et le coefficient h est appelé le nombre harmonique [4].

$$V_{RF} = V \sin \Phi = V \sin (\omega_{RF} t) \quad \text{avec} \quad \omega_{RF} = h \omega_{rev}$$

De ce fait, le faisceau accéléré a une structure discontinue et les particules sont groupées en *paquets* dont la longueur dépend de la fréquence et de la tension du signal d'accélération.

2.2.1 Les oscillations synchrotroniques

Supposons qu'un paquet de particules circule dans le champ magnétique constant et uniforme du synchrotron. Lorsque celles-ci traversent une cavité accélératrice, elles subissent l'effet d'un champ électrique de fréquence angulaire ω_{RF}.

La particule qui passe devant la fente accélératrice, alors que la tension est nulle, conserve la même fréquence de révolution : elle est dite *particule synchrone*.

Lorsque l'énergie des particules est inférieure à l'énergie de transition, la particule non synchrone est dans l'une des situations suivantes :

- si la particule est en retard, elle subit l'action d'un champ électrique accélérateur.

- si la particule est en avance, elle est décélérée.

Ces deux actions sont inversées au-dessus de l'énergie de transition.

Fig. 2.2 : Tension d'accélération et *buckets*, lorsque l'énergie des particules est en dessous de l'énergie de transition.
Les particules non synchrones effectuent donc des oscillations synchrotroniques autour des particules synchrones. Ces mouvements, inévitables dans le processus d’accélération, sont caractérisés par le nombre d’ondes synchrotroniques \(Q_s \) et la pulsation de révolution \(\omega_{rev} \). La pulsation synchrotronique s’écrit [5, 6]

\[
\omega_s = Q_s \omega_{rev}
\]

(2.3)

\[
Q_s = \sqrt{\frac{e \hbar \eta V \cos \Phi_s}{2 \pi R p_s \omega_{rev}}} = \frac{1}{\beta} \sqrt{\frac{e \hbar \eta V \cos \Phi_s}{2 \pi E_s}}
\]

(2.4)

où \(e \) est la charge élémentaire, \(p_s \) la quantité de mouvement, \(E_s \) l’énergie et \(\Phi_s \) la phase de la particule synchrone, par rapport à la tension d’accélération \(V \sin \Phi \).

2.3 Action du champ magnétique

Soit une particule de charge \(q \), de masse \(m \), animée d’une vitesse \(\vec{v} \) et ayant donc une quantité de mouvement \(\vec{p} \). Si elle pénètre dans un milieu où l’induction magnétique est \(\vec{B} \), elle est soumise à l’action d’une force électromagnétique \(\vec{F}_B \) (force de Lorentz)

\[
\vec{F}_B = q (\vec{v} \wedge \vec{B}) = \frac{d \vec{p}}{dt}
\]

(2.5)

Fig. 2.3 : Déflexion magnétique et repère utilisé pour l’étude du mouvement transversal.

Puisque la force \(\vec{F}_B \) est perpendiculaire, à la fois à la direction du champ magnétique \(\vec{B} \) et à celle de la vitesse \(\vec{v} \) de la particule (fig. 2.3), il en résulte que

- le travail de la force \(\vec{F}_B \) est nul et, par conséquent, l’énergie cinétique de la particule est constante.

- la force \(\vec{F}_B \) modifie la direction de la vitesse \(\vec{v} \) d’un angle \(d\theta \) et inflige à la particule une vitesse angulaire \(\omega = d\theta/dt = q\vec{B}/m \).

- lorsque \(\vec{v} \) est perpendiculaire au champ uniforme \(\vec{B} \), \(\omega \) est constante et la particule décrit un cercle de rayon \(\rho \), dans le plan perpendiculaire à \(\vec{B} \).
Si α représente l'angle entre les vecteurs \vec{B} et \vec{v}, il est possible d'écrire la relation

$$| q v B \sin \alpha | = \frac{m v^2}{\rho}$$ \hspace{1cm} (2.6)

et comme dans l'accélérateur la vitesse et le champ sont orthogonaux

$$| q v B | = \frac{m v^2}{\rho} \Rightarrow \rho = \frac{m v}{q B} = \frac{p}{q B}$$ \hspace{1cm} (2.7)

Dans un champ magnétique constant et uniforme, où l'induction est perpendiculaire au plan de la trajectoire, le mouvement de la particule est circulaire tandis que sa vitesse et son énergie demeurent inchangées.

La relation précédente exprime que la trajectoire idéale est entièrement déterminée par l'action des aimants de courbure de l'accélérateur et la quantité de mouvement de la particule. Quant à la rigidité magnétique, définie par

$$B \rho = p / q$$

elle met en évidence que, pour conserver un rayon de courbure constant alors que l'énergie de la particule augmente, il est nécessaire d'accroître la valeur du champ magnétique.

D'autre part, puisque \vec{F}_B et \vec{B} sont orthogonaux, il faut créer un champ vertical pour produire une courbure horizontale de la trajectoire s. Ce champ, généré dans l'ouverture du circuit magnétique des dipôles, doit permettre d'obtenir un angle total de courbure égal à 2π.

Théoriquement, si le champ est uniforme, la particule injectée au centre de la chambre à vide reste sur sa trajectoire idéale. Toutefois, si elle est injectée avec un angle différent, elle s'écartera de la trajectoire idéale et finira par heurter la chambre à vide. Ce problème est évité, dans les accélérateurs, en utilisant le pouvoir de focalisation des quadrupôles.

2.3.1 Les oscillations béatroniques

Lorsqu'une particule traverse un ensemble de quadrupôles, assemblés côte à côte de façon que chaque paire FD (focalisant-défocalisant) ou DF (défocalisant-focalisant) ait un effet globalement focalisant, sa trajectoire est sinusoidale. L'accélérateur, cependant, n'est pas uniquement formé d'éléments magnétiques, et les quadrupôles sont répartis plus ou moins régulièrement le long de la circonférence de l'anneau. Toutefois, puisque l'effet focalisant persiste, le mouvement de l'ensemble des particules oscille de façon stable autour d'une orbite idéale.

Soit z le déplacement, horizontal x ou vertical y, par rapport à une orbite de référence, l'orbite fermée, et s la coordonnée longitudinale dont l'origine est la position du capteur (voir repère fig. 2.3). Si la longueur L_s représente les périodes des coefficients de focalisation $K_s(s)$ et $K_s(s)$, cette périodicité pouvant être inférieure ou égale à la circonférence C_0 de l'anneau, le mouvement pseudo-sinusoidal de la particule synchrone obéit à l'équation de Hill [6]

$$\frac{d^2 z(s)}{d s^2} + K_s(s) z(s) = 0 \quad \text{avec} \quad K_s(s) = K_s(s + L_s)$$ \hspace{1cm} (2.8)
La solution de cette équation représente l'oscillation bétronique

\[z(s) = \sqrt{\varepsilon_s} \beta_s(s) \cos[\mu_s(s) - \Phi_{0_s}] \]

(2.9)

où \(\varepsilon_s \) et \(\Phi_{0_s} \) sont des constantes du mouvement, déterminées par les conditions initiales et \(\mu \) le mode de l'oscillation bétronique. Pour éviter une confusion avec les modes des instabilités du faisceau, nous le désignerons soit par l'angle, soit par l'avance de phase bétronique.

La fonction bétronique \(\beta_s(s) \) est la solution périodique, définie positive, de l'équation

\[\frac{\beta_s(s)\beta'_s(s)}{2} - \frac{(\beta'_s(s))^2}{4} + K_s(s)\beta^2_s(s) = 1 \]

(2.10)

et l'avance de phase bétronique \(\mu_s(s) \), par rapport à l'origine, est donnée par

\[\mu_s(s) = \int_0^s \frac{d\sigma}{\beta_s(\sigma)} \]

(2.11)

Le nombre d'ondes bétroniques \(Q \) de l'accélérateur est défini par le nombre d'oscillations bétroniques effectuées par le faisceau pendant un tour d'anneau (fig. 2.4). Si \(Q_s \) désigne \(Q_s \) ou \(Q \), et l'accélérateur comporte \(N \) cellules magnétiques identiques

\[Q_s = \frac{N \mu_s(s)}{2\pi} = \frac{1}{2\pi} \int_0^{\pi c_0} \frac{d\sigma}{\beta_s(\sigma)} \]

(2.12)

L'avance de phase bétronique totale est alors

\[\mu_s = \int_0^{\pi c_0} \frac{d\sigma}{\beta_s(\sigma)} = 2\pi Q_s \]

(2.13)

Afin d'éviter l'excitation des résonances, par les imperfections inévitables de la machine, \(Q \) ne doit être ni un entier ni un rationnel. Dans le PS sa valeur varie entre 6.1 et 6.4 environ.

D'une manière générale, si des non-linéarités sont présentes dans l'accélérateur, la stabilité du mouvement bétronique est menacée par la condition

\(nQ_s + mQ = \text{entier} \)

appelée résonance optique d'ordre \(|n| + |m| \), \(n \) et \(m \) étant des entiers.

Dans l'approximation sinusoidale, l'avance de phase s'écrit

\[\mu_s(s) = \frac{s}{\beta_n} \text{ avec } \beta_n = \frac{R}{Q} \]

(2.14)
et l'amplitude moyenne de l'oscillation bétragronique, dans le plan horizontal ou vertical, peut alors se mettre sous la forme

\[z(s) = \sqrt{\varepsilon z \beta_{z}} \cos \left(\frac{Q_{s}}{R} - \Phi_{z} \right) \]

(2.15)

Puisque la coordonnée longitudinale \(s = v t \) et que la pulsation de révolution \(\omega_{rev} = v/R \), en substituant \(s \) par sa valeur \((s = \omega_{rev} R t) \) dans l'équation précédente, nous obtenons

\[z(t) = \sqrt{\varepsilon z \beta_{z}} \cos \left[Q_{t} \omega_{rev} t - \Phi_{z}(t) \right] \]

(2.16)

2.3.2 Déflection et matrice de transfert du mouvement de la particule

Lorsqu'une particule reçoit une déflection, à la position longitudinale \(s_{1} \) (fig. 2.5), la matrice de transfert qui permet de déterminer, à la position longitudinale \(s_{2} \), la position transversale \(\Delta z_{2} \) et l'angle \(\Delta z'_{2} \), par rapport à l'orbite moyenne, est appelée la **matrice de Twiss**.

![Diagramme de Twiss](image.png)

Fig. 2.5 : Positions transversales et angles du mouvement d'une particule par rapport à l'orbite moyenne, aux niveaux du déflecteur et du pick-up.

Cette matrice s'exprime à l'aide des coefficients \(\alpha(s) \), \(\beta(s) \), \(\gamma(s) \) qui sont des fonctions périodiques caractéristiques de l'accélérateur (à ne pas confondre avec les paramètres relativistes) et de l'angle bétragronique \(\mu = \mu_{2} - \mu_{1} \) qui sépare les positions \(s_{1} \) et \(s_{2} \). Si ces coefficients sont respectivement \(\{\alpha_{1}, \beta_{1}, \gamma_{1}\} \) et \(\{\alpha_{2}, \beta_{2}, \gamma_{2}\} \) la matrice de Twiss s'écrit [3]

\[
M(s_{2}|s_{1}) = \begin{pmatrix}
\frac{\beta_{2}}{\sqrt{\beta_{1}}} \left[\cos \mu + \alpha_{1} \sin \mu \right] & \sqrt{\beta_{1} \beta_{2}} \sin \mu \\
-\left(1 + \alpha_{1} \alpha_{2}\right) \sin \mu + \left(\alpha_{2} - \alpha_{1}\right) \cos \mu & \frac{1}{\sqrt{\beta_{1} \beta_{2}}} \left[\cos \mu - \alpha_{2} \sin \mu \right]
\end{pmatrix}
\]

(2.17)

D'où, la représentation du mouvement de la particule, en fonction de \(\Delta z_{1} \) et de \(\Delta z'_{1} \)

\[
\begin{bmatrix}
\Delta z_{2} \\
\Delta z'_{2}
\end{bmatrix} = M \begin{bmatrix}
\Delta z_{1} \\
\Delta z'_{1}
\end{bmatrix}
\]

(2.18)
Puisque cette expression s'applique également au paquet de particules, en admettant que le paquet passe au centre du déflecteur, autrement dit Δz₁ = 0, la défexion Δz’ᵢ provoque une déviation Δz₂ et un angle Δz’₂ qui sont donnés par

\[
\begin{bmatrix} \Delta z_2 \\ \Delta z'_2 \end{bmatrix} = M \begin{bmatrix} 0 \\ \Delta z'_1 \end{bmatrix} = \begin{cases} \Delta z_2 = \Delta z'_1 \sqrt{\beta_1 \beta_2} \sin (\mu_2 - \mu_1) \\ \Delta z'_2 = \Delta z'_1 \sqrt{\beta_1 / \beta_2} [\cos (\mu_2 - \mu_1) - \alpha_2 \sin (\mu_2 - \mu_1)] \end{cases}
\] (2.19)

Dans le cas où le capteur de position et le déflecteur sont intervertis, cette relation permet d'établir que pour corriger la déviation maximum Δz₁, mesurée lorsque la particule traverse le capteur avec un angle nul, il faut lui imprimer une défexion Δz’₂

\[
\Delta z'_2 = \Delta z_1 \frac{1}{\sqrt{\beta_1 \beta_2}} \sin (\mu_2 - \mu_1)
\] (2.20)

Supposons que l'angle béatronique μ entre capteur et déflecteur soit de 90 degrés et que l'erreur d'injection Δz₁ du paquet de particules soit d'environ un centimètre, par rapport à l'orbite moyenne, l'angle de défexion Δz’₂ nécessaire à la correction est alors de l'ordre de

\[
\Delta z'_2 \equiv \frac{\Delta z_1}{\sqrt{\beta_1 \beta_2}} \equiv \frac{\Delta z_1}{\beta_n} \equiv \frac{10^{-2}}{16} \equiv 6,25 \cdot 10^{-4} \text{ rad}
\] (2.21)

En acceptant que la correction de cette erreur s'effectue pendant une centaine de tours (soit sur une durée de 0,25 ms), la défexion par tour doit être de 6,25 μrad. Nous verrons ultérieurement, dans l'étude du déflecteur, qu'en utilisant deux amplificateurs de 1 kW, il est possible d'obtenir un angle de défexion de 8 μrad environ, ce qui satisfait cette exigence.

2.3.3 L'oscillation béatronique dans le plan de phase

L'oscillation de la particule décrite par la relation (2.16), peut s'exprimer de manière simplifiée, en fonction de la pulsation béatronique \(\omega_b = Q / \omega_{rev} \), à l'aide de l'équation différentielle [7]

\[
\frac{d^2 z(t)}{dt^2} + \omega_b^2 z(t) = 0
\] (2.22)

La solution de cette équation dans le plan horizontal est de la forme

\[
\begin{cases}
 x(t) = A \exp(j \omega_b t) + B \exp(-j \omega_b t) \\
 x'(t) = j \omega_b \left(A \exp(j \omega_b t) - B \exp(-j \omega_b t) \right)
\end{cases}
\] (2.23)

Soit, avec les conditions initiales : \(x(0) = x_0 \) et \(x'(0) = 0 \)

\[
\begin{cases}
 x(t) = x_0 \cos(\omega_b t) \\
 x'(t) = -x_0 \omega_b \sin(\omega_b t)
\end{cases}
\] (2.24)
En effectuant le changement de variables suivant

\[
\begin{align*}
X &= x/x_0 \\
X' &= x/(x_0 \omega_b)
\end{align*}
\]

(2.25)

l'expression (2.24) permet d'écrire l'équation du cercle qui représente le plan de phase normalisé (fig. 2.6)

\[X^2 + X'^2 = 1\]

(2.26)

Afin d'illustrer le mouvement de la particule dans le plan de phase, à chaque révolution, considérons une valeur du nombre d'ondes béatroniques \(Q\) de l'ordre de 6,3. Dans ces conditions

\[
\begin{align*}
X &= \cos (6,3 \omega_{rev}, t) \\
X' &= -\sin (6,3 \omega_{rev}, t)
\end{align*}
\]

(2.27)

La période de révolution étant égale à \(T_{rev} = 2\pi/\omega_{rev}\), l'angle béatronique parcouru pendant une période est par conséquent égal à

\[6,3 \omega_{rev} T_{rev} = 6,3 \times 2\pi = (6 \times 2\pi) + (0,3 \times 2\pi)\]

(2.28)

Sur le diagramme de phase, pour atteindre le point noté \(P(1)\), correspondant à ce premier tour, la particule, partie de la position \(P(0)\) à l'instant \(t = 0\), a fait six tours plus \(0,3 \times 2\pi = \theta\) (dans le sens des aiguilles d'une montre). Au deuxième tour, elle arrive en \(P(2)\), c'est-à-dire à \(2\theta\) dans le plan de phase, etc.

2.3.4 L'amortissement des oscillations cohérentes

Considérons à présent un paquet de particules, soumis à une déflexion électromagnétique impulsionnelle. Du fait qu'il existe une certaine dispersion d'énergie entre les particules d'un paquet, celles-ci se comportent comme un ensemble d'oscillateurs dont la période de révolution n'est pas rigoureusement identique. En notant \(\Delta T_{rev}\), l'écart maximum entre la période de révolution d'une particule quelconque \(T_{rev}\) et celle de la particule synchrone \(T_{rev}\), nous avons

\[T_{rev} = T_{0rev} \pm \Delta T_{rev}\]

(2.29)

Or, comme une différence de temps de révolution peut aussi s'exprimer par une variation de \(Q\), cette dispersion d'énergie peut être décrite par

\[
Q = Q_0 \pm \Delta Q
\]

(2.30)
Le cas où $Q = 6,3 \pm 0,05$ est illustré sur le plan de phase par la figure (2.7). Ce que nous constatons, c'est que le faisceau n'est plus représenté par un point mais par un arc de cercle qui s'agrandit lorsque le nombre de tours augmente, pour occuper finalement tout l'espace de phase. Cette évolution traduit le phénomène physique de la disparition progressive de l'oscillation observable, dite oscillation cohérente.

Fig. 2.7 : Effets de la dispersion d'énergie, ou de la variation de Q, sur l'oscillation bêatronique ω_0, représentés dans le plan de phase pendant 4 tours consécutifs.

L'utilisation d'un capteur de position qui mesure la position moyenne $\langle x \rangle$ de l'ensemble des particules met également en évidence ce phénomène. Pour cela, supposons que la distribution de la fréquence des particules d'un paquet soit gaussienne et que l'oscillation individuelle de chaque particule ne soit pas amortie (fig. 2.8). En ajoutant la position de tous les oscillateurs, il en résulte cette oscillation cohérente.

Fig. 2.8 : Application d'une déflexion impulsionnelle à un paquet de particules dont la distribution d'énergie est gaussienne. Le capteur, qui ne mesure que la position du centre de masse, c'est-à-dire la moyenne des positions des particules, fournit un signal amorphe qui est appelé l'oscillation cohérente.
Dans le paquet de particules accélérées, il existe un autre phénomène qui a également pour effet d’amortir les oscillations cohérentes [8], il s’agit du *Landau damping* résultant de la dispersion de la fréquence d’oscillation naturelle des particules. Cette dispersion de fréquence peut avoir des origines diverses, parmi lesquelles :

- l’ondulation résiduelle de l’alimentation des aimants,
- le décalage du nombre d’ondes béatotroniques, provoqué par les éléments magnétiques (sextupôles ou octupôles), la charge d’espace ou les ions piégés dans le faisceau,
- la dispersion de la quantité de mouvement des particules dans le paquet et une chromatricité non nulle.

Ce phénomène est connu pour avoir un effet stabilisant sur les faisceaux, tant que leur densité ne dépasse pas le seuil de $5 \cdot 10^{12}$ particules par paquet, lorsque 20 paquets sont accélérés. Au delà de cette limite, apparaissent les instabilités que nous étudierons dans le prochain chapitre.

2.4 Observation du faisceau

La détection des oscillations du faisceau constitue une des parties essentielles du processus de correction des instabilités. Cette observation s’appuie sur l’information inhérente aux champs électromagnétiques qui accompagnent le mouvement des particules chargées.

Dans le PS, nous utilisons essentiellement des capteurs électrostatiques (pick-ups), sensibles aux champs statiques créés par les charges des particules. Comme ce type de capteur représente en fait une discontinuité de la chambre à vide, il exploite le *courant image* induit par le faisceau pour fournir un signal proportionnel à la charge instantanée qui le traverse.

2.4.1 Principe du pick-up électrostatique

Soit une ligne coaxiale (fig. 2.9) constituée d’une électrode cylindrique de longueur l, isolée de la chambre à vide. Lorsqu’un paquet de particules la traverse à une vitesse v_b, un courant image supposé de même vitesse, se développe à sa surface [9].

![Diagramme de pick-up électrostatique](image)

Fig. 2.9 : Coupe d’un pick-up électrostatique et schéma équivalent.

L’électrode étant chargée par une résistance R, tant que sa longueur l demeure inférieure à la longueur d’onde λ des signaux induits par le faisceau, cette ligne est équivalente à une capacité C de l’électrode à la résistance R : v_b.

$$C = \frac{l}{RV_b} \quad (2.31)$$
Comme il faut au paquet, dont la longueur est en général supérieure à \(l \), un temps \(\Delta t \) pour traverser la ligne, le courant image peut être représenté par deux sources de courant, l'une pour celui qui entre dans l'électrode et l'autre pour celui qui en sort, déphasées de

\[
\omega_{\text{rev}} \Delta t = \omega_{\text{rev}} \frac{l}{v_b}
\]
(2.32)

Lorsque la constante de temps \(RC \gg \Delta t \), la différence des deux courants charge la capacité et produit une tension de sortie égale à

\[
V_o = \frac{1}{jC \omega_{\text{rev}}} \left[i_b - i_b \exp (-j\omega_{\text{rev}} l/v_b) \right] \equiv \frac{i_b l}{C v_b}
\]

(2.33)

La quantité \(i_b l / v_b \) représentant la charge \(q \) contenue dans le détecteur, si la variation de la distribution de charge du faisceau est lente par rapport à la longueur de l'électrode, nous obtenons \(V_o = Q / C \), ce qui est conforme à la théorie électrostatique.

En tenant compte de l'effet de la résistance \(R \), la tension de sortie devient

\[
V_o = i_b \frac{j\omega_{\text{rev}} l}{v_b} \cdot \frac{R}{1 + j\omega_{\text{rev}} RC
\]

(2.34)

La sensibilité du pick-up, appelée aussi impédance de transfert \(Z_T \), est définie par le rapport de la tension de sortie au courant du faisceau :

\[
\text{Sensibilité} = Z_T = \frac{V_o}{i_b} = \frac{l}{v_b} \cdot \frac{j\omega_{\text{rev}} R}{1 + j\omega_{\text{rev}} RC} \rightarrow \frac{\omega_{\text{rev}} l}{v_b C} = \frac{l}{v_b C}
\]

(2.35)

2.4.2 Le pick-up de position

Le fractionnement de l'électrode précédente en quatre électrodes (fig. 2.10a), deux pour le plan horizontal \((H_1 \ et \ H_2) \) et deux pour le vertical \((V_1 \ et \ V_2) \), permet de mesurer la position du paquet de particules en effectuant les différences \(\Delta H \) et \(\Delta V \) des signaux de chaque paire. Leur somme \(\Sigma \) fournit l'information d'intensité.

Pour que la tension de sortie soit linéaire en fonction de la position du paquet, la coupe des électrodes doit être linéaire dans le plan de mesure correspondant (fig. 2.10b) [10].

Si \(V_H \) et \(V_V \) représentent les tensions fournies par les électrodes horizontales et verticales, la position réelle du faisceau, par rapport à l'axe du pick-up, peut être obtenue à l'aide des relations de normalisation suivantes :

![Fig. 2.10](image)

(a) Principe du pick-up de position.

(b) Le pick-up électrostatique du PS.
Position \(H \) = \(K_H \frac{V_{H_1} - V_{H_2}}{V_{H_1} + V_{H_2} + V_{V_1} + V_{V_2}} = K_H \frac{\Delta H}{\Sigma} \)

(2.36)

Position \(V \) = \(K_V \frac{V_{V_1} - V_{V_2}}{V_{H_1} + V_{H_2} + V_{V_1} + V_{V_2}} = K_V \frac{\Delta V}{\Sigma} \)

(2.37)

\(K_H = 174 \) mm et \(K_V = 82 \) mm sont les coefficients de calibration du pick-up.

![Diagram](image)

Fig. 2.11 : a) Schéma de principe du traitement analogique du signal des électrodes du pick-up. b) Bande passante de l'électrode (4,5 kHz à 3 MHz), adaptée avec la technique de la ligne de transmission non terminée en basse fréquence. c) Bande passante de l'ensemble : 8 kHz à 2,5 MHz.

Pour capter le signal de chacune des électrodes du pick-up (fig. 2.11a), jusqu'à des fréquences relativement basses, nous avons adopté la technique de la ligne de transmission non terminée en basse fréquence [11] qui permet d'obtenir une bande passante de 4,5 kHz à 3 MHz environ (fig. 2.11b). La ligne est adaptée, au-delà de 3 MHz, par la combinaison de la résistance \(R_0 \) et du condensateur \(C_T \). Si \(C_c \) représente la capacité du câble, l'atténuation introduite est égale à :

\[G = C/(C + C_c + C_T) \equiv -24 \text{ dB} \]

(2.38)

La sensibilité \(Z_T \) du pick-up, qui est de l'ordre de 1,4 Ω avec l'électrode seule, est réduite à environ 0,1 Ω du fait que la capacité vue par le faisceau a augmenté.

La bande passante de l'ensemble, constitué de l'électrode et son électronique, est définie par les éléments suivants (fig. 2.11c) :

- le transformateur hybride qui génère les signaux \(\Sigma, \Delta H \) et \(\Delta V \), dont la fréquence de coupure inférieure est de l'ordre de 8 kHz,

- un filtre passe-bas du quatrième ordre (Bessel), qui fixe la fréquence de coupure supérieure à 2,5 MHz, afin d'éviter les phénomènes de repliement des fréquences introduits par l'échantillonnage nécessaire au traitement numérique des signaux.
2.4.3 Fonction de transfert du pick-up

La réponse du pick-up de position est mesurée, soit en injectant un signal avec une antenne, pour simuler la position réelle du faisceau entre les électrodes, soit en utilisant des entrées de test qui ne permettent de simuler que deux positions, définies au préalable par une procédure de calibration. C'est avec cette deuxième méthode que les mesures suivantes sont effectuées.

Pour une position fixe \((x = y = 2 \text{ cm})\), la réponse en fréquence (fig. 2.12a) du pick-up, équipé de son électronique, est acquise en effectuant un balayage en fréquence à l'aide d'un analyseur de réseaux. Quant à sa réponse indicielle (fig. 2.12b), elle est obtenue en appliquant un échelon d'une durée de 500 \(\mu\)s fourni par un générateur d'impulsions.

![Graphique](image)

Fig. 2.12 : Test du pick-up : a) Réponse en fréquence fournie par un analyseur de réseaux. b) Réponse indicielle acquise numériquement avec une fréquence d'échantillonnage de 10 MHz.
Le temps de montée de la réponse indicielle, qui est de l'ordre de 200 ns (fig. 2.12b), étant négligeable par rapport à la réponse totale, le pick-up peut être assimilé à un filtre passe-haut dont la fréquence de coupure se situe aux environs de 8 kHz (fig. 2.12a). Pour établir un modèle simple, nous nous limiterons à un second ordre dont les constantes de temps ont été évaluées en considérant l'électrode munie de son circuit d'adaptation ainsi que du transformateur hybride.

\[
\begin{align*}
\tau_1 & \equiv R_1 C \quad \tau_1 \equiv 3,6 \, \mu s \\
\tau_2 & \equiv R_1 (C + C_C + C_T) \quad \tau_2 \equiv 56 \, \mu s \\
\tau_3 & \equiv R_2 / L \quad \tau_3 \equiv 1 / \left(2\pi \times 8 \times 10^3 \right) \approx 20 \, \mu s
\end{align*}
\] (2.39)

\(G_0 \) étant le gain réglable du système et \(s \) représentant ici la variable de Laplace, la fonction de transfert continue \(G(s) \) s'écrit

\[
G(s) = G_0 \frac{s}{(1 + \tau_2 s)(1 + \tau_3 s)}
\] (2.40)

Réponse en fréquence

![Diagramme de réponse en fréquence](image)

Réponse indicielle

![Diagramme de réponse indicielle](image)

Fig. 2.13 : Réponse en fréquence et réponse indicielle du modèle continu du pick-up.
La simulation de la réponse indicielle de cette fonction (fig. 2.13), comparée aux mesures du pick-up (fig. 2.12), permet de vérifier que ce modèle est convenable pour le signal Σ alors qu’il faudrait utiliser un modèle d’ordre supérieur pour respecter les constantes de temps des signaux ΔH et ΔV. Nous accepterons cependant celui-ci pour la suite du chapitre.

2.4.4 Fonction de transfert échantillonnée

Le mouvement du paquet de particules, dans l’anneau, est échantillonné par le pick-up à la fréquence de révolution et s’exprime mathématiquement à l’aide de l’impulsion de Dirac $\delta(t)$. Ainsi par exemple, dans le plan horizontal (fig. 2.14) l’échantillonnage de $x(t)$ s’écrit

$$x^*(t) = \sum_{k=0}^{\infty} x(t) \delta(t - kT_{rev})$$ (2.41)

![Diagram of a particle packet and signal processing](image)

Fig. 2.14 : Du fait que le paquet de particules traverse périodiquement le capteur, la mesure de sa position correspond à échantillonner son mouvement continu $x(t)$ à chacun de ses passages. Les électrodes du pick-up, équipées de leur électronique, sont représentées par la fonction de transfert continue G.

Puisque le pick-up détecte uniquement l’oscillation du centre de masse du paquet, le signal de position qui en résulte est un train d’impulsions modulées en amplitude.

Si $G(t)$ est la fonction de transfert du pick-up, équipé de son électronique, le signal de sortie $x_s(t)$ peut être représenté par la somme des réponses impulsionnelles [12]

$$x_s(t) = \sum_{n=0}^{\infty} x(t) G(t - nT_{rev})$$ (2.42)

où $G(t - nT_{rev}) = 0$ pour $t - nT_{rev} < 0$.

21
Toutefois, comme seuls les instants d'échantillonnage présentent de l'intérêt, en remplaçant le temps \(t \) par \(kT_{\text{rev}} \) et \(x(t) \) par \(x(n) \), cette relation devient

\[
x_n[k] = \sum_{n=0} x[n] G[(k - n)T_{\text{rev}}]
\]

(2.43)

La transformée en \(z \) du signal de sortie \(x_n \) s'écrit

\[
X_n(z) = \sum_{k=0} x_n[k] z^{-k} = \sum_{k=0} \sum_{n=0} x[n] G[k - n] z^{-k}
\]

(2.44)

Ou, en effectuant le changement de variable, \(k-n = m \), et en éliminant \(k \)

\[
X_n(z) = \sum_{m=-n} \sum_{n=0} x[n] G[m] z^{-m} z^{-n}
\]

(2.45)

Il est admis de commencer la première sommation à \(m = 0 \) au lieu de \(m = -n \) puisque la réponse impulsionnelle \(G[m] \) est nulle lorsque \(m < 0 \). Il est alors possible de séparer la double sommation sur \(m \) et \(n \), en la remplaçant par le produit de deux sommes suivant

\[
X_n(z) = \sum_{m=0} G[m] z^{-m} \sum_{n=0} x[n] z^{-n}
\]

(2.46)

La sommation sur \(x \), désignée par \(X^*(z) \), est la transformée en \(z \) du signal d'entrée et la sommation sur \(G \), celle de la réponse impulsionnelle du système continu. Cette dernière, appelée **fonction de transfert échantillonnée**, est représentée par

\[
G(z) = \sum_{k=0} G(k) z^{-k}
\]

(2.47)

Avec ces notations, le signal de sortie devient

\[
X_n(z) = G(z) X^*(z)
\]

(2.48)

La fonction de transfert continue \(G(s) \) étant connue, sa réponse impulsionnelle peut être calculée à l'aide de la transformée de Laplace inverse et, en appliquant la relation (2.47), il est alors possible d'en déduire la fonction de transfert échantillonnée.

En mettant en évidence les pôles de l'équation (2.40), la fonction de transfert est la suivante

\[
G(s) = G_0 \frac{\tau_1 \tau_2 s^2}{\tau_2 \tau_3 \left(\frac{s}{\tau_2} + 1 \right) \left(\frac{s}{\tau_3} + 1 \right)}
\]

(2.49)
Afin de déterminer la fonction de transfert échantillonnée \(G(z)\), nous utilisons un échantillonneur bloqueur d’ordre zéro avec une période d’échantillonnage \(T\), soit

\[
B_0(s) = \frac{1 - e^{-Ts}}{s}
\]
(2.50)

La fonction de transfert du pick-up s’écrit alors

\[
G^*(s) = G(s) \cdot B_0(s) = K \frac{s(1 - e^{-Ts})}{(s + a)(s + b)}
\]
(2.51)

avec

\[
\begin{align*}
K &= G_0 \frac{\tau_1}{\tau_2} \\
 a &= 1/\tau_2 \\
 b &= 1/\tau_3
\end{align*}
\]
(2.52)

D’où, en la décomposant en éléments simples

\[
G^*(s) = K \left[\frac{K_1}{s + a} + \frac{K_2}{s + b} \right]
\]
(2.53)

et en résolvant

\[
G^*(s) = (1 - e^{-Ts}) \frac{K}{a - b} \left[\frac{a}{s + a} - \frac{b}{s + b} \right]
\]
(2.54)

D’après la définition de la transformée en \(z\) :

\(e^{-Ts} = z^{-1}\)

Comme la transformée en \(z\) de \(\frac{1}{s + a}\) est

\(\frac{z}{z - e^{-aT}}\)

En posant \(z_1 = e^{-aT}\) et \(z_2 = e^{-bT}\), la fonction de transfert échantillonnée s’écrit

\[
G(z) = (1 - z^{-1}) \frac{K}{a - b} \left[\frac{a}{z - z_1} - \frac{b}{z - z_2} \right]
\]
(2.55)

Soit, après développement

\[
G(z) = K \frac{(a - b) z^2 + (b z_1 - a z_2 - a + b) z + a z_2 - b z_1}{(a - b) z^2 + (b - a)(z_1 + z_2) z + (a - b) z_1 z_2}
\]
(2.56)
La simulation de la réponse indicielle de cette fonction échantillonnée (fig. 2.15), avec une période d'échantillonnage de 100 ns, permet de valider le modèle.

![Graphique de réponse indicielle](image)

Fig. 2.15 : Réponse indicielle de la fonction de transfert échantillonnée du modèle du pick-up.

Les réponses du pick-up (fig. 2.16) ont été mesurées, en utilisant l'entrée de test, avec une impulsion de 100 ns dont les fronts de montée et de descente sont de 1 ns.

![Graphiques de réponses du pick-up](image)

Fig. 2.16 : Réponses du pick-up et de son électronique à une impulsion de 100 ns.
2.5 Analyse spectrale du faisceau

Dans le but de simplifier les calculs, il est préférable d'exprimer le mouvement sinusoïdal du paquet de particules, autour de l'orbite moyenne, sous la forme d'une exponentielle complexe, en sachant que le signal observé ne correspond qu'à la partie réelle de cette expression.

Ainsi, en posant $A = \sqrt{\varepsilon, \beta}$, l'oscillation béta-tronique décrite par l'équation (2.16) devient

$$z(t) = A \exp j(Q, \rho_{\text{rev}}, t - \Phi_0)$$

(2.57)

Fig. 2.17 : Le mouvement béta-tronique du paquet de particules, mesuré par le pick-up, est un train d'impulsions modulé en amplitude. Si l'orbite du paquet n'est pas au centre du pick-up, les harmoniques de la fréquence de révolution apparaissent, en même temps que cette modulation, sur le spectre en fréquence du signal de sortie.

Considérons l'oscillation du faisceau dans le plan horizontal, échantillonnée par le pick-up à la fréquence de révolution. En admettant que la phase à l'origine Φ_0 soit nulle et que le nombre d'ondes béta-troniques soit égal à Q, l'échantillonnage du mouvement $x(t)$ s'écrit

$$x_{pu}(t) = A \sum_{n=-\infty}^{\infty} \exp(jQ, \rho_{\text{rev}}, t) \exp(jn\omega_{\text{rev}}, t) = A \sum_{n=-\infty}^{\infty} \exp(j[n+Q]\omega_{\text{rev}}, t)$$

(2.58)

Le symbole n désigne les modes transversaux et la sommation infinie indique que le spectre en fréquence de la série de Fourier du signal de sortie du pick-up possède une infinité de raies, proches des harmoniques de la fréquence de révolution, dont la pulsation est $(n+Q)\omega_{\text{rev}}$.

D'autre part, dans le cas où l'orbite moyenne du paquet de particules ne passe pas au centre du détecteur, les raies de révolution $n\omega_{\text{rev}}$ apparaissent également sur le spectre (fig. 2.17).

A l'analyse de ce résultat, nous pouvons constater que l'échantillonnage de l'oscillation béta-tronique du paquet, sinusoïdale par hypothèse, fournit un spectre de raies périodique, au lieu de la fréquence unique $Q\omega_{\text{rev}} / 2\pi$.

Pourtant, les différentes fréquences contenues dans le signal du pick-up correspondent à des phénomènes réels de la trajectoire du faisceau. En effet, dans l'accélérateur, toute imperfection des champs électromagnétiques est vue par le paquet de particules comme une excitation
périodique, de la même façon que dans le processus d'observation. Par conséquent, si les effets d'amortissement sont ignorés, l'information obtenue est bien celle du mouvement réel du paquet, malgré la limitation par la bande passante du pick-up.

Il est souvent commode de représenter ce résultat, à la manière d'un analyseur de spectre, en termes de fréquences positives uniquement (fig. 2.18a). Pour ce faire, nous écrirons d'abord le nombre d'ondes béatroniques sous la forme

\[Q = Q' + q \] \hspace{2cm} (2.59)

où \(Q' \) est la partie entière de \(Q \) et \(q \) sa partie décimale. Avec cette notation

\[x_{pu}(t) = A \sum_{n=-\infty}^{\infty} \exp \left(j \left[n + Q' + q \right] \omega_{rev} t \right) \] \hspace{2cm} (2.60)

\[x_{pu}(t) = A \sum_{n=-\infty}^{\infty} \exp \left(j \left[n' + q \right] \omega_{rev} t \right) \] \hspace{2cm} (2.61)

Soit, en remplaçant \(n' \) par la notation conventionnelle \(n \)

\[x_{pu}(t) = A \left[\exp(j q \omega_{rev} t) + \sum_{n=1}^{\infty} \exp(j [q \pm n] \omega_{rev} t) \right] \] \hspace{2cm} (2.62)

Ainsi, pour un mode particulier \(n \), en fixant \(A = 1 \)

\[x_{pu}(t) = \exp(j q \omega_{rev} t) + \exp(j [n + q] \omega_{rev} t) + \exp(-j [n - q] \omega_{rev} t) \] \hspace{2cm} (2.63)

![Diagram](image)

Fig. 2.18 : Spectre en fréquence des oscillations béatroniques (a) et synchrotoniques (b) résultant de l'analyse de Fourier du signal de position fourni par le pick-up. La partie décimale du nombre d'ondes béatroniques et la pulsation synchrotonique sont représentées respectivement par \(q \) et \(\omega_s \).

Notons que l'information sur la partie entière de \(Q \) ne peut être obtenue avec le signal d'un seul pick-up, seule sa partie décimale \(q \) est mesurable.
Pour la suite, nous utiliserons la notation suivante pour désigner la première raie bétatronique :

\[\omega_b = q \omega_{rev} \]

(2.64)

Supposons, en outre, que les oscillations synchrotroniques des particules affectent la période de révolution du centre de masse du paquet pendant le cycle d'accélération. L'analyse spectrale du mouvement du faisceau montre alors qu'aux harmoniques de la fréquence de révolution se joignent des satellites correspondant à une modulation de fréquence (fig. 2.18b). Signalons que dans l'accélérateur PS, la fréquence synchrotronique des faisceaux de protons \(f_s = \omega_s / 2\pi \) varie entre 150 Hz et 1,5 kHz environ.

En présence d'oscillations synchrotroniques, le mouvement des paquets de particules est décrit en termes de modes longitudinaux \(m \) dont la pulsation est égale à

\[\omega_{p,m} = \omega_p + m \omega_s \]

(2.65)

Pour information, la figure (2.19) illustre trois modes \(m \), dits head-tail modes :

- Dans le mode \(m = 0 \), toutes les particules d'un paquet se déplacent dans la même direction, sans déformation du paquet.

- Dans le mode \(m = 1 \), la tête et la queue du paquet se déplacent dans des directions opposées, symétriques par rapport au centre.

- Dans le mode \(m = 2 \), la tête et la queue du paquet se déplacent dans la même direction alors que le centre bouge dans la direction opposée.

<table>
<thead>
<tr>
<th>1 tour</th>
<th>superposition de plusieurs tours</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m = 0)</td>
<td></td>
</tr>
<tr>
<td>(m = 1)</td>
<td></td>
</tr>
<tr>
<td>(m = 2)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2.19 : Illustration de différents modes d'oscillation longitudinale \(m \) du paquet de particules (head-tail modes), tels qu'ils apparaissent sur le signal de position du pick-up, lorsque la chromaticité de l'accélérateur est nulle, c'est-à-dire si toutes les particules ont la même fréquence de révolution. \(\tau_L \) indique la durée de passage du paquet dans le capteur.

27
3 Les instabilités transversales

Les oscillations instables des faisceaux de particules peuvent être classées en deux catégories : les instabilités longitudinales qui conduisent aux oscillations synchrotroniques, et les instabilités transversales qui se manifestent par des oscillations bétatroniques. Dans les paragraphes qui suivent, seules ces dernières seront analysées. En règle générale, ce sont les champs électrique et magnétique de l'accélérateur qui imposent le mouvement des particules. Cependant, ces particules chargées génèrent également des champs électromagnétiques qui se propagent avec elles, les champs de sillage, et qui peuvent à leur tour perturber la trajectoire. Ce phénomène entraîne un certain nombre d'effets collectifs dont l'importance croît à mesure que la densité des particules dans le paquet augmente.

3.1 Effets collectifs

Considérons d'abord un paquet cylindrique (fig. 3.1) dans lequel la densité des particules est supposée uniforme [13]. Au centre du paquet, la force de répulsion due au champ électrique des particules environnantes est nulle, elle augmente ensuite linéairement de part et d'autre de l'axe, puis diminue au-delà du bord du paquet. En conséquence, la focalisation de la particule varie selon sa position dans le paquet.

D'autre part, puisque les particules chargées en mouvement constituent un courant, le champ magnétique qui en résulte produit également une force d'attraction sur ces particules. Lorsque la vitesse des particules est relativiste, l'effet de ces deux forces s'annule. Toutefois, à faible énergie, les effets de charge d'espace, liés aux champs de sillage à décroissance rapide, peuvent être considérables et provoquer des instabilités de paquet unique (ou head-tail instabilities) [1]. Ces instabilités, dont la correction est assurée en agissant sur la chromaticité de l'accélérateur, ne seront pas traitées ici.

Les instabilités transversales des faisceaux que nous devons corriger sont dues, quant à elles, au courant image du faisceau qui circule sur la paroi métallique de la chambre à vide. Ce courant, de signe opposé à celui du paquet de particules, est dû aux charges induites qui accompagnent son mouvement. Pour illustrer l'influence du courant image, considérons une paire d'électrodes traversée par un paquet. Si celui-ci passe au centre (fig. 3.2a), chaque électrode conduit la moitié du courant image, de sorte que les effets des champs magnétiques et électri-

![Fig. 3.1 : L'action, sur la particule, du champ électrique induit par les charges environnantes, dépend de la position qu'elle occupe dans le paquet.](image)

![Fig. 3.2 : a) Le courant image induit sur les électrodes a une intensité totale égale à l'intensité I du paquet de particules qui circule dans la chambre à vide. b) Lorsque le faisceau n'est pas centré, sa trajectoire est modifiée par le champ magnétique B résultant de la différence i entre les courants des électrodes.](image)
ques résultats s'annulent. Par contre, lorsque le paquet n'est pas centré (fig. 3.2b) et que la résistivité des électrodes n'est pas nulle, la différence des courants donne naissance à un champ électrique longitudinal et un champ magnétique transversal qui altèrent sa trajectoire.

Ce sont ces mêmes effets qui sont à l'origine des instabilités transversales du faisceau, dans la chambre à vide, dont l'impédance est plus complexe. Ce phénomène est comparable à une espèce de contre-réaction faisceau impédance de la chambre à vide [5] dans laquelle, comme dans les systèmes asservis, il est possible de déterminer des conditions de stabilité.

3.2 Impédance transversale et instabilités

L'impédance de la chambre à vide qui est à l'origine des instabilités transversales porte le nom d'impédance transversale. Généralement exprimée en $\text{M}\Omega/m$, pour une chambre de structure cylindrique de rayon b elle est donnée par [14]

$$ Z_{\perp}(\omega) = \frac{2c}{b^2 \omega} Z_{\parallel} \quad \text{avec} \quad Z_{\parallel} = (1 + j)\frac{\rho R}{\delta} \frac{R}{b} \quad (3.1) $$

c étant la vitesse de la lumière, Z_{\parallel} l'impédance longitudinale de la chambre (en Ω) [15], R le rayon de l'anneau, ρ la résistivité de la chambre et δ la profondeur de l'effet pelliculaire.

Dans le cas de l'accélération d'un faisceau groupé en paquets, régulièrement répartis sur la circonférence de l'anneau, cette impédance transversale introduit une variation complexe $\Delta\omega_B$ de la fréquence bêtastronique.

$$ \Delta\omega_B = \frac{1}{m+1} \sum_{m=0}^{\infty} \frac{Z_{\perp}(\omega) h_m(\omega - \omega_\xi)}{\sum_{m=0}^{\infty} h_m(\omega - \omega_\xi)} \approx j Z_{\perp}(\omega) \quad (3.2) $$

où m est le mode longitudinal, m_0 la masse au repos de la particule, I_0 l'intensité d'un paquet de longueur L, $h_m(\omega)$ son spectre en fréquence et ω_ξ la pulsation chromatique.

La valeur de la chromaticité étant notée ξ, la pulsation chromatique ω_ξ est égale à

$$ \omega_\xi = \frac{\xi}{\eta} Q \omega_{\nu\nu} \quad (3.3) $$

Puisque, dans la suite du chapitre, nous considérerons uniquement le mode $m = 0$, en faisant apparaître les modes transversaux n dans l'équation (2.65), la pulsation du mouvement bêtastronique du paquet s'écrit

$$ \omega_{Bn} = (n + Q)\omega_{\nu\nu} + \Delta\omega_B = (n + Q)\omega_{\nu\nu} + j(\text{Re} Z_{\perp} + j\text{Im} Z_{\perp}) \quad (3.4) $$

L'oscillation bêtastronique, exprimée en notation exponentielle, est donc de la forme

$$ x(t) = \exp j[(n + Q)\omega_{\nu\nu} + j(\text{Re} Z_{\perp} + j\text{Im} Z_{\perp})] \approx \exp(-\text{Re} Z_{\perp}) \quad (3.5) $$

29
Cette relation permet de mettre en évidence que les instabilités transversales sont excitées par la partie réelle négative de l'impédance de la chambre à vide (fig. 3.3). Quant à leur amplitude, elle se développe de manière exponentielle, avec la constante de temps

$$\tau = -\left(\text{Im} \Delta \omega_{\text{Re}}\right)^{-1} \tag{3.6}$$

![Diagram](image)

Fig. 3.3 : a) Partie réelle de l'impédance transversale de la paroi résistive de la chambre à vide et spectre en fréquence du faisceau pour le mode longitudinal $m = 0$ (head-tail), lorsque la chromaticité de l'accélérateur est négative. b) Représentation des modes transversaux n, dans le cas particulier où Q est de l'ordre de 6,25.

Un des moyens pour amortir ces oscillations consiste à utiliser des octupôles [1], dont le rôle est d'augmenter la dispersion ΔQ du nombre d'ondes bétatroniques des particules du paquet, ce qui favorise l'effet de Landau damping, dont nous avons parlé dans le chapitre précédent. La constante d'amortissement procurée par les octupôles est

$$\tau_d = \frac{2\pi}{\Delta Q \omega_{\text{Re}}} \tag{3.7}$$

Cependant, si la densité de particules des paquets dépasse un certain seuil (environ 5.10^{12} particules par paquet, lors de l'accélération de 20 paquets dans le PS), l'instabilité devient dangereuse, car la constante de temps τ est alors supérieure à τ_d.

Pour éviter ce problème il faut donc avoir recours à une autre méthode, par exemple celle qui détecte les instabilités et les utilise comme signal de correction, ainsi que nous allons le montrer dans le prochain chapitre.

3.3 Caractéristiques des instabilités de paroi résistive du PS

Dans l'accélérateur PS, les instabilités transversales se manifestent dès l'injection et doivent en général être corrégées avant l'énergie de transition. La chromaticité ξ étant alors égale à -1, c'est le mode $m = 0$ qui est le plus souvent observé [1]. Dans ces conditions, la fréquence des instabilités est

$$\omega_{p_0} = (n + Q)\omega_{\text{Re}} \tag{3.8}$$

En notant que les instabilités apparaissent lorsque $\text{Re}(Z_\perp)$ est négative, du fait que la valeur entière de Q est égale à 6, l'instabilité la plus importante est obtenue lorsque $n = -7$ (fig. 3.3b).
C'est en effet ce mode qui est excité par les valeurs les plus élevées de l'impédance transversale. Les autres modes, correspondant à \(n < -7 \), ont des amplitudes plus faibles, puisque l'impédance décroît de manière hyperbolique en fonction de la fréquence. Néanmoins, pour les faisceaux denses, les modes \(n = -8 \) et \(n = -9 \) demeurent dangereux.

Pendant l'accélération des protons, la fréquence de révolution varie entre 417,5 et 478,6 kHz (Tableau 2.1). Suivant la valeur de \(Q \), les trois premiers modes instables sont alors :

\[
\begin{align*}
 n = -7 & \Rightarrow 230 \ \text{kHz} \leq |f_{p7}| \leq 430 \ \text{kHz} \\
 n = -8 & \Rightarrow 647 \ \text{kHz} \leq |f_{p8}| \leq 906 \ \text{kHz} \\
 n = -9 & \Rightarrow 1065 \ \text{kHz} \leq |f_{p9}| \leq 1383 \ \text{kHz}
\end{align*}
\]

(3.9)

(3.10)

(3.11)

Pour un faisceau de \(M \) paquets, contenant \(N \) particules chacun, le courant total \(I \) est

\[
I = e \cdot N \cdot M \cdot f_{rev}
\]

(3.12)

Et la variation de fréquence de l'oscillation bétatronique, due à l'impédance transversale, est

\[
\Delta \omega_{p} = \frac{j}{2Q} \cdot \frac{eB}{\gamma m_{0}} \cdot \frac{I}{ML} \cdot Z_{\perp}(\omega_{b})
\]

(3.13)

La partie réelle de l'impédance de couplage transversale, se déduit de (3.1), et peut être calculée en utilisant la relation suivante [16]

\[
\text{Re}\left\{Z_{\perp}(\omega)\right\} = \frac{RZ_{0}}{b^{3}} \begin{cases}
\delta & \text{pour } \delta \leq \Delta \\
\delta^{2}/\Delta & \text{pour } \delta \geq \Delta
\end{cases}
\]

(3.14)

où \(Z_{0} = \mu_{0}c = 377 \ \Omega \) représente l'impédance du vide, \(\Delta \) l'épaisseur de la chambre à vide métallique et \(b \) le rayon équivalent d'une chambre cylindrique. Dans le cas d'un conducteur de résistivité \(\rho \), la profondeur \(\delta \) de l'effet pelliculaire est égale à

\[
\delta = \frac{2\rho}{\sqrt{\mu_{0}\omega}}
\]

(3.15)

L'amplitude des instabilités transversales se développe de manière exponentielle, avec la constante de temps

\[
\tau = -\frac{1}{\text{Im} \Delta \omega_{p}} = \frac{4\pi R m_{0} c' \gamma}{eI} \frac{1}{\beta_{mc}} \text{Re}\left\{Z_{\perp}(\omega)\right\}
\]

(3.16)

Puisque les instabilités verticales n'ont pas encore été observées dans cet accélérateur, nous n'étudierons ici que le mouvement du faisceau dans le plan horizontal.

La chambre à vide du PS est en acier inoxydable (\(\rho = 9,1 \cdot 10^{-7} \ \Omega \cdot m \)) de 2 mm d'épaisseur, de section elliptique, dont les dimensions intérieures sont : 14,5 cm par 7 cm.
La profondeur de l'effet pelliculaire pour la fréquence la plus basse des instabilités f_{β} est

$$\delta_{230\text{ kHz}} = \sqrt{\frac{2 \times 9,1 \times 10^{-7}}{4 \pi \cdot 10^{-7} \times 2 \pi \times 230 \times 10^3}} = 1 \text{ mm}$$ \hspace{1cm} (3.17)$$

Si le rayon b est égal à 7,25 cm, ce qui correspond au rayon horizontal de l'ellipse, comme $\delta_{230\text{ kHz}} < \Delta = 2 \text{ mm}$, la partie réelle de l'impédance transversale s'écrit

$$\text{Re} \left\{ Z_\perp (\omega) \right\} = \frac{R Z_0 \delta}{b^2} = \frac{100 \times 377 \times 10^{-3}}{(7,25 \times 10^{-2})^2} \equiv 98,9 \text{ k\Omega/m}$$ \hspace{1cm} (3.18)$$

Considérons par exemple un faisceau injecté dans le PS, contenant $1,5 \times 10^{13}$ particules réparties dans vingt paquets identiques. Le courant total qui circule dans l'anneau est

$$I = 1,6 \times 10^{-19} \times 1,5 \times 10^{13} \times 417,5 \times 10^3 \equiv 1 \text{ A}$$ \hspace{1cm} (3.19)$$

Dans l'approximation sinusoidale, la fonction bétaétronique moyenne β_{moy} est égale à

$$\beta_{\text{moy}} = \frac{R}{Q_{\text{moy}}} \equiv \frac{100}{6,2} = 16,1 \text{ m}$$ \hspace{1cm} (3.20)$$

La valeur maximum du temps de montée τ de l'amplitude des instabilités f_{β} est donc

$$\tau = \frac{4\pi \times 100 \times 1,67 \times 10^{-27} \times 3 \times 10^8 \times 2,96}{1,6 \times 10^{-19} \times 16,1 \times 98,9 \times 10^3} \equiv 5,09 \text{ ms}$$ \hspace{1cm} (3.21)$$

En considérant la demi hauteur de la chambre à vide, soit $b = 3,5 \text{ cm}$, la partie réelle de l'impédance transversale est de l'ordre de 880 k\Omega et la valeur minimum du temps de montée de l'amplitude des instabilités f_{β} correspondant est alors $\tau = 0,5 \text{ ms}$. Les temps de montée, observés actuellement dans le plan horizontal, se situent en dehors de cette fourchette, car ils varient entre 5 et 10 ms. La différence s'explique sans doute par le fait que les formules de calcul ne tiennent pas compte de l'effet stabilisant résultant de la dispersion du nombre d'ondes bétaétroniques Q introduit par la différence de courant entre les paquets accélérés [1], c'est-à-dire par un phénomène de Landau damping.

3.4 Mesure des instabilités des faisceaux de protons, dans le PS

L'observation des signaux provenant du capteur de position a d'abord été effectuée à l'aide d'un analyseur de spectre, utilisé comme récepteur des trois modes instables que nous avons défini précédemment (fig. 3.4 à 3.6). L'étude de leur évolution a ainsi contribué à caractériser l'instant de départ, le temps de montée et la durée totale de ces instabilités. Par la suite, l'acquisition de ces signaux, grâce à un système de traitement numérique, a permis d'obtenir des spectres en fréquence, fournis par des transformées de Fourier rapides (FFT\(^1\)) appliquées aux données correspondant au temps de montée des instabilités (fig. 3.7 et 3.8).

\(^{1}\text{FFT : Fast Fourier Transform. Terme couramment utilisé, dans le domaine du traitement numérique des signaux, pour désigner la transformée de Fourier rapide.} \)

32
Les premières mesures (fig. 3.4 à 3.6) ont été réalisées alors que l’injection dans le PS se faisait à une énergie de 800 MeV, avec des faisceaux de \(1.8 \times 10^{13}\) protons répartis dans 20 paquets. La fréquence de révolution était de 403 kHz et le nombre d’ondes bétatroniques \(Q\) à l’injection de 6,19. Les pertes provoquées par les instabilités transversales étaient relativement importantes, puisque peu après l’injection les faisceaux ne conservaient que \(1.5 \times 10^{13}\) particules environ.

Ces mesures montrent que les instabilités apparaissent dès l’injection du faisceau et fournissent les renseignements suivants sur les trois premiers modes transversaux :

- **mode \(n = -7\) (fig. 3.4)**
 - l’instabilité \(f_{B7}\), dont la fréquence est de 326 kHz, commence dès l’injection, avec un temps de montée de l’ordre de 5 ms, et dure environ 30 ms
 - la perte la plus importante du faisceau se produit une dizaine de millisecondes après l’injection, alors que l’amplitude de l’oscillation s’approche du maximum. Comme nous l’avons déjà précisé, c’est ce mode qui a la plus grande amplitude.

![Diagram](image)

Fig. 3.4 : Mesure du mode transversal \(n = -7\) d’un faisceau de \(1.8 \times 10^{13}\) protons répartis dans 20 paquets, injectés dans le PS à une énergie de 800 MeV. La fréquence de l’instabilité \(f_{B7} = 326\) kHz correspond à une valeur de \(Q\) de 6,19.

- **mode \(n = -8\) (fig. 3.5)**
 - l’instabilité \(f_{B8} = 729\) kHz commence 3 ms après l’injection, excitée peut-être par l’importance de l’amplitude de l’oscillation \(f_{B7}\). Elle se caractérise par un temps de montée de l’ordre de 3 ms et une durée de 15 ms environ
 - l’amplitude de cette oscillation est encore relativement importante et contribue, sans doute pour une large part, aux pertes du faisceau.
Fig. 3.5 : Mesure de l'instabilité transversale $f_{b_8} = 729$ kHz (mode $n = -8$) d'un faisceau de 20 paquets de protons comptant un total de $1,8 \times 10^{12}$ particules.

- **mode $n = -9$** (fig. 3.6)

 - *L'instabilité $f_{b_9} = 1132$ kHz commence 8 ms après l'injection. Son temps de montée est de 8 ms environ et sa durée totale de l'ordre de 35 ms*

 - *L'amplitude de cette oscillation est beaucoup plus faible que celle des deux premiers modes et contribue peu aux pertes du faisceau.*

Fig. 3.6 : Mesure de l'instabilité transversale $f_{b_9} = 1132$ kHz (mode $n = -9$).
Le traitement numérique des signaux du pick-up a également été effectué sur des faisceaux de protons de 20 paquets, comptant un total de \(1.6.10^{13}\) particules, mais injectés dans le PS à une énergie de 1 GeV. En utilisant les données acquisées, le système numérique permet de calculer le nombre d'ondes béatroniques \(Q\) qui est de 6,235 à l'injection. Comme la fréquence de révolution correspondant à ce fonctionnement est de 417,5 kHz (Tableau 2.1), les fréquences des trois premiers modes des instabilités transversales sont les suivantes :

\[
\begin{align*}
 n = -7 & \Rightarrow | f_{p7} | \equiv 319 \text{ kHz} \\
 n = -8 & \Rightarrow | f_{p8} | \equiv 737 \text{ kHz} \\
 n = -9 & \Rightarrow | f_{p9} | \equiv 1154 \text{ kHz}
\end{align*}
\]

La figure (3.7a) reproduit le signal de position horizontal, provenant du pick-up, qui correspond au mouvement des 20 paquets pendant une durée de 50 ms, à partir de l'injection. Quant à la figure (3.7b), elle montre l'oscillation d'un seul paquet, extraite des données acquisées au cours des 3200 premiers tours, soit pendant une durée de 7,7 ms.

![Image](image.png)

Fig. 3.7 : a) Signal issu du pick-up, correspondant à l'oscillation des 20 paquets qui constituent le faisceau de \(1.6.10^{13}\) particules. b) Oscillation d'un seul paquet, extraite des acquisitions numériques.

L'échantillonnage des signaux du pick-up de position a été réalisé à la fréquence d'accélération, soit 8,35 MHz à l'injection. Ceci permet d'étudier l'évolution de l'amplitude du spectre, pour des fréquences inférieures à 4,175 MHz (fig. 3.8a), grâce à une analyse spectrale de l'ensemble des données, résultant de transformées de Fourier rapides.

Nous pouvons ainsi constater l'existence, non seulement des trois premiers modes transversaux que le système est censé corriger, mais de plusieurs autres modes dont les valeurs de \(n\) sont inférieures à -9. L'existence d'autres modes, au-delà de cette limite, n'est pas à exclure, car le filtrage analogique des signaux du pick-up, dont la fréquence de coupure de 2.5 MHz, peut les atténuer et les rendre inobservables.

L'effet de ces autres modes vis à vis des pertes de faisceau n'a pas encore été évalué. Cependant, dans l'hypothèse où il serait nécessaire de les corriger, nous verrons ultérieurement qu'il faudrait alors élargir la bande passante du système d'observation et sans doute utiliser une autre méthode que celle que nous allons étudier.
Pour en revenir aux trois premiers modes qui doivent être corrigés actuellement, nous pouvons remarquer que l'amplitude des instabilités transversales, comparable à celle des harmoniques de la fréquence de révolution au moment de l'injection, devient très rapidement prépondérante, surtout pour le mode instable $n = -7$.

En considérant uniquement les données qui concernent l'oscillation d'un seul paquet, l'analyse spectrale permet aussi de visualiser l'accroissement de l'amplitude du signal à la fréquence bêtronique $f_B = q f_{tr} = 98$ kHz (d'après 2.64), sur une échelle de 209 kHz (fig. 3.8b).

Fig. 3.8 :

- a) Analyse spectrale des acquisitions numériques du faisceau de 1.6×10^{13} particules, montrant l'importance de l'amplitude des instabilités transversales du plan horizontal, vis à vis des harmoniques de la fréquence de révolution.
- b) Evolution de l'oscillation bêtronique $f_B = q f_{tr} = 98$ kHz, pendant 3200 tours après l'injection. L'amplitude maximum de la raie instable la plus importante f_B, est de 75 mV alors que celle de l'oscillation bêtronique f_B est de 220 mV.
3.5 Contre-réaction transversale

Etant donné que c’est la partie réelle de l’impédance résistive de la chambre à vide qui est à l’origine des instabilités transversales, la correction d’un faisceau de M paquets de particules consiste à compenser cette impédance. Cela peut être réalisé en utilisant un système de contre-réaction qui doit présenter les caractéristiques suivantes [17] :

- si tous les modes n, rendus instables par l’impédance résistive de la chambre, doivent être amortis, la bande passante doit être au moins égale à la moitié du spectre en fréquence du paquet, soit $\Delta f_{FB} \geq M f_{mr}/2 \approx 5 \text{ MHz}$ pour le PS. Cependant, dans le cas où quelques modes, en basse fréquence seulement, sont censés être dangereux, un système de correction à bande passante réduite peut s’avérer suffisant.

- le déflecteur doit être disposé, comme nous le montrerons dans l’analyse de la stabilité du système, à une distance du pick-up égale à un nombre impair de quarts de longueur d’onde béatronique ($\lambda_B = \frac{2\pi}{R/Q}$), afin d’assurer une correction optimale.

De manière générale, pour amortir les instabilités de paquet unique (head-tail modes) pendant le cycle d’accélération, il est nécessaire d’agir sur la chromaticité ξ de façon à obtenir une fréquence chromatiqur f_ξ positive, autrement dit la chromaticité doit être négative avant l’énergie de transition et positive après celle-ci. Un amortissement passif de tous les modes est ainsi réalisé, en déplaçant les enveloppes des spectres $h_n(\omega - \omega_\xi)$ vers les fréquences positives, où l’impédance transversale a un effet stabilisant (voir la figure 3.3).

Dans le PS cependant, lors de l’accélération des faisceaux de haute densité, l’effet déstabilisant de la singularité de $Z_T(\omega)$ sur les modes transversaux ($n = -7, -8$ et -9) est bien supérieur à tous les effets stabilisants de l’accélérateur. Ce genre d’instabilités peut être traité, comme nous allons le montrer, à l’aide d’un système de correction à bande passante limitée qui agit uniquement sur ces modes instables, en basse fréquence.
4 Le régulateur de correction des instabilités

Le rôle du régulateur, lors de l'accélération des faisceaux de protons de haute densité, est de corriger les instabilités transversales et, dans la mesure du possible, d'atténuer les oscillations dues aux erreurs d'injection. Pendant ces opérations, les erreurs d'orbite fermée\(^1\) ainsi que les différences entre paquets font apparaître des harmoniques de la fréquence de révolution qui peuvent conduire à une augmentation considérable de la puissance des amplificateurs. Pour éluder ce problème, deux méthodes sont communément employées : l'une, analogique, qui consiste à soustraire à la sortie du pick-up le signal moyen dû aux erreurs, mais que nous n'avons pas réalisée; l'autre, celle de notre application numérique, qui rejette les harmoniques.

4.1 Schéma de principe

![Diagramme de principe du régulateur de correction des instabilités](image)

Fig. 4.1 : Schéma de principe du régulateur utilisé dans le PS pour la correction des instabilités de paquets couplés (ou instabilités transversales) des faisceaux de protons de haute densité.

Le régulateur, conçu pour corriger les instabilités transversales (fig. 4.1 et chap. 13, fig. 13.1), comporte un pick-up, dont le rôle est de détecter la position horizontale du faisceau à chacun de ses passages, et un défecteur électromagnétique qui, avec environ un tour de retard, lui inflige un angle de déflexion, proportionnel à la position mesurée. Le gain du détecteur est programmé de cycle à cycle afin d'adapter le système à la dynamique d'intensité des faisceaux accélérés dans le PS.

\(^1\)Erreurs d'orbite fermée : elles résultent d'un défaut de centrage de l'orbite du faisceau dans le capteur.
La normalisation Δ/Σ qui suit immédiatement l'électronique du capteur permet de fournir au convertisseur analogique numérique (ADC) un signal de position indépendant de l'intensité. Puisque le PS est un accélérateur dont le nombre d'ondes bêtastroniques Q et l'énergie varient au cours d'un même cycle, la fréquence d'horloge, utilisée pour l'échantillonnage des signaux et le traitement numérique, est dérivée de la fréquence d'accélération.

Le filtrage numérique est destiné à supprimer les harmoniques de la fréquence de révolution et la correction de phase consiste à régler la polarité du signal de contre-réaction et à ajuster le retard total de la boucle à environ une période de révolution du paquet. Le signal de correction ainsi élaboré est contrôlé ensuite par le convertisseur numérique analogique (DAC), puis amplifié avant d'être appliqué aux deux électrodes horizontales du déflecteur. Par ailleurs, ce système est pourvu d'une entrée auxiliaire qui rend possible l'excitation du faisceau, soit en boucle ouverte soit en boucle fermée.

Avant d'étudier le traitement numérique des signaux, auquel nous consacrerons le prochain chapitre, les paragraphes qui suivent ont pour but de présenter l'ensemble des éléments de ce système, à l'exception du pick-up qui a déjà été décrit au chapitre (2.4).

4.2 La normalisation des signaux du pick-up

![Diagramme de normalisation Δ/Σ.](image)

Fig. 4.2 : Normalisation Δ/Σ. La position du faisceau est calculée par un diviseur analogique, à partir du signal de position Δ et du signal d'intensité Σ, fournis par le pick-up. Une détection numérique du maximum du signal Σ est nécessaire, car sa valeur moyenne s'annule peu après l'injection. Le résultat de cette détection, converti en analogique, est conservé comme signal d'intensité pour le diviseur pendant le cycle d'accélération, ce qui revient à négliger les pertes et les variations de forme du paquet.

L'opération de normalisation, qui calcule la position réelle du faisceau, est exécutée par un diviseur analogique, à partir des signaux de position et d'intensité procurés par le pick-up, après détection numérique de l'intensité (fig. 4.2 et chap. 13, fig. 13.4). Cette détection s'avère nécessaire car, du fait que la fréquence de coupure basse de l'électronique du pick-up est de l'ordre de 10 kHz, la valeur moyenne des signaux qu'il fournit s'annule peu après l'injection du faisceau dans l'accélérateur. Cet effet est extrêmement gênant pour le processus de normalisation, puisque le signal d'intensité constitue le dénominateur du diviseur analogique.

Pour obtenir cependant, une information correcte de la position, une détection numérique du maximum du signal d'intensité est donc réalisée dès l'injection. Le résultat, converti en analogique, est ensuite appliqué au diviseur pendant toute la durée du cycle.
Pour être tout à fait rigoureux, il faudrait évidemment tenir compte des différences d'intensité entre les paquets, de leur changement de forme et des pertes de faisceau éventuelles en cours d'accélération. Néanmoins cette méthode, qui n'utilise qu'un seul circuit (TRW TDC1035) pour réaliser la conversion analogique numérique et la détection du maximum, a l'avantage de donner un résultat fiable tout en étant relativement simple.

Finalement, pour éviter la superposition des spectres en fréquence, au cours de la conversion analogique numérique, ainsi que les réflexions provoquées par la désadaptation d'impédance introduite, comme nous le verrons plus loin, par les électrodes du déflecteur, la bande passante des signaux de position est limitée à 2,5 MHz par un filtre passe-bas analogique.

4.3 Les convertisseurs

4.3.1 Convertisseur analogique numérique (ADC)

La conversion analogique numérique (ADC) se fait à l'aide d'un convertisseur de 12 bits rapide, car pour échantillonner les signaux correspondant aux 20 paquets qui peuvent circuler dans l'anneau, il faut un signal d'horloge dérivé de la fréquence d'accélération, dont la valeur maximum s'approche des 10 MHz. D'autre part, la résolution de 12 bits est requise pour atteindre un niveau d'atténuation suffisant des harmoniques de la fréquence de révolution.

4.3.2 Convertisseur numérique analogique (DAC)

Le convertisseur numérique analogique (DAC) est également un élément rapide de 12 bits qui réalise plusieurs fonctions (fig. 4.3).

D'abord, il permet d'ouvrir et de fermer la boucle de correction, en agissant directement sur les bits de données issus de la chaîne de traitement numérique. Cette action est indispensable car le régulateur, lorsqu'il est sollicité, n'est actif que sur une partie du cycle, en général avant la transition. En outre, il ne doit pas gêner l'accélération des faisceaux, autres que les protons. Un contrôle de gain est aussi disponible pour ajuster la dynamique du signal de sortie à celle des amplificateurs et pouvoir éventuellement réaliser un contrôle adaptatif du système.

Ensuite, un échantillonneur bloqueur analogique, d'une résolution de 12 bits, dont les transitoires sont extrêmement faibles, permet d'éliminer les transitoires de conversion du DAC.
La conversion analogique se termine avec un filtrage passe-bas qui a pour but de supprimer les harmoniques d'échantillonnage.

Notons que, du point de vue du traitement du signal, les convertisseurs se comportent comme des échantillonneurs bloqueurs d'ordre zéro.

4.4 Les préamplificateurs

Les préamplificateurs font partie d'un étage tampon dont le rôle principal est de convertir le signal de sortie du DAC en deux signaux, déphasés de 180 degrés, destinés aux amplificateurs de correction des instabilités transversales du plan horizontal (fig. 4.4 et chap. 13, fig. 13.5).

Fig. 4.4 : Étage de préamplification permettant de fournir les signaux de correction aux deux amplificateurs de puissance d'un même plan. Ce module détecte également les trois premiers modes transversaux instables, dans le but de favoriser leur observation. L'entrée auxiliaire est pourvue afin d'exciter le faisceau.

Pendant les cycles d'accélération des faisceaux de protons de haute densité, les trois détecteurs sélectifs permettent d'observer l'évolution des premiers modes instables, soit directement sur l'oscilloscope, soit en ayant recours à un système d'acquisition numérique.

D'autre part, grâce à l'entrée auxiliaire, il est possible de mesurer un certain nombre de paramètres du faisceau, tels que le nombre d'ondes bétatroniques, ou d'étudier sa fonction de transfert, à l'aide d'un analyseur de réseaux par exemple.

4.5 Les amplificateurs de puissance

La bande passante du système doit être suffisante, non seulement pour permettre de corriger les instabilités transversales, mais aussi pour amortir l'oscillation bétatronique $Q_{f_{rec}}$, provoquée par les erreurs d'injection. Sa fréquence moyenne étant de l'ordre de 80 kHz, cette valeur exclut l'utilisation d'amplificateurs commerciaux car, pour la puissance de 1 kW souhaitée, ces derniers ne sont en général spécifiés qu'à partir de 300 kHz.
Les amplificateurs de puissance de cette application (Annexe 12.2 et chap. 13, fig. 13.2, 13.3) ont été spécialement étudiés et réalisés au CERN [18, 19]. Dans le but de les conserver à l'abri des radiations et de faciliter leur entretien, ils sont installés en dehors de l'anneau, dans le même local que l'électronique du régulateur. Les signaux sont ensuite transmis au délecteur à l'aide de câbles coaxiaux.

Refroidis par une circulation d'eau déminéralisée, ils sont en mesure de fournir un signal d'une puissance de 1 kW à une charge de 50 Ohms de manière continue.

La protection de chaque amplificateur est assurée par un ensemble de circuits qui surveille l'état des alimentations, mesure la température des éléments sensibles et contrôle que les puissances transmise et réfléchie ne dépassent pas les limites fixées, en réduisant au besoin le niveau du signal d'entrée pour éviter de détruire les étages de sortie.

Les caractéristiques principales de l'amplificateur sont résumées sur le tableau 4.1.

| Tableau 4.1 : Caractéristiques des amplificateurs de puissance. |
|---------------------------------|-----------------|
| **Bande passante à -3 dB** | 60 kHz à 12 MHz |
| **Gain** | 53 ± 1.5 dB |
| **Niveau d'entrée maximum** | 1,4 V (Crête à crête) |
| Retard de groupe (f > 350 kHz) | < 100 ns |
| **Puissance de sortie (60 kHz à 12 MHz)** | > 700 W |
| **Puissance de sortie (80 kHz à 12 MHz)** | > 1 kW |
| **Erreur de linéarité (1 W à 1 kW)** | < 3 dB |
| **Distorsion harmonique à 1 kW** | < -20 dBc |
| **Impédance d'entrée et de sortie** | 50 Ohms |
| **Puissance réfléchie limitée à** | 25 W (Charge > 50 Ohms) |
| | 60 W (Charge < 50 Ohms) |

4.6 Le délecteur à ligne de transmission

La correction des instabilités transversales, dans le PS, utilise actuellement un délecteur conçu pour amortir les oscillations d'injection des antiprotons [20]. Composé de deux paires d'électrodes, l'une pour le plan horizontal et l'autre pour le vertical, disposées à l'intérieur d'une enceinte à vide cylindrique, il permet de fournir les champs électrostatiques nécessaires, grâce à quatre amplificateurs qui peuvent procurer 3 kV à une impédance de 10 kΩ.

Des relais spéciaux, installés aux deux extrémités de chaque électrode, permettent de passer d'une application à l'autre (voir chapitre 13, fig. 13.1), en commutant les amplificateurs ainsi que leurs charges respectives.

Dans la mesure où les amplificateurs d'un même plan fournissent des signaux en opposition de phase (fig. 4.5), en négligeant les effets dus à la proximité des électrodes de l'autre plan, il est possible de considérer qu'une masse virtuelle apparaît au centre du délecteur. Les électrodes, situées entre cette masse et celle de la paroi interne de l'enceinte à vide, se comportent alors comme des antennes (ou strip-lines\(^2\)).

Si l'impédance caractéristique de ces lignes est égale à l'impédance de sortie des amplificateurs de puissance, ce type de délecteur représente alors une charge constante sur une grande plage de fréquences.

\(^2\) *Strip-line* : ligne de transmission formée d'un conducteur noyé dans un diélectrique, entre deux plans de masse.
Puisque le signal de puissance est appliqué à l'impédance de 50 Ohms, deux types de champ apparaissent simultanément entre chaque paire d'électrodes. L'un, électrostatique, dû à la tension qui se développe sur la charge, l'autre magnétique, induit par le courant qui circule dans l'électrode. La combinaison de ces deux champs donne naissance à la force électromagnétique qui est destinée à corriger la trajectoire du faisceau.

Fig. 4.5 : Principe du déflecteur électromagnétique à ligne de transmission. Seules sont représentées les électrodes du plan horizontal, qui corrigent les instabilités transversales des faisceaux de protons.

Du fait que la ligne de transmission est *directive*, si le déflecteur est utilisé en haute fréquence pour agir sur des faisceaux relativistes, il est nécessaire que l'onde électrique et le mouvement du faisceau aient des directions opposées [9]. Dans le cas contraire, comme le champ électromagnétique dû au signal de correction est antagoniste au champ créé sur les électrodes par le courant image du faisceau, la déflexion résultante est alors réduite, voire même nulle.

4.6.1 Caractéristiques du déflecteur

Fig. 4.6 : a) Vue extérieure de déflecteur, installé dans l'accélérateur. b) Section du déflecteur montrant les caractéristiques mécaniques. Les électrodes ont une longueur \(l \) de 90 cm.

La figure 4.6 montre le déflecteur et ses principales dimensions. Les électrodes, centrées par rapport à la chambre à vide, ont une longueur de 90 cm, une largeur de 30 mm et une épaisseur de 2 mm. Leur écartement est de 6 cm dans le plan vertical et de 14 cm dans le plan horizontal.
Les électrodes du déflecteur, comme nous l’avons déjà signalé, ont été conçues pour s’adapter à des amplificateurs de haute tension, afin de générer un champ électrostatique important à l’intérieur d’une enceinte à vide de dimensions standards. Les principaux critères de construction ayant donc été la minimisation de la capacité des électrodes et l’isolation de la haute tension, il en résulte que ces lignes de transmission sont de très mauvaise qualité pour cette nouvelle application.

Afin de déterminer l’impédance caractéristique Z_0 de ces lignes, en utilisant les formules de calcul des microstrips3 couverts [21], nous allons considérer l’existence d’une masse virtuelle, au centre de cette structure, et une masse réelle constituée par la paroi interne de l’enceinte à vide. Avec ces hypothèses, l’impédance Z_0 est fonction de la largeur w de l’électrode, de son épaisseur t et des distances h_1, au zéro virtuel, et h au plan de masse (le développement de ce calcul peut être consulté à l’annexe 12.3)

$$Z_0 = Z_{0m} - \Delta Z_{0a}$$ \hfill (4.1)

Z_{0m} représente l’impédance du microstrip lorsqu’il n’est pas couvert et ΔZ_{0a} est un terme de correction en présence du couvercle. Le diélectrique entre celui-ci et la ligne doit être de l’air, c’est-à-dire que la permittivité ε, est égale à 1.

Ce calcul fournit une valeur approximative de 150 Ohms pour l’impédance caractéristique des électrodes du plan horizontal et de 120 Ohms pour le vertical, ce qui montre déjà que la charge des amplificateurs n’est pas adaptée à leur impédance de sortie.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{impedance.png}
\caption{Impédance des électrodes du déflecteur, terminées par 50 Ohms}
\end{figure}

\textbf{Fig. 4.7} : La mesure de l’impédance de chaque électrode du déflecteur est réalisée à l’aide d’un analyseur de réseaux, dans une configuration 50 Ohms, en maintenant les électrodes libres chargées par 50 Ohms.

3Microstrip : ligne dont le conducteur est séparé du plan de masse par un diélectrique.
En outre, la géométrie complète des électrodes ne permet pas de conserver une impédance caractéristique constante. Pour vérifier ces résultats, l'impédance de chaque électrode a été mesurée (fig. 4.7) avec un analyseur de réseaux, dans une configuration 50 Ohms, les trois électrodes libres étant aussi terminées par 50 Ohms. Bien que ces conditions de mesure ne simulent pas le mode de fonctionnement différentiel du délecteur, elles mettent tout de même en évidence la variation de l'impédance caractéristique, en fonction de la fréquence, et montrent que sa valeur est supérieure aux 50 Ohms requis par les amplificateurs de puissance. Elles font également apparaître la dissymétrie entre les deux plans du délecteur.

Cette désadaptation de la charge des amplificateurs a pour conséquence la restriction du domaine d'utilisation du régulateur aux basses fréquences, en l'occurrence à la plage commençant à 80 kHz, fréquence de coupure inférieure des amplificateurs de puissance, et se terminant à 2,5 MHz avec les filtres antirepliement, destinés aussi au traitement numérique.

Les caractéristiques mécaniques du délecteur qui conditionnent la force électromagnétique nécessaire pour corriger la trajectoire des faisceaux, sont les suivantes

- longueur des électrodes : \(l = 90 \text{ cm} \)
- écartement entre électrodes horizontales : \(d_H = 14 \text{ cm} \)
- écartement entre électrodes verticales : \(d_V = 6 \text{ cm} \)

Chaque amplificateur étant en mesure de fournir une puissance efficace de 1 kW, sur une charge de 50 Ohms, la tension maximum qui se développe sur chaque électrode est égale à

\[
V_{\text{eff}} = \sqrt{PR} = \sqrt{1000 \times 50} = 223,6 \ \text{V}_{\text{eff}}
\]

et le maximum de courant est

\[
I_{\text{eff}} = \frac{P}{\sqrt{R}} = \sqrt{\frac{1000}{50}} = 4,47 \ \text{A}_{\text{eff}}
\]

Puisque les électrodes de chaque plan reçoivent des signaux en opposition de phase, la tension qui apparaît entre elles est le double de celle qui se développe sur l'une des charges. La valeur maximum du champ électrique \(E \) entre les électrodes est par conséquent

\[
E_{H_{\text{max}}} = \frac{V_H}{d_H} = \frac{V_{\text{eff}} \times 2\sqrt{2}}{d_H} = \frac{632,4}{0,14} = 4517 \ \text{V/m}
\]

\[
E_{V_{\text{max}}} = \frac{V_V}{d_V} = \frac{V_{\text{eff}} \times 2\sqrt{2}}{d_V} = \frac{632,4}{0,06} = 10540 \ \text{V/m}
\]

Quant aux courants qui circulent dans chaque paire d'électrodes, ils sont identiques, d'intensité \(I \) mais de signes opposés.
Or, le passage du courant dans un conducteur induit des lignes de champ magnétique dans un plan perpendiculaire au conducteur (fig. 4.8). Ainsi, en un point quelconque de ce plan, situé à une distance \(r \) du conducteur, la valeur du champ \(H \) est donnée par la relation

\[
H = \frac{I}{2\pi r}
\]

(4.6)

![Diagram of magnetic induction created by the circulation of a current I in two parallel conductors.]

Fig. 4.8 : Induction magnétique \(H \) créée par la circulation d’un courant \(I \) dans deux conducteurs parallèles.

Lorsque les amplificateurs d’un même plan fournissent la puissance maximum, autrement dit quand le courant de chaque électrode atteint la valeur \(I_{\text{max}} \), les lignes de champ s’ajoutent entre les électrodes parallèles. Dans ces conditions, au centre du déflecteur, le champ magnétique prend les valeurs suivantes

\[
H_{H_{\text{max}}} = \frac{2I_{\text{max}}}{2\pi r_H} = \frac{2 \times 4,47 \times \sqrt{2}}{2\pi \times 0.07} = 28,75 \quad \text{A/m}
\]

(4.7)

\[
H_{V_{\text{max}}} = \frac{2I_{\text{max}}}{2\pi r_V} = \frac{2 \times 4,47 \times \sqrt{2}}{2\pi \times 0.03} = 67,07 \quad \text{A/m}
\]

(4.8)

L’induction magnétique étant donnée par

\[
B = \mu_0 \mu_r H \quad \text{avec} \quad \mu_r = 1 \quad \text{(air)}
\]

(4.9)

Si chaque amplificateur procure une puissance de 1 kW, l’induction magnétique maximum qui se développe au centre des électrodes est

\[
B_{H_{\text{max}}} = \mu_0 H_{H_{\text{max}}} = 4\pi \cdot 10^{-7} \times 28,75 = 36,13 \cdot 10^{-6} \quad \text{T}
\]

(4.10)

\[
B_{V_{\text{max}}} = \mu_0 H_{V_{\text{max}}} = 4\pi \cdot 10^{-7} \times 67,07 = 84,28 \cdot 10^{-6} \quad \text{T}
\]

(4.11)
Grâce à ces résultats, nous sommes maintenant en mesure de calculer les déflexions électrostatique et magnétique que le déflecteur de correction est capable de fournir à un faisceau de protons caractérisé par une quantité de mouvement égale à p.

- **Déflexion électrostatique** (fig. 4.9)

Lorsqu'un paquet de particules est soumis à l'action d'un champ électrique de valeur E_e, sur une distance l, il subit l'effet d'une déflexion qui modifie la trajectoire des particules, d'un angle α_E.

\[
\alpha_E \ [\text{rad}] = \arctan \left(\frac{E_e l}{\beta p} \right) = \frac{E_e l}{\beta_p} \left[\frac{10^{-8} (V/m) m}{\text{GeV/c}} \right]
\]

(4.12)

\[
d_E \ [\text{m}] = \frac{E_e l^2}{2\beta_p} \left[\frac{10^{-8} (V/m) m^2}{\text{GeV/c}} \right]
\]

(4.13)

Cette déflexion se traduit, à sa sortie du déflecteur, par une déviation électrostatique d_E, par rapport à la position que le faisceau avait en entrant.

L'angle de déflexion électrostatique ainsi que la déviation électrostatique sont donnés par les deux relations suivantes [3]

Les faisceaux de protons, injectés dans le PS à une énergie de 1 GeV, ont une quantité de mouvement p de 1,696 GeV/c et la vitesse normalisée β des particules est de 0,875 (chap. 2, tableau 2.1). Si la puissance maximum de 1 kW est appliquée à chaque électrode du plan horizontal du déflecteur, le faisceau est alors soumis aux actions suivantes :

- **déflexion électrostatique horizontale** : 2,74 μrad
- **déflexion électrostatique verticale** : 6,39 μrad
- **déviation électrostatique horizontale** : 1,23 μm
- **déviation électrostatique verticale** : 2,87 μm

47
- Déflexion magnétique (fig. 4.10)

Lorsqu'un courant circule dans les électrodes d'un même plan du déflecteur, la déflexion provoquée par l'induction magnétique \(B_k \) qui en résulte, peut être exprimée en fonction de la rigidité magnétique \(B\rho \) du faisceau de particules [3] ou, plus fréquemment, de sa quantité de mouvement \(p \)

\[
\theta \ [\text{rad}] = \frac{B_k}{B\rho} = 0,3 \frac{B_k l}{p} \left[\frac{T \cdot m}{\text{GeV/c}} \right]
\]

(4.14)

Fig. 4.10 : Déflexion magnétique d'un faisceau de particules chargées.

Le déplacement correspondant est calculé à l'aide de la relation suivante

\[
d_M \ [m] = 0,3 \frac{B_k l^2}{2p} \left[\frac{T \cdot m^2}{\text{GeV/c}} \right].
\]

(4.15)

Les effets d'une puissance de 1 kW par électrode, sur le même type de faisceau que dans le cas de la déflexion électrostatique, sont maintenant :

- déflexion magnétique horizontale : 5,81 µrad
- déflexion magnétique verticale : 13,4 µrad
- déviation magnétique horizontale : 2,62 µm
- déviation magnétique verticale : 6,04 µm

En montant le système de telle façon que les effets électrostatiques et magnétiques précédents s'ajoutent, il en résulte une action que nous appellerons **effet électromagnétique**, dont les maxima, au centre du déflecteur, sont les suivants:
• déflexion électromagnétique horizontale : 8,55 μrad
• déflexion électromagnétique verticale : 19,79 μrad
• déviation électromagnétique horizontale : 3,85 μm
• déviation électromagnétique verticale : 8,91 μm

Les déflexions horizontales et verticales, exprimées en μrad pour 100 V appliqués entre deux électrodes, sont représentées par la figure 4.11, de part et d’autre du centre du déflecteur.

Fig. 4.11 : Maximum de déflexion, horizontale et verticale, que le déflecteur peut fournir à un faisceau de protons injecté dans le PS à une énergie de 1 GeV.
4.6.2 Réponse de l’amplificateur chargé par le déflecteur

Les mesures de la réponse en fréquence et de l'essai indiciel de l’ensemble de puissance, représentées par la figure (4.12), ont été réalisées avec l’amplificateur connecté à une électrode du déflecteur, elle-même terminée par une charge de 50 Ω.

![Diagram](image)

Fig. 4.12 : Réponse en fréquence et réponse indiciel de l’ensemble amplificateur, déflecteur et charge.

Ce qu'il faut remarquer, car il s'agit là d'une sérieuse limitation pour le fonctionnement du déflecteur à des fréquences plus élevées que celles qui sont utilisées actuellement, c'est que la désadaptation de l’ensemble enclenche le circuit de protection des étages de sortie de l’amplificateur, ce qui a pour effet de limiter son gain, au-delà de 2 MHz. Cette action se traduit par une ondulation de l’amplitude de la réponse en fréquence.
5 Le traitement numérique des signaux

Comme nous l'avons signalé précédemment (chap. 2.5), le spectre en fréquence du signal de position du faisceau fourni par le pick-up comporte non seulement les fréquences bétatroniques et synchrotroniques liées aux mouvements oscillatoires des particules, mais très souvent aussi, à cause d'un mauvais centrage du faisceau dans le capteur, les harmoniques de la fréquence de révolution. L'analyse de différents spectres a montré que l'amplitude de ces dernières pouvait être parfois plusieurs centaines de fois supérieure à celle des instabilités transversales. Dans ces conditions, pour corriger convenablement les instabilités de faible niveau, tout en évitant les phénomènes de saturation, il faudrait utiliser des amplificateurs de très grande puissance, ce qui entraînerait un très mauvais rendement du système.

Par conséquent, pour optimiser la puissance du régulateur, l'un des premiers rôles du correcteur est d'atténuer (d'environ 50 dB) l'amplitude de la fréquence de révolution ainsi que ses harmoniques, en suivant leur évolution pendant le cycle d'accélération. En effet, puisque ces fréquences ne portent aucune information sur les instabilités, elles peuvent être rejetées à l'aide de filtres coupe-bande. Cependant, comme les instabilités peuvent être très proches des harmoniques de la fréquence de révolution (chap. 3.3), il est nécessaire de contrôler la largeur de ces filtres afin de laisser passer les signaux de correction en évitant les distorsions provoquées par la variation du retard de groupe, introduite en général aux alentours des fréquences de coupure des filtres. La condition \(Q = 6,1 \) et \(f_{\text{RF}} = 8 \text{ MHz} \) impose en particulier que la largeur \(\Delta f = \Delta \omega / 2 \pi \) du filtre coupe-bande soit inférieure à 80 kHz.

![Diagram](image)

Fig. 5.1 : Spectre d'un faisceau non centré dans le pick-up et réponse souhaitée du filtre numérique.

En analysant la réponse imposée par l'ensemble de ces contraintes (fig. 5.1), nous avons décidé de corriger les instabilités transversales à l'aide d'un filtre numérique. Cette solution offre, en effet, une grande souplesse de réalisation et une mise en œuvre simple. Le choix d'une structure en peigne permet d'autre part, en échantillonnant à la fréquence d'accélération, de suivre l'oscillation individuelle de chacun des 20 paquets qui circulent dans le PS.

Enfin, comme il s'agit de corriger des instabilités dont la fréquence est relativement élevée, et que leur phase évolue d'un tour à l'autre, pour assurer la stabilité du système, il faut maintenir le retard total de la boucle de correction inférieur à une période de révolution. Pour ce
faire, puisque la fréquence de révolution varie dans une plage de 400 à 500 kHz environ et que la fréquence d’accélération est un multiple de celle-ci, le correcteur utilise un retard numérique programmable qui fonctionne à la fréquence d’accélération.

5.1 Le filtre numérique en peigne

Une des méthodes de réalisation du filtre coupe-bande numérique que nous avons choisi pour rejeter les harmoniques de la fréquence de révolution est décrite par la fonction de transfert

\[G(z) = 1 - K_H H(z) \]

(5.1)

où \(H(z) \) représente un filtre en peigne [22].

Pour que le comportement de \(G(z) \) corresponde à celui d'un filtre coupe-bande, le coefficient \(K_H \) doit être tel que l'amplitude maximum de \(K_H H(z) \) soit égale à un.

Le filtre en peigne est réalisé en remplaçant le retard unitaire \(z^{-1} \) par une série de 20 retards (valeur du nombre harmonique \(h \) pour l’accélération des protons), dans l’équation d’un filtre récursif du premier ordre (Annexe 12.4.2), soit

\[H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - az^{-1}} \quad \text{avec} \quad z^{-1} = e^{-j\omega T} \quad H(z) = \frac{1}{1 - az^{-30}} \]

(5.2)

Fig. 5.2 : a) Schéma de principe du filtre en peigne récursif \(H(z) = 1 / (1 - az^{-30}) \). b) Placement des pôles et des zéros dans le plan complexe, dans le cas où \(a = 0.9 \). c) Réponse en fréquence du filtre (\(\theta = \omega T \)).
Le schéma de principe de ce filtre en peigne est représenté par la figure (5.2a). Sa fonction de transfert possède 20 zéros qui se situent à l'origine du plan complexe (fig. 5.2b) et 20 pôles qui sont répartis sur un cercle de rayon \(a \), inférieur à l'unité pour garantir sa stabilité. Sa réponse en fréquence est obtenue en remplaçant \(z \) par \(e^{j\omega T} \), soit en posant \(\theta = \omega T \)

\[
H(e^{j\theta}) = \frac{1}{1 - a e^{-j\theta}}
\]

(5.3)

En développant, avec \(\varphi = 20 \theta \) nous obtenons

\[
|H(e^{j\varphi})| = (1 + a^2 - 2a \cos \varphi)^{-\frac{1}{2}}
\]

(5.4)

\[
\text{Arg}[H(e^{j\varphi})] = \arctg \left(\frac{a \sin \varphi}{1 - a \cos \varphi} \right)
\]

(5.5)

La figure (5.2c) illustre le cas où la valeur du coefficient \(a \) est de 0,9 environ.

En modifiant ce coefficient \(a \), il est donc possible de changer la largeur des pointes du peigne (voir annexe 12.4.2). Les résultats des calculs effectués sur la cellule de base de ce filtre montrent que la phase est de plus en plus linéaire, autrement dit que le retard du filtre devient constant, à mesure que la valeur de \(a \) s'approche de 1.

5.2 Réalisation du filtre coupe-bande numérique

La structure de la première réalisation du filtre coupe-bande numérique correspond à la fonction de transfert (5.1) que nous allons développer en introduisant les paramètres utilisés par les circuits électroniques de calcul [23]. Posons \(K_H = 1/c \), \(c \) étant une constante dont la valeur est une puissance de 2, de façon que la division puisse être réalisée par un décalage logique vers les bits de poids faible (troncation). La fonction de transfert devient ainsi

\[
G(z) = 1 - K_H \cdot H(z) = 1 - \frac{1}{c} \cdot \frac{1}{1 - a \cdot \frac{1}{z}}
\]

(5.6)

L'amplitude maximum du filtre en peigne devant être égale à 1, il en résulte

\[
\frac{1}{c} = 1 - a \quad \Rightarrow \quad a = \frac{c - 1}{c} = \frac{b}{c}
\]

(5.7)

D'où, la nouvelle expression de la fonction de transfert du filtre coupe-bande

\[
G(z) = 1 - \frac{1}{c} \cdot \frac{1}{1 - \frac{b}{c} \cdot \frac{1}{z}} = 1 - \frac{1}{c - b \cdot \frac{1}{z}}
\]

(5.8)

Considérons le filtre en peigne

\[
\frac{H(z)}{X(z)} = \frac{1}{c - b \cdot \frac{1}{z}}
\]

(5.9)
La structure qui permet de réaliser cette fonction, en utilisant un additionneur et un multiplicateur (fig. 5.3), peut être mise en évidence en développant cette fonction de la manière suivante

\[y^* = \frac{1}{c} \left(x + b \cdot y^*_{-20} \right) \]

(5.10)

\(x \) désigne le signal d'entrée, \(y^* \) la sortie du multiplicateur, après décalage du nombre de bits correspondant à \(c \), et \(y^*_{-20} \) cette même sortie, retardée de 20 périodes d'échantillonnage.

Ce sont deux multiplicateurs-additionneurs rapides de 8 bits (MC 10901), pouvant fonctionner à une fréquence très supérieure à celle de l'accélération des protons dans le PS, qui réalisent l'addition du signal d'entrée \(x \) au résultat de la multiplication du signal \(y^*_{-20} \) par la constante \(b \).

![Diagramme de la structure de la fonction](image)

Fig. 5.3 : Filtre coupe-bande numérique à structure récursive, utilisé par le correcteur du régulateur des instabilités transversales des faisceaux de protons de haute intensité du PS.

La fonction de ces circuits est décrite par la relation suivante [24]

\[P = X \times Y + K + M + C_7 \]

(5.11)

où

- \(X \) multiplicande (8 bits)
- \(Y \) multiplicateur (8 bits)
- \(K, M \) constantes (8 bits)
- \(C_7 \) bit d'extension pour multiplicateurs de plus de 8 bits
- \(P \) produit de 16 bits

Montés de façon à former un multiplicateur de 16 bits, ils calculent d'abord le produit du mot de 12 bits \(X = y^*_{-20} \) par le coefficient \(Y = b \), limité à 4 bits dans cette version du filtre, puis ils ajoutent au résultat précédent le mot de 16 bits \(K = x \), formé après le décalage, vers les bits de poids fort, de la sortie du convertisseur analogique numérique de 12 bits. Cette action est en effet nécessaire pour préserver la résolution de 12 bits, à cause de la division \(1/c \) qui tronque les \(n \) bits de poids faible correspondant à \(c = 2^n \).

Le filtre numérique coupe-bande est finalement obtenu en effectuant la différence entre l'entrée \(x[n] \) et la sortie \(y^*[n] \) du filtre en peigne. Cette opération est accomplie par des unités arithmétiques logiques (MC 10H181) qui font appel, comme toutes les autres opérations, au codage en complément à deux des valeurs numériques.
Etant donné que pendant l'accélération des faisceaux de protons, le filtre coupe-bande doit rejeter les harmoniques de la fréquence de révolution, sa fréquence d'horloge doit être égale à la vingtième harmonique, autrement dit à la fréquence d'accélération. Dans le but de garantir le fonctionnement du régulateur en temps réel et pouvoir conserver la compatibilité avec les signaux des convertisseurs (niveaux ECL), la plupart des composants qui constituent ce filtre ont été choisis dans la technologie ECL (circuits logiques rapides).

Les coefficients a et b ayant été définis dans la relation (5.7), tels que

$$b = c - 1 \quad \text{et} \quad a = b/c$$

(5.12)

La fonction de transfert (5.1) du filtre coupe-bande s'écrit alors

$$G(z) = a \frac{1 - z^{-\infty}}{1 - a z^{-\infty}}$$

(5.13)

Comme la valeur de c est positive, la stabilité du filtre est assurée par la condition (5.12) car, dans ce cas $0 < a < 1$. Les vingt pôles (fig. 5.11) sont donc à l'intérieur du cercle unité et ils peuvent être déterminés, ainsi que les vingt zéros, en mettant cette équation sous la forme

$$G(z) = k \frac{\prod_{m=1}^{20} (z - z_i)}{\prod_{m=1}^{20} (z - p_i)}$$

(5.14)

Fig. 5.4 : Tracé, dans le plan complexe, des pôles et des zéros de la fonction de transfert du filtre coupe-bande numérique $G(z) = a \frac{1 - z^{-\infty}}{1 - a z^{-\infty}}$, lorsque $a = 0.9$.

55
La réponse en fréquence du filtre (fig. 5.5) est calculée en remplaçant z par $e^{j\omega T} = e^{j\theta}$ dans la fonction de transfert, soit

$$G(e^{j\theta}) = \frac{a - e^{-j\omega T}}{1 - a e^{-j\omega T}}$$

(5.15)

Fig. 5.5 : Réponse en fréquence du filtre coupe-bande numérique : $G(z) = a \frac{1 - z^{-30}}{1 - a z^{-30}}$.

L'amplitude de la réponse en fréquence présente des maxima proches de 1, lorsqu'elle est tend vers 1, et des minima qui sont théoriquement nuls. En réalité, ces minima étant fonction de la quantification numérique, ils sont supérieurs ou égaux au poids du bit le plus faible. Ainsi, dans la configuration actuelle où le résultat est un mot de 12 bits, l'atténuation théorique des harmoniques de la fréquence de révolution est de 72 dB, ce qui correspond à $G_{\text{min}} = 1/4096$.

56
Les mesures du filtre coupe-bande numérique (fig. 5.6) ont été réalisées par un analyseur de réseaux, à une fréquence d'échantillonnage fixe de 10 MHz. Cet appareil fournit directement la réponse en fréquence du filtre, grâce à un processus qui permet de normaliser la réponse d'une partie du système de test, ici celle de l'ensemble des deux convertisseurs (ADC et DAC) et du filtre analogique de sortie.

![Diagram](image)

(a)

REF LEVEL	/DIV	MARKER 419 500.000Hz
0.000dB	5.000dB	MAG(S21) -7.946dB
2.000µSEC	500.00nSEC	MARKER 419 500.000Hz
		DELAY(S21) 1.6448µSEC

(b)

Retard de groupe (µs)

Fig. 5.6 : a) Le système de mesure du filtre coupe-bande de 12 bits est constitué d'un analyseur de réseaux, des convertisseurs (ADC et DAC) de 12 bits et d'un filtre passe-bas analogique. b) Réponse en fréquence du filtre numérique : \(G(z) = \frac{a(1 - z^{-20})}{(1 - a z^{-20})} \) avec \(a = (c - 1)/c \).

La mesure de la phase a été remplacée par celle du retard de groupe, pour montrer sa variation rapide autour des harmoniques de révolution. Sa valeur, exprimée en périodes d'échantillonnage doit être prise en compte pour ajuster le retard de la boucle de correction des instabilités transversales. Puisque, d'après les définitions (5.12), seul le paramètre \(c \) conditionne la réponse du filtre, les résultats sont présentés ici en fonction de ce paramètre uniquement.
La version définitive du filtre coupe-bande que nous avons réalisé utilise un processeur de signaux numériques, en technologie CMOS, qui fonctionne jusqu’à une fréquence de 40 MHz. Conçu pour le traitement des images vidéo en temps réel, le circuit TMC 2272 de TRW [25] est capable d’effectuer des opérations matricielles sur trois entrées de 12 bits (A, B, C) et trois coefficients de 10 bits (\(K_A\), \(K_B\), \(K_C\)), avec une précision interne de 23 bits. Les sorties \((X, Y, Z)\) fournissent les résultats des opérations suivantes, arrondis à 12 bits (fig. 5.7) :

\[
\begin{align*}
Z[n-5] &= A[n-1] \times K_{A_z}[n-1] + B[n-1] \times K_{B_z}[n-1] + C[n-1] \times K_{C_z}[n-1]
\end{align*}
\]

(5.16)

Fig. 5.7 : Structure interne du processeur de signaux numériques, TRW TMC 2272, utilisé dans la version finale du filtre coupe-bande numérique du correcteur des instabilités transversales.
La fonction de transfert (5.13) du filtre coupe-bande numérique peut être écrite de manière plus générale sous la forme

\[
G(z) = \frac{Y(z)}{X(z)} = K \frac{b_0 + b_r z^{-r}}{1 + a_r z^{-r}}
\]

(5.17)

où \(K \) peut aussi bien permettre le contrôle de la polarité du signal de sortie du filtre que l'ajustage de son amplitude.

L'équation aux différences qui en découle est la suivante

\[
y[n] = K b_0 \ x[n] + K b_r \ x[n-r] - a_r \ y[n-r]
\]

(5.18)

Soit, en regroupant les coefficients, de façon à faire apparaître la structure du processeur de signaux numériques décrite par les équations (5.16),

\[
y[n] = K_A \ x[n] + K_B \ x[n-r] + K_C \ y[n-r]
\]

(5.19)

avec

\[
\begin{align*}
K_A &= K b_0 \\
K_B &= K b_r \\
K_C &= -a_r
\end{align*}
\]

Supposons que la fonction de transfert du filtre soit réalisée au niveau de l'additionneur de sortie du TMC 2272.

Pour exprimer correctement l'équation aux différences précédente, il faut maintenant introduire les retards des registres internes du processeur (fig. 5.7), soit

\[
y[n] = K_A \ x[n-4] + K_B \ x[n-r-4] + K_C \ y[n-r_1-5]
\]

(5.20)

Par rapport à la première réalisation, cette nouvelle structure introduit un retard supplémentaire de 5 périodes d'échantillonnage, dont il faut évidemment tenir compte, lors du réglage du retard total de la boucle de correction des instabilités transversales. Cependant, l'utilisation du TMC 2272 doit permettre une construction plus compacte et un contrôle plus souple des coefficients du filtre.

Ainsi que nous l'avons déjà mentionné, dans le cas spécifique de l'accélération des protons dans le PS, le nombre harmonique est égal à 20. Par conséquent, pour rejeter les harmoniques de la fréquence de révolution, en échantillonnant avec la fréquence d'accélération, il est nécessaire d'imposer \(r = 20 \), ce qui conduit finalement à l'expression suivante de l'équation aux différences

\[
y[n] = K_A \ x[n-4] + K_B \ x[n-24] + K_C \ y[n-r_1-5]
\]

(5.21)
A partir de cette relation, il est possible d’en déduire un schéma de principe du filtre coupe-bande numérique (fig. 5.8 et chap. 13, fig. 13.5) et d’écrire sa fonction de transfert

\[G(z) = \frac{Y(z)}{X(z)} = z^{-4} \frac{K_A + K_B z^{-20}}{1 + K_C z^{-5}} \]

(5.22)

Fig. 5.8 : Réalisation de la fonction de transfert du filtre coupe-bande à l’aide du processeur de signaux numérique, le circuit TMC 2272.

Comme nous désirons conserver l’ordre du filtre défini par la fonction (5.13), la valeur de \(r_1 \) doit par conséquent être égale à 15, soit

\[G(z) = \frac{Y(z)}{X(z)} = z^{-4} \frac{K_A + K_B z^{-20}}{1 + K_C z^{-20}} = z^{-4} \cdot K \cdot a \cdot \frac{1 - z^{-20}}{1 - a \cdot z^{-20}} \]

(5.23)

avec

\[
\begin{cases}
K_A = -K_B = K \cdot a, \\
K_C = -a,
\end{cases}
\]

La figure (5.9) montre la réponse en fréquence de ce filtre pour trois valeurs de \(a_0 \).

Puisque pendant l’étude de la réponse en fréquence, la fréquence d’échantillonnage est fixe, les quatre registres internes englobés dans la fonction de transfert du filtre représentent un retard constant. Ceci se traduit donc par une variation linéaire de la phase.
Fig. 5.9 : Réponse en fréquence du filtre coupe-bande numérique ayant pour fonction de transfert :

\[
G(z) = z^a \frac{K a_r (1 - z^{2a})}{(1 - a_r z^{2a})}
\]

Les courbes correspondent à \(K = 1 \), avec le coefficient \(a_r \), situé entre 0.79 et 0.99.
La figure (5.10) représente la réponse impulsionnelle du filtre coupe-bande numérique.

\[G(z) = z^{-4} \alpha_z (1 - z^{-20}) / (1 - \alpha_z z^{-20}) \]
Quant à la figure (5.11), elle représente sa réponse indicielle.

Fig. 5.11 : Réponse indicielle du filtre numérique $G(z) = z^{-d} a_t (1 - z^{-20}) / (1 - a_t z^{-20})$.
5.3 Réglage de phase de la boucle de correction

Le réglage de phase du régulateur s’effectue grâce à un retard numérique programmable réalisé à l’aide d’un multiplexeur et de registres logiques (fig. 5.12). Ces circuits fonctionnent à la fréquence d’accélération, afin de tenir compte de la variation de fréquence pendant le cycle.

La retard de l’ensemble formé par les deux convertisseurs (ADC et DAC), le filtre numérique et le retard ajustable, mesuré en fonction de la fréquence par un analyseur de réseaux, est présenté par la figure (5.13).

Fig. 5.12 : Principe du retard numérique programmable, utilisé pour la correction de phase du régulateur. Sa fonction de transfert est : \(H(z) = z^{-k} \), \(k \) pouvant varier entre 0 et 15.

Fig. 5.13 : a) Mesure du gain et du retard de l’ensemble formé par les convertisseurs (ADC et DAC), le filtre numérique (première version) et le retard numérique programmable. b) Plage de réglage du retard, lorsque la fréquence d’échantillonnage est de 10 MHz.
Du fait que la boucle de correction des instabilités transversales comporte nécessairement des retards fixes τ_f, dus aux amplificateurs, aux filtres analogiques et aux lignes de transmission des signaux, le retard total τ peut s'écrire de la manière suivante

$$\tau = \tau_f + k T$$

k étant le nombre de périodes d'échantillonnage T qui caractérisent le temps de propagation de l'ensemble du traitement numérique, depuis l'ADC jusqu'au DAC.

Nous allons montrer à présent que les retards fixes détériorent l'efficacité du régulateur, car ils influencent le réglage de phase de la boucle, lorsque la fréquence d'accélération évolue.

Cependant, puisque les amplificateurs de puissance ainsi que l'électronique de correction sont installés en dehors de l'anneau de l'accélérateur, dans le but de les protéger des radiations et faciliter leur entretien, si nous voulons réduire la longueur des câbles d'ouvrages, il faut donc placer le pick-up et le déflecteur aussi près que possible du local qui contient cet équipement.

![Diagramme](image_url)

Fig. 5.14 : Positions respectives du pick-up et du déflecteur dans les sections droites du PS.

Pour situer la disposition du pick-up et du déflecteur dans l'accélérateur, rappelons que le PS compte 100 sections de même longueur, constituées chacune d'une unité magnétique et d'une *section droite* où sont en général installés, entre autres, les éléments nécessaires à l'observation et à la correction des faisceaux.

Etant donné que le système de correction des instabilités transversales utilise le déflecteur qui avait été implanté dans la 97ème section droite (fig. 5.14) dans le but d'amortir les oscillations d'injection des antiprotons dans le PS (chap. 4.6), le pick-up n'a pu être installé que dans la 99ème, ceci uniquement pour des raisons de disponibilité d'espace autour du déflecteur.

Il en résulte, comme nous l'expliquerons par la suite, que cette position du pick-up n'est pas optimisée pour la gamme des instabilités transversales des faisceaux de protons que le système doit couvrir et que la correction ne peut être appliquée par le déflecteur qu'environ un tour après leur détection par le pick-up.
Le temps nécessaire au faisceau pour parcourir la distance entre le pick-up et le déflecteur est

\[\Delta t = T_{re} \times \frac{98}{100} \]

(5.25)

Supposons que la valeur des retards fixes soit de 1 µs (ce qui correspond pratiquement à la configuration actuelle du système). Le système étant conçu pour corriger les faisceaux de protons dès l’injection, en général avant l’énergie de transition, il faut que le retard total du régulateur soit du même ordre de grandeur que \(\Delta t \).

Ainsi, à l’injection des protons à 1 GeV, comme la fréquence d’accélération est de 8,35 MHz, la période d’échantillonnage est de 120 ns et celle de révolution de 2395 ns. Dans ces conditions, puisque \(\Delta t = 2347 \text{ ns} \), le réglage du multiplexeur doit être tel que le retard total de l’ensemble du traitement numérique ait une valeur de 11 périodes d’échantillonnage. D’où

\[\tau = 1000 \text{ ns} + 11 \times 120 \text{ ns} = 2320 \text{ ns} \]

(5.26)

L’erreur de réglage par rapport à \(\Delta t \) est alors

\[\delta t = \tau - \Delta t = 2320 \text{ ns} - 2347 \text{ ns} = -27 \text{ ns} \]

(5.27)

La sensibilité de ce réglage étant évidemment fonction de la fréquence à corriger, le cas le plus défavorable correspond à la fréquence bêtastronique la plus élevée des instabilités, soit \(f_{\beta 9} \) à l’injection

\[f_{\beta 9} = \left| -9 + 6,1 \right| \times 417,5 \text{ kHz} = 1,21 \text{ MHz} \]

(5.28)

L’erreur de réglage \(\delta t \) équivaut à une erreur de phase

\[\delta \phi_p = \omega_p \delta t = 2\pi f_p \delta t \equiv -0,205 \text{ rad} \Rightarrow \delta \phi_p \equiv -13^0 \]

(5.29)

Dans le cas où le régulateur est utilisé jusqu’à l’énergie de 26 GeV, puisque la fréquence d’accélération est alors égale à 9,54 MHz, les périodes d’échantillonnage et de révolution sont respectivement de 105 et 2096 ns. En conséquence \(\Delta t = 2055 \text{ ns} \).

En conservant les réglages précédents, le retard total de la boucle et l’erreur correspondante deviennent

\[\tau = 1000 \text{ ns} + 11 \times 105 \text{ ns} = 2155 \text{ ns} \]

(5.30)

\[\delta t = \tau - \Delta t = 2155 \text{ ns} - 2055 \text{ ns} = 100 \text{ ns} \]

(5.31)

Comme la fréquence bêtastronique \(f_{\beta 9} \) vaut maintenant 1,38 MHz, l’erreur de phase est de

\[\delta \phi_p = 2\pi f_p \delta t \equiv -0,867 \text{ rad} \Rightarrow \delta \phi_p \equiv 50^0 \]

(5.50)
La figure (5.15) permet de résumer les effets des retards fixes, en mettant en évidence la perte d'efficacité de la correction des instabilités $f_{\beta\beta}$ due à l'introduction du déphasage $\delta \Phi_\beta$. Celui-ci en effet, devient de plus en plus important à mesure que la fréquence d'accélération augmente.

Comme les retards fixes du système sont en réalité légèrement inférieurs à 1 μs et que, pendant l'étude préliminaire du projet, le maximum d'erreur de phase acceptable a été fixé à 60°, à l'heure actuelle il ne semble pas nécessaire de compenser ces effets. Toutefois, si pour des raisons qui restent à définir, l'efficacité du système devait être améliorée ultérieurement, nous pourrions alors envisager une compensation automatique des retards fixes, en utilisant par exemple le principe qui a été appliqué dans l'asservissement des cavités du PS [26] qui consiste à utiliser deux fréquences différentes, l'une pour l'échantillonnage et le traitement des données et l'autre pour la conversion de sortie.
Remarque :

Les instabilités transversales sont observées à la pulsation

\[\omega_p = (n + Q) \omega_{rev} \] \hspace{1cm} (5.33)

donc

\[d\omega_p / dQ = \omega_{rev} \] \hspace{1cm} (5.34)

En négligeant les effets des retards fixes que nous venons de calculer, ce résultat permet d’estimer le maximum de variation de \(Q \) autorisé, pour une excursion de phase déterminée, soit

\[d\omega_p = dQ \cdot \omega_{rev} = d\varphi / \Delta t \quad \Rightarrow \quad \Delta Q_{\text{max}} = d\varphi_{\text{max}} / \Delta t \omega_{rev} \] \hspace{1cm} (5.35)

Or, l’angle \(\theta \) entre les positions actuelles du pick-up et du déflecteur est égal à

\[\theta = \Delta t \omega_{rev} = 0,98 \times 2\pi \] \hspace{1cm} (5.36)

Par conséquent, si le nombre d’ondes bétatroniques moyen est de 6,25 et que l’erreur de phase admissible est fixée à \(\pm \pi/3 \), la variation de \(Q \) peut être de

\[\Delta Q_{\text{max}} = \pm \frac{\pi}{3} \times \frac{1}{0,98 \times 2\pi} = \pm 0,17 \] \hspace{1cm} (5.37)

Soit

\[6,08 < Q < 6,42 \] \hspace{1cm} (5.38)
6 Stabilité du système

Afin de faciliter l’étude de la stabilité du système de correction des instabilités transversales, nous allons d’abord rappeler l’expression de l’oscillation bétatronique dans le plan horizontal, à l’aide de l’approximation sinusoidale (éq. 2.15), en posant \(Q_s = Q \)

\[
x(s) = A \cos \left(\frac{Q_s}{R} - \Phi_0 \right)
\]

(6.1)

\(A = \sqrt{\varepsilon \beta_n} \), représente l’amplitude maximum de l’oscillation (fig. 6.1).

![Diagram](image)

Fig. 6.1 : Le mouvement bétatronique d’un paquet de particules est décrit ici, au niveau du pick-up et du déflecteur, grâce à sa position et à son angle par rapport à l’orbite moyenne. La variable \(\theta = \omega_{re} \Delta t \) représente l’angle entre le pick-up et le déflecteur.

Supposons que la phase \(\Phi_0 \) soit nulle et que la position du pick-up constitue l’origine du mouvement bétatronique du faisceau.

En reprenant la notation exponentielle (voir chap. 2.5), l’oscillation bétatronique devient

\[
x(s) = A \exp \left(j \frac{Q}{R} s \right)
\]

(6.2)

Quant à l’angle du mouvement du paquet, par rapport à l’orbite moyenne, il s’écrit

\[
x'(s) = j \frac{Q}{R} A \exp \left(j \frac{Q}{R} s \right) = j \frac{Q}{R} x(s)
\]

(6.3)

Puisque la coordonnée longitudinale \(s \) est égale à \(R \omega_{re} t \), l’expression de cette relation en fonction du temps est

\[
x'(t) = j \frac{Q}{R} A \exp \left(j \frac{Q}{R} \omega_{re} t \right) = j \frac{Q}{R} x(t)
\]

(6.4)
Comme nous l’avons montré dans l’analyse spectrale du faisceau (chap. 2.5), l’échantillonnage de ce mouvement, par le pick-up, fournit le signal suivant

\[x_{pu}(t) = A \sum_{n=-\infty}^{\infty} \exp(jQ \omega_{rr} t) \exp(jn \omega_{rr} t) = A \sum_{n=-\infty}^{\infty} \exp(j[n+Q] \omega_{rr} t) \] \hspace{1cm} (6.5)

Ainsi, en posant \(A = 1 \), le mode particulier \(n \) des instabilités transversales devient

\[x_{pu}(t) = \exp(j[n+Q] \omega_{rr} t) + \exp(-j[n-Q] \omega_{rr} t) \] \hspace{1cm} (6.6)

Grâce à ces résultats, il est possible à présent de procéder à l’analyse de la stabilité du système. Pour cela nous étudierons tout d’abord un régulateur idéal sans retard dans la boucle, puis le système réel, avec l’influence des retards sur la correction des instabilités [27].

6.1 Système idéal sans retard

Le régulateur idéal correspond à un système entièrement analogique, avec une bande passante infinie, sans retard et dont la puissance est suffisamment élevée pour accepter l’amplitude des harmoniques de la fréquence de révolution, sans risque de saturation.

Puisque \(\Delta t \) est le temps nécessaire au paquet de particules pour parcourir la distance qui sépare le pick-up du deflecteur, l’angle \(\theta \) est égal à

\[\theta = \omega_{rr} \Delta t \] \hspace{1cm} (6.7)

En outre, si la position du pick-up sert de référence au mouvement du faisceau, le déphasage de sa trajectoire, lorsqu’il pénètre dans le deflecteur, est égal à \(Q \theta \). Sa position, par rapport à celle qui est mesurée par le pick-up, est par conséquent

\[x_p(t) = x_{pu}(t) \cdot \exp(jQ \theta) \] \hspace{1cm} (6.8)

et son angle d’arrivée, par rapport à l’orbite moyenne

\[x'_p(t) = x'_{pu}(t) \cdot \exp(jQ \theta) \] \hspace{1cm} (6.9)

or, d’après (6.4)

\[x'_{pu}(t) = j \frac{Q}{R} x_{pu}(t) \] \hspace{1cm} (6.10)

D’où, en incorporant le terme imaginaire \(j \) (égal à \(\pi/2 \)) dans l’exponentielle

\[x'_p(t) = \frac{Q}{R} \exp\left(j \left[Q \theta + \frac{\pi}{2} \right] \right) x_{pu}(t) \] \hspace{1cm} (6.11)

Finalement, l’angle de déflexion \(\Delta x'_p \) qui doit être appliqué au paquet de particules pour corriger l’oscillation pendant son passage dans le deflecteur peut être exprimé, en fonction de la position mesurée par le pick-up, à l’aide de la relation suivante

\[\Delta x'_p(t) = k \cdot x_{pu}(t) \] \hspace{1cm} (6.12)
Il en résulte donc, à la sortie du déflecteur, un angle de déflexion égal à

$$x'_D(t) + k \cdot x_{pu}(t) = x_{pu}(t) \left[k + \frac{Q}{R} \exp \left(j \left[Q \theta + \frac{\pi}{2} \right] \right) \right]$$ \hspace{1cm} (6.13)

L’amortissement optimal de l’oscillation bétatronique, que nous caractériserons par le nombre d’ondes bétatroniques Q_{opt}, est réalisé lorsque cette oscillation et le signal de déflexion sont en opposition de phase, c’est-à-dire si la position du déflecteur permet de vérifier l’égalité suivante

$$Q_{opt} \theta = (2m+1) \frac{\pi}{2}$$ \hspace{1cm} (6.14)

où m est un entier positif. La déflexion résultante (6.13) devient

$$x'_D(t) + k \cdot x_{pu}(t) = x_{pu}(t) \left[k + \frac{Q}{R} (-1)^{m+1} \right]$$ \hspace{1cm} (6.15)

Fig. 6.2 : La longueur d’onde $\lambda_p = 2\pi R / Q$ des oscillations bétatroniques correspond à la distance parcourue par le paquet de particules, pendant une période de l’oscillation (représentation pour une valeur de Q de 6,25).

Lorsque la relation (6.14) est vérifiée, cela signifie que la distance qui sépare le pick-up du déflecteur est égale à un nombre impair de quarts de longueur d’onde bétatronique, c’est-à-dire $(2m+1) \lambda_p / 4$ (fig. 6.2). Une disposition différente conduit alors à introduire une erreur de phase bétatronique $\Delta \Phi_p$ correspondant à

$$\Delta \Phi_p = Q \theta - Q_{opt} \theta$$ \hspace{1cm} (6.16)

Ces résultats vont permettre d’analyser l’effet de la position actuelle du pick-up et du déflecteur sur la stabilité du système. Ensuite, nous essayerons de déterminer si d’autres configurations peuvent améliorer l’efficacité de la correction des instabilités transversales.
6.1.1 Installation actuelle

Comme nous l’avons déjà précisé, le pick-up est installé dans la section droite 99 de l’anneau, qui en comporte 100, alors que le déflécteur est placé dans la 97ème. Les deux éléments étant séparés par 98 sections, l’angle \(\theta \) est donc égal à

\[
\theta = \omega_{rev} \Delta t = \frac{2\pi}{T_{rev}} \left(0,98 \times T_{rev}\right) = 0,98 \times 2\pi \quad \text{rad} \quad (6.17)
\]

Pour cette disposition, selon (6.14), le nombre d’ondes bêta-troniques optimum est

\[
Q_{opt} = (2m+1) \frac{\pi}{2\theta} = \frac{(2m+1)}{3.92} \quad (6.18)
\]

Or, puisque pendant le cycle d’accélération des protons le nombre d’ondes bêta-troniques \(Q \) peut varier entre 6,1 et 6,4 environ, \((2m+1) = 25 \) est la seule valeur de quarts de longueur d’onde bêta-tronique qui fournit \(Q_{opt} \) à l’intérieur de cette gamme, soit

\[
Q_{opt} = 6,377 \quad (6.19)
\]

Cela implique les résultats suivants :

\[
Q_{opt} \theta = 25 \frac{\pi}{2} \equiv 39,27 \quad \text{rad} \quad (6.20)
\]

\[
Q\theta \bigg|_{Q=6,1} \equiv 37,561 \quad \text{rad} \quad \Rightarrow \quad \Delta \Phi_\beta = -1,709 \quad \text{rad} \quad (6.21)
\]

\[
Q\theta \bigg|_{Q=6,4} \equiv 39,408 \quad \text{rad} \quad \Rightarrow \quad \Delta \Phi_\beta = 0,138 \quad \text{rad} \quad (6.22)
\]

Dans cette configuration, nous pouvons constater que lorsque le nombre d’ondes bêta-troniques \(Q \) diminue, par rapport à \(Q_{opt} \), l’erreur de phase bêta-tronique \(\Delta \Phi_\beta \) augmente, ce qui indique que l’amortissement des oscillations se détériore. La figure (6.3a) illustre ces résultats et met en évidence le comportement en excitateur du système, pour les valeurs de \(Q \) les plus faibles.

6.1.2 Autres configurations

a) Pick-up installé dans la section 98

Du fait que \((2m+1) = 25 \) est encore applicable, l’angle \(\theta \) et \(Q_{opt} \) deviennent

\[
\theta = 0,99 \times 2\pi \quad \text{et} \quad Q_{opt} = 6,313 \quad (6.23)
\]

Puisque \(Q_{opt} \theta = 39,27 \text{ rad}, \) comme précédemment nous en déduisons

\[
Q\theta \bigg|_{Q=6,1} \equiv 37,944 \quad \text{rad} \quad \Rightarrow \quad \Delta \Phi_\beta = -1,326 \quad \text{rad} \quad (6.24)
\]

\[
Q\theta \bigg|_{Q=6,4} \equiv 39,810 \quad \text{rad} \quad \Rightarrow \quad \Delta \Phi_\beta = 0,54 \quad \text{rad} \quad (6.25)
\]

Les résultats présentés par la figure (6.3b) montrent que le système est stable.
b) Pick-up installé dans la section 97

Dans cette configuration, $(2m+1) = 25$ et $Q_{\text{opr}}\theta = 39.27$ rad, d'où

$$\theta = 2\pi \quad \text{et} \quad Q_{\text{opr}} = 6.25$$

(6.26)

$$Q_{\theta}\mid_{Q=6.1} \equiv 38.327 \quad \text{rad} \Rightarrow \Delta \Phi_\beta = -0.943 \quad \text{rad}$$

(6.27)

$$Q_{\theta}\mid_{Q=6.4} \equiv 40.212 \quad \text{rad} \Rightarrow \Delta \Phi_\beta = 0.942 \quad \text{rad}$$

(6.28)

Les résultats présentés par la figure (6.3c) montrent que le système est également stable.

c) Pick-up installé dans la section 96

Avec $(2m+1) = 25$ et $Q_{\text{opr}}\theta = 39.27$ rad, nous en déduisons

$$\theta = 2.02\pi \quad \text{et} \quad Q_{\text{opr}} = 6.188$$

(6.29)

$$Q_{\theta}\mid_{Q=6.1} \equiv 38.711 \quad \text{rad} \Rightarrow \Delta \Phi_\beta = -0.559 \quad \text{rad}$$

(6.30)

$$Q_{\theta}\mid_{Q=6.4} \equiv 40.615 \quad \text{rad} \Rightarrow \Delta \Phi_\beta = 1.345 \quad \text{rad}$$

(6.31)

La figure (6.3d) montre que cette configuration est stable et qu'elle favorise la correction des faisceaux dont le nombre d'ondes bétatroniques Q est aussi faible que 6.1. Cette propriété est intéressante à l'injection, car à ce moment les valeurs de Q peuvent être inférieures à 6.1.

Fig. 6.3 : Evolution de l'angle de déflexion $(Q\theta + \pi/2)$, lorsque le nombre d'ondes bétatroniques Q varie entre 6.1 et 6.4. Le déflecteur étant placé dans la section droite 97 de l'anneau FS, les figures a, b, c et d représentent respectivement les cas où le pick-up est situé en 99, 98, 97 et 96.
6.2 Système réel avec gain et retard

6.2.1 Gain de la boucle avec le filtre numérique

Soit \(V_{PU} \) le signal fourni par le pick-up, correspondant à une position horizontale \(x_{PU} \) du paquet de particules (fig. 6.4); la sensibilité \(S_{PU} \) peut être exprimée par

\[
S_{PU} = \frac{V_{PU}}{x_{PU}} \quad \text{[V.m}^{-1}\text{]} \quad (6.32)
\]

Comme cette sensibilité varie avec l'intensité du faisceau, le diviseur \(\Delta/\Sigma \) permet de fournir au convertisseur analogique numérique un signal proportionnel à la position, avec un gain \(K_E(\omega) \).

\[
\text{Fig. 6.4 : Principe de la boucle de correction.}
\]

Soit \(V_S \) la tension qui se développe entre les électrodes du plan horizontal du déflecteur; la sensibilité \(S_D \) est définie en fonction de l'angle de déflexion \(\Delta x_D^\prime \)

\[
S_D = \frac{\Delta x_D^\prime}{V_S} \quad \text{[rad.V}^{-1}\text{]} \quad (6.33)
\]

Le traitement numérique et les étages d'amplification de puissance ayant respectivement les gains \(K_F(\omega) \) et \(K_S(\omega) \), si \(\tau \) représente le retard complet de la boucle de correction, il est alors possible d'écrire la fonction de transfert du système de traitement du signal [16]

\[
\frac{V_S}{V_{PU}}(\omega) = K_V(\omega) e^{-j\omega \tau} \quad (6.34)
\]

où \(K_V \) désigne le gain en tension

\[
K_V(\omega) = K_E(\omega) K_F(\omega) K_S(\omega) \quad (6.35)
\]
L'angle de déflexion $\Delta x'_D$, exprimé en fonction du déplacement x_{PU}, est égal à

$$\Delta x'_D(\omega) = \left[G(\omega) \cdot e^{-j\omega t}\right] x_{PU}(\omega)$$

(6.36)

où $G(\omega)$ représente le gain total du régulateur.

$$G(\omega) = S_{PU} \cdot S_D \cdot K_V(\omega) \quad [\text{rad.m}^{-1}]$$

(6.37)

Fig. 6.5 : La phase bétatronique correspondant à un tour d’anneau étant égale à $2\pi Q$, μ représente l'angle bétatronique qui sépare le pick-up du déflecteur.

La distance qui sépare le pick-up du déflecteur est, comme nous l’avons montré, un paramètre important du processus de correction des oscillations bétatromiques. Elle est habituellement associée à la phase bétatronique μ (fig. 6.5), définie par rapport à l’avance de phase $2\pi Q$ correspondant à un tour d’anneau. Si k_s représente le nombre de sections droites comprises entre les deux éléments, μ est égal à

$$\mu = \frac{k_s}{100} \times 2\pi Q$$

(6.38)

Etant donné que le signal de correction doit être déphasé de 180 degrés, par rapport au mouvement du faisceau dans le déflecteur, la phase initiale μ_0 de ce signal vaut

$$\mu_0 = \mu - \pi$$

(6.39)

Et, si la correction ne s’effectue qu’après n tours, la phase μ_d du signal de déflexion devient

$$\mu_d = \mu_0 + n \cdot 2\pi Q$$

(6.40)

Si cette phase μ_d est ajustée correctement, l’action du déflecteur se traduit par l’amortissement de l’oscillation, avec la constante de temps τ_D [28]

$$\tau_D = \frac{2T_{oc}}{G(\omega) \sqrt[2]{\beta_{PU} \beta_D \sin \mu_d}}$$

(6.41)

β_{PU} et β_D étant les fonctions bétatromiques au niveau du pick-up et du déflecteur.
En négligeant le retard τ du régulateur, le gain s'écrit [29]

$$G = \frac{\Delta x'_D}{x_{pu}} = 2N \frac{1}{\sqrt{\beta_{pu} \beta_D \sin \mu_d}} = \frac{2T_{re}}{\tau_D \sqrt{\beta_{pu} \beta_D \sin \mu_d}}$$

(6.42)

N étant le nombre de tours nécessaires pour réduire l'amplitude de l'oscillation du facteur $1/e$.

Or, l'action du délecteur sur le faisceau pouvant se mettre sous la forme

$$x_{pu} \cdot \exp(-t/\tau_D)$$

(6.43)

pour que cet effet corresponde à un amortissement, il est nécessaire que la constante de temps τ_D soit positive. Par conséquent, le gain G doit être négatif.

Ce résultat implique que le terme $\sin \mu_d$ doit être négatif pour garantir la stabilité du système, d'où la définition de l'efficacité η_1 de l'amortissement.

$$\eta_1 = \sin \mu_d(0)$$

(6.44)

Efficacité

![Diagramme de l'efficacité](image)

Fig. 6.6 : La stabilité du régulateur est garantie si l'efficacité η_1 est négative. Cependant, l'amortissement de l'oscillation bétatronique n'est optimal que lorsque $\eta_1 = -1$.

La figure (6.6) illustre les conditions de fonctionnement du régulateur pour quatre positions successives du pick-up (section 99, 98, 97 et 96), lorsque le délecteur est placé dans la section 97 et que le nombre d'ondes bétatroniques Q évolue entre 6.05 et 6.45.

Il apparaît clairement que l'installation du pick-up dans la section droite 96 améliore la correction des faisceaux dont les valeurs de Q sont proches de 6.1.
6.2.2 Influence du retard de la boucle

Soit \(\tau \) le temps de propagation du signal qui est issu du pick-up et traité par la boucle de régulation avant d'être fourni au déflecteur de correction. Si \(\delta t \) représente la différence entre ce temps \(\tau \) et le temps de parcours \(\Delta t \) du faisceau, entre les deux éléments, il est habituel d'écrire

\[
\tau = \Delta t + \delta t
\]

Selon (6.6) et (6.11), au niveau du déflecteur et pour le mode transversal \(n \), l’angle \(x'_{ao} \) du paquet de particules par rapport à l’orbite moyenne (fig. 6.1) est

\[
x'_{ao}(t) = \frac{Q}{R} \exp \left(j \left[Q \theta + \frac{\pi}{2} \right] \right) \left[\exp \left(j[n+Q] \omega_{nr} [t + \delta t] \right) + \exp \left(-j[n-Q] \omega_{nr} [t + \delta t] \right) \right]
\]

et l'angle de déflexion imprimé au faisceau par le déflecteur est

\[
\Delta x'_{ao} = k \left[\exp \left(j[n+Q] \omega_{nr} t \right) + \exp \left(-j[n-Q] \omega_{nr} t \right) \right]
\]

Le terme qui contient \((n+Q)\) est nommé l'onde rapide et celui qui comporte \((n-Q)\) désigne l'onde lente. L'erreur de phase de chacun de ces signaux est

\[
\begin{align*}
\Delta \Phi_R &= \Delta \Phi_\beta + (n+Q) \omega_{nr} \delta t \\
\Delta \Phi_L &= \Delta \Phi_\beta - (n-Q) \omega_{nr} \delta t
\end{align*}
\]

Dans l'accélérateur PS, les trois premiers modes instables que le régulateur doit corriger correspondent à l'onde rapide. Par conséquent, les erreurs de phase qui nous intéressent sont celles qui sont exprimées par \(\Delta \Phi_R \).

Dans la configuration actuelle du système, en considérant le réglage du retard total du régulateur précisé dans le paragraphe 5.3 et l'erreur de phase bétatronique \(\Delta \Phi_\beta \) déterminée par (6.21) et (6.22), nous obtenons

- à l'injection à 1 GeV

\[
\begin{align*}
\Delta \Phi_R |_{Q=6.1} &\equiv [-1.709] + (n+6.1) \cdot \left[2 \pi \times 417.5 \cdot 10^3 \right] \cdot [-27 \cdot 10^{-9}] \text{ rad} \\
\Delta \Phi_R |_{Q=6.4} &\equiv [0.138] + (n+6.1) \cdot \left[2 \pi \times 417.5 \cdot 10^3 \right] \cdot [-27 \cdot 10^{-9}] \text{ rad}
\end{align*}
\]

(6.49)

- à 26 GeV

\[
\begin{align*}
\Delta \Phi_R |_{Q=6.1} &\equiv [-1.709] + (n+6.1) \cdot \left[2 \pi \times 475.8 \cdot 10^3 \right] \cdot [100 \cdot 10^{-9}] \text{ rad} \\
\Delta \Phi_R |_{Q=6.4} &\equiv [0.138] + (n+6.1) \cdot \left[2 \pi \times 476.8 \cdot 10^3 \right] \cdot [100 \cdot 10^{-9}] \text{ rad}
\end{align*}
\]

(6.50)
L'erreur de phase $\Delta \Phi_R$, exprimée en degrés, est représentée par la figure (6.7) à partir de l'injection du faisceau dans le PS, à 1 GeV, jusqu'à son extraction à 26 GeV, pour deux valeurs du nombre d'ondes bétafroniques ($Q = 6,1$ et 6,4) et pour les trois modes instables $n = -7, -8$ et -9.

Fig. 6.7 : Erreurs de phase $\Delta \Phi_R$ pendant la correction des trois modes instables du PS, $n = -7, -8$ et -9. Le pick-up étant situé dans la 99ème section droite et le défecteur dans la 97ème, ces erreurs résultent de l'écart δt entre le temps de propagation du signal de correction et le temps de parcours du faisceau ainsi que de l'erreur de phase bétafronique liée à la distance qui sépare ces deux éléments.

Dans la mesure où la puissance du défecteur est suffisante pour modifier la trajectoire du paquet de particules jusqu'à son extraction de l'accélérateur, ces graphiques confirment la perte d'efficacité de la correction des instabilités lorsque l'énergie du faisceau augmente. En outre, le
régulateur a tendance à devenir excitateur quand le nombre d’ondes bétatroniques est proche de 6,1 car, à haute énergie, le signal de correction est alors pratiquement en phase avec le mouvement du faisceau dans le déflecteur.

Fig. 6.8 : Pendant la correction des trois modes instables du PS (n = -7, -8 et -9), les erreurs de phase $\Delta \Phi_R$ résultent de l’écart δ entre le temps de propagation du signal de correction et le temps de parcours du faisceau, entre pick-up et déflecteur, ainsi que de l’erreur de phase bétatronique due à la distance qui sépare ces deux éléments. Ces résultats correspondent au cas où le pick-up est situé dans la 96ère section droite et le déflecteur, dans la 97ère.

Dans le cas où le pick-up est déplacé dans la 96ère section droite de l’anneau PS, en conservant le déflecteur dans la 97ère, la figure (6.8) permet de confirmer que le système est stable lorsque le nombre d’ondes bétatroniques Q diminue jusqu’à 6,1.
6.2.3 Remarque à propos de l'étude de la stabilité

Dans les paragraphes qui précèdent, nous avons considéré la stabilité du régulateur en fonction de deux paramètres uniquement, la position du pick-up par rapport au déflecteur et le retard du système. L'analyse complète de la stabilité, au sens des automatismes classiques, suppose en général la connaissance de l'ensemble des éléments qui constituent la boucle d'asservissement, ou du moins la possibilité de les modéliser.

Or, dans le cas des faisceaux accélérés par le PS, les caractéristiques des paquets de particules dépendent d'un nombre important de paramètres, dont la plupart ne sont pas accessibles ou alors difficilement mesurables. Il est donc actuellement impossible d'établir un modèle qui décrive de manière précise le mouvement de ces paquets ainsi que le comportement des instabilités transversales.

La recherche de ce modèle, pour les faisceaux denses groupés en paquets, me paraît d'ailleurs si complexe que cette étude pourrait constituer à elle seule le sujet d'une thèse.
7 Mise en oeuvre et résultats

Fig. 7.1 : a) Le pick-up est installé dans la chambre à vide du PS, à l’extrémité d’un aimant de courbure. b) Le déflecteur est équipé de relais qui permettent de commuter ses électrodes, soit sur les amplificateurs à haute tension pour amortir les oscillations d’injection des antiprotons, soit sur les amplificateurs du régulateur.

7.1 Installation

Le pick-up du régulateur de correction des instabilités transversales des faisceaux de protons est installé sur la chambre à vide de l’accélérateur, à l’extrémité d’un des aimants de courbure, dans la section droite 99 de l’anneau PS (fig. 7.1a). Les signaux qu’il fournit, transmis à l’aide de conducteurs coaxiaux à un châssis situé dans le tunnel de l’accélérateur, permettent d’élaborer l’information de position et d’intensité du paquet de particules qui le traverse. C’est cette information qui est ensuite traitée numériquement par le correcteur.
Le déflecteur, quant à lui, occupe toute la section droite 97 (fig. 7.1b). Il est équipé des quatre amplificateurs à haute tension qui génèrent le champ électrostatique destiné à amortir les oscillations d’injection des antiprotons, et de quatre relais destinés à commuter les électrodes sur les amplificateurs de puissance du système de correction des instabilités des protons.

Fig. 7.2 : L'électronique du déflecteur, utilisé dans le PS pour la correction des instabilités transversales des faisceaux de protons de haute densité, est installée à l'abri des radiations avec celle de l'amortissement des oscillations d'injection des antiprotons.

En ce qui concerne l'électronique de l'ensemble, à l'exception de l'amplificateur des signaux du pick-up qui se trouve près du capteur, le tout est installé, avec les amplificateurs de puissance, dans un local situé non loin du déflecteur, mais à l'abri des radiations (fig. 7.2). Les liaisons, entre le pick-up et le traitement du signal, d'une part, puis entre les amplificateurs et le déflecteur, d'autre part, sont réalisées avec des câbles coaxiaux de 50 Ohms.

Les éléments de puissance du régulateur, c'est-à-dire la distribution du secteur triphasé, le châssis de protection et de contrôle, les alimentations régulées et les amplificateurs, sont tous regroupés dans une baie électrique standard (rack), à côté des modules de traitement des
signaux et des appareils d’observation. Par ailleurs, cette installation comprend également l’équipement destiné à la correction des oscillations d’injection des antiprotons, puisqu’il utilise le même déflecteur. Enfin, l’activation ou l’arrêt des deux systèmes, de même que la modification de certains paramètres, en fonction du type de faisceau, sont assurés par un châssis de contrôle (CAMAC) connecté à l’ordinateur d’exploitation de l’accélérateur PS.

7.2 Réglage du retard de la boucle

Les résistances de charge (50 Ω / 1 kW) des amplificateurs de puissance étant installées avec l’ensemble de l’électronique, l’observation et les mesures des signaux du régulateur s’en trouvent facilitées. Ainsi, comme la longueur des conducteurs qui relient l’électronique du pick-up au châssis de traitement numérique est équivalente à celle des câbles du déflecteur, il est possible, en connectant le signal d’un analyseur de réseaux à l’entrée du système d’acquisition et en utilisant la sortie de test du signal du déflecteur, de régler le retard total du système à la durée d’une période de révolution, soit 2,4 μs environ à l’injection des protons à 1 GeV (fig. 7.3).

![Diagramme des signaux et du déflecteur](image)

Fig. 7.3 : Réponse du régulateur avec un retard total ajusté à 2,4 μs, soit une période de révolution du faisceau de protons à l’injection à 1 GeV. La fréquence d’échantillonnage est alors égale à 8,35 MHz.
7.3 Correction des faisceaux de haute densité

L'évolution des trois modes instables des faisceaux de protons, \(n = -7, -8 \) et \(-9\), a été étudiée dans le paragraphe (3.4), sans l'action du régulateur. Nous reprenons ici ces résultats afin de mettre en évidence l'effet de la correction (fig. 7.4).

\[
\begin{align*}
\text{\(n = -7 \); 5 ms/div} \\
\text{\(n = -8 \); 5 ms/div} \\
\text{\(n = -9 \); 5 ms/div}
\end{align*}
\]

Régulateur inactif
Régulateur actif

Fig. 7.4 : Mesures des instabilités transversales d'un faisceau de \(1.8 \times 10^9 \) protons, répartis dans 20 paquets, injecté dans le PS à une énergie de 800 MeV. La valeur de \(Q \) mesurée étant de 6,19 et la fréquence de révolution correspondante de 403 kHz, la fréquence des instabilités est de 326 kHz, 729 kHz et 1132 kHz.
L’observation à l’oscilloscope du signal de position fourni par le pick-up (fig. 7.5a) permet une analyse visuelle de l’évolution de l’amplitude de l’oscillation bétastronique, correspondant au mouvement de l’ensemble des paquets accélérés. Toutefois, comme l’augmentation de cette oscillation ne traduit pas toujours la présence des instabilités transversales, pour juger de l’importance de ces dernières et mesurer certaines de leurs caractéristiques, il est plus commode d’observer les signaux des détecteurs conçus à cet effet (fig. 7.5b).

Fig. 7.5 : a) Observation du signal de position fourni par le pick-up pendant l’accélération d’un faisceau de 1,6.10^{10} protons, répartis dans 20 paquets, injecté dans le PS à 1 GeV. b) Détection de l’instabilité transversale \(f_B \) (319 kHz) : la trace inférieure représente la situation où le régulateur est arrêté et la trace supérieure celle où il est enclenché. c) Mesure de l’intensité du faisceau, à l’aide d’un transformateur de courant : la trace inférieure montre la perte rapide du faisceau dans les 20 premières millisecondes, lorsque le régulateur est arrêté.

Dans l’exemple illustré par la figure (7.5), lors de l’injection à 1 GeV d’un faisceau de 1,6.10^{13} protons, répartis dans vingt paquets, le nombre d’ondes bétastroniques \(Q \) étant de 6,235 et la fréquence de révolution de 417,5 kHz, la fréquence de l’instabilité \(f_B \) est de 319 kHz.

Lorsque le régulateur est arrêté, le temps de montée de cette instabilité est de l’ordre de 8 ms et sa durée est de 30 ms environ. Dans les 20 premières millisecondes de l’accélération, la présence des instabilités provoque alors une perte importante de particules, facilement observable sur la mesure de l’intensité du faisceau (fig. 7.5c). Si le système de correction est enclenché, l’instabilité qui apparait, dès le premier tour du faisceau dans l’anneau, est amortie de manière exponentielle. La trace supérieure de la figure (7.5c) met en évidence l’action stabilisatrice du régulateur qui, dans ce cas particulier, est sollicité pendant 500 ms à partir de l’injection.
7.4 Analyse spectrale de l'action du régulateur

L'utilisation d'un système d'acquisition numérique qui échantillonne le signal de position issu du pick-up, à la fréquence d'accélération (8,35 MHz), permet de sauvegarder une certaine quantité de données qu'il est possible de traiter ensuite pour effectuer, entre autres, l'analyse spectrale du mouvement des faisceaux, jusqu'à la fréquence de Nyquist, soit 4,175 MHz (fig. 7.6).

![Diagram](image)

(a) Régulateur inactif

(b) Régulateur actif

Fig. 7.6 : Analyse spectrale, pendant les 3200 premiers tours dans l'anneau, d'un faisceau de 1.6×10^{10} protons, répartis dans 20 paquets, injecté dans le PS avec une énergie de 1 GeV. La valeur de Q, calculée d'après les données numériques de l'acquisition du signal de position, étant de 6,235 et la fréquence de révolution de 417,5 kHz, nous en déduisons la fréquence des instabilités $f_{in} = 1 \cdot n \cdot f_{rev}$, n est ici compris entre -7 et -14.
Dans le cas illustré par la figure (7.6), nous constatons que le régulateur corrige les quatre premiers modes instables d’un faisceau de protons, injecté dans le PS à une énergie de 1 GeV, à savoir \(f_{p7} (319,4 \text{ kHz}), f_{p8} (736,9 \text{ kHz}), f_{p9} (1,154 \text{ MHz}) \) et \(f_{p10} (1,572 \text{ MHz}) \).

Un autre effet du régulateur, celui de l’amortissement de l’oscillation bêtastronique \(f_b = q f_{rev} \), est représenté par la figure (7.7). En particulier, lorsque le régulateur est enclenché (fig. 7.7b), le spectre en fréquence montre non seulement l’atténuation de la raie bêtastronique mais fait aussi apparaître le bruit du signal de mesure.

![Diagramme montrant les fréquences et niveaux de signal en mode régulateur inactif et actif.](image)

Fig. 7.7 : Analyse, pendant les 3200 premiers tours dans l’anneau, de la correction de l’oscillation bêtastronique \(f_b = q f_{rev} \) d’un faisceau de \(1.6 \times 10^{13} \) protons, répartis dans 20 paquets, injecté dans le PS avec une énergie de 1 GeV. La valeur de \(q \) étant 0,235 et la fréquence de révolution de 417,5 kHz, \(f_b = 98,1 \text{ kHz} \).
8 Autres objectifs

8.1 Le contrôle adaptatif

Pendant le fonctionnement du régulateur, nous avons pu constater que le risque de saturation des amplificateurs de puissance est très élevé au moment de l'injection, lorsque l'amplitude de l'oscillation bétatronique peut être relativement importante. Or, puisque le gain de la boucle doit être réglé en fonction du maximum de signal fourni par le pick-up, pour tenir compte de l'évolution de cette oscillation ainsi que de la nécessité de modifier le gain du système pendant que l'énergie augmente, il paraît envisageable de concevoir un contrôle à gain préprogrammé [30] qui suivrait la valeur du champ magnétique durant le cycle d'accélération, car celle-ci est directement liée à l'énergie des particules.

Par ailleurs, pour minimiser de manière simple les effets déstabilisants des retards fixes introduits par les câbles, il est concevable d'agir sur le retard total du régulateur en le programmant aussi en fonction de l'énergie.

Ces deux contrôles sont facilement réalisables en utilisant respectivement la commande de gain et celle du retard numérique réglable du système (fig. 8.1).

Quant au dernier réglage possible, c'est celui de l'adaptation des coefficients du filtre numérique afin de permettre au régulateur de s'accommoder de certaines valeurs faibles du nombre d'ondes bétatroniques \(Q \) de la machine. Le contrôle de ces paramètres pourrait alors se faire, de cycle à cycle, en considérant le résultat de la mesure de \(Q \) calculée, à l'aide de transformées de Fourier rapides [31], par le système spécialisé que nous avons déjà utilisé lors de l'analyse spectrale du faisceau.

![Diagramme des contrôles de la boucle](image)

Fig. 8.1 : Principe du contrôle adaptatif du régulateur de correction des instabilités transversales.
8.2 Excitation du faisceau

La mesure du nombre d’ondes bétatroniques \(Q \) qui caractérise le mouvement des particules dans l’accélérateur est effectuée en analysant le signal de position fourni par un pick-up et nécessite habituellement de réaliser une déflexion de la trajectoire du faisceau, à l’aide d’un défecteur rapide et puissant dédié à cette application.

Les deux méthodes que nous proposons ici utilisent quant à elles le système de correction des instabilités transversales comme élément d’excitation du faisceau et nécessitent des puissances de déflexion nettement plus faibles. La première permet théoriquement d’effectuer les mesures de \(Q \) de manière continue pendant toute la durée du cycle, quant à la deuxième, elle n’agit sur le faisceau qu’au moment des acquisitions numériques.

8.2.1 Régulateur et excitateur

Cette technique, déjà appliquée dans l’accélérateur SPS [32], consiste à utiliser le signal détecté par le pick-up, tantôt pour exciter le faisceau, tantôt pour amortir ses oscillations. Or, comme le faisceau est un élément extrêmement sensible, il est évident que la mise en œuvre d’un tel système exige que le seuil de l’amplitude du signal qui détermine le passage d’un mode de fonctionnement à l’autre soit fixé avec le plus grand soin.

Cette méthode peut cependant être réalisée de manière relativement simple, en programmant la réponse souhaitée (fig. 8.2) dans une mémoire tampon installée par exemple dans le module de conversion numérique analogique (DAC) [33] du régulateur.

![Diagramme de caractéristique non linéaire du convertisseur numérique analogique](image)

Fig. 8.2 : Exemple de caractéristique non linéaire du convertisseur numérique analogique utilisé par le système de mesure continue de \(Q \) du SPS.

Selon les auteurs de ce principe, ce système s’adapte mal aux variations de certains paramètres de l’accélérateur et son réglage demeure très délicat. Par ailleurs, comme l’excitation continue du faisceau provoque une augmentation rapide de son émittance, c’est-à-dire des dimensions transversales (diamètre) du paquet de particules, malgré la limitation des oscillations à des niveaux faibles, de l’ordre de 50 \(\mu \text{m} \) dans le cas du SPS, ce processus conduit très vite à des pertes importantes.
8.2.2 Excitation en boucle ouverte

Destiné à modifier le mouvement des paquets de particules en appliquant un signal de défexion pendant des instants très brefs, ce procédé est basé sur le fonctionnement du système en boucle ouverte, évitant ainsi les risques d'instabilité. Dans ces conditions, seule l'entrée auxiliaire est sollicitée, l'entrée principale étant simplement désactivée (fig. 8.3).

Le signal que nous envisageons d'utiliser pour cette application est une sinusoïde d'amplitude fixe, dont la gamme de fréquences est définie par le domaine de variation du nombre d'ondes bétatroniques \(Q \). En rappelant que seule la partie décimale de \(Q \) peut être déterminée, d'après la relation \(f_{\beta} = q f_{rev} \), pour une valeur de \(Q \) comprise entre 6,1 et 6,45 les fréquences à balayer s'étendent de 41 kHz à 215 kHz environ. Ce signal (chirp [34]), généré par un synthétiseur numérique rapide, doit permettre aux amplificateurs de fournir une puissance constante capable d'exciter le faisceau uniquement pendant la durée de la mesure.

L'acquisition numérique des données et le traitement, à l'aide de la transformée de Fourier rapide, peuvent être effectués par le système spécifique qui réalise la mesure de \(Q \).

![Diagram](image)

Fig. 8.3 : Principe du système qui permet de réaliser la mesure de \(Q \) par le calcul de transformées de Fourier rapides, en utilisant la synthèse numérique d'un signal sinusoïdal à fréquence variable (chirp).

L'avantage de cette méthode par rapport à la précédente réside dans le fait qu'elle est beaucoup plus facile à mettre en œuvre. En outre, puisque le faisceau n'est excité que pendant un laps de temps très court, elle ne devrait pas provoquer de pertes sensibles.

Pour donner un ordre de grandeur du temps d'excitation effective du faisceau, supposons que le calcul utilise des transformées de Fourier de 500 points. Dans ce cas, le signal de défexion dure environ une milliseconde et les instants d'excitation des différentes résonances du faisceau, proportionnels à la dispersion de \(Q \) dans le paquet, ne correspondent alors qu'à une faible fraction de ce temps.

Bien entendu, il n'est pas possible de réaliser des mesures de manière continue avec ce procédé, cependant ce système permet d'obtenir des valeurs de \(Q \) toutes les 2 ms [35].
9 Conclusion

L'étude et les mesures des instabilités transversales ayant prouvé la nécessité de développer une méthode de correction capable de s'adapter à l'évolution de certains paramètres pendant les cycles d'accélération du PS, ce mémoire a permis d'exposer la conception et la mise en œuvre du régulateur que nous avons adopté. Nous allons, en guise de conclusion, formuler quelques remarques complémentaires et indiquer les développements éventuels qui seraient susceptibles d'améliorer son fonctionnement et la qualité de la correction.

Notons que la réalisation du système associe un ensemble d'éléments analogiques à des circuits numériques; les premiers étant consacrés à détecter les oscillations instables et à appliquer la défexion correspondante aux paquets de particules, les seconds étant réservés à générer le signal de correction, à partir des signaux fournis par le capteur.

L'intérêt du traitement numérique des signaux, par rapport à un traitement analogique, a été démontré dans cette application. Il est en effet d'une grande souplesse d'utilisation et permet non seulement la modification des coefficients du filtre coupe-bande du correcteur, mais aussi son calage automatique, en fonction de la fréquence d'accélération. L'ajustage numérique du retard de la boucle bénéficie lui aussi de ces mêmes avantages, du fait qu'il est déterminé par un certain nombre de périodes d'échantillonnage.

L'observation des résultats obtenus, illustrant la réduction des pertes de particules grâce à l'amortissement des premières instabilités des faisceaux de protons, justifie le choix de cette méthode. Néanmoins, l'analyse de la stabilité et la présence de modes instables, autres que ceux pour lesquels le régulateur a été conçu, montrent qu'il serait souhaitable d'optimiser le système, tout d'abord pour améliorer l'efficacité de la correction en fonction de la variation du nombre d'ondes bétatroniques \(Q \), ensuite afin d'agir éventuellement sur ces autres modes.

Dans la configuration actuelle, lorsque \(Q \) est proche de sa limite inférieure, le régulateur corrige mal, ou très peu, les instabilités transversales. Or, ce comportement est très gênant car c'est à l'injection, au moment où les instabilités sont les plus dangereuses, que la valeur de \(Q \) est en général la plus faible. Dans le cas où celle-ci est égale à 6,1, pour assurer une action correcte, la solution la plus simple consiste à déplacer le pick-up de la section droite 99 de l'anneau PS à la section 96, ainsi que nous l'avons expliqué au chapitre 6. Il existe toutefois une méthode plus efficace pour résoudre ce problème, mais aussi plus délicate à réaliser. Il s'agit d'utiliser une combinaison des signaux fournis par deux détecteurs, distants d'un quart de longueur d'onde bétatronique, dans le but de simuler un pick-up virtuel dont la position serait idéale pour un nombre d'ondes bétatroniques donné [36]. Dans le PS, où \(Q \) évolue au cours de l'accélération, le contrôle de la position virtuelle pourrait être programmé de cycle à cycle si la variation de \(Q \) est reproductible, ou bien asservi à la mesure de \(Q \) en temps réel qui a été décrite au chapitre 8.

En ce qui concerne la correction des modes instables, d'après le théorème de Shannon, elle pourrait être étendue jusqu'à la moitié de la fréquence d'échantillonnage, ce qui correspond à environ 4 MHz. Cette possibilité nécessite évidemment d'augmenter la bande passante actuelle, ce qui implique la modification de l'électronique du pick-up et la réfection du délecteur, afin
d'adapter ses électrodes à l'impédance de sortie des amplificateurs de puissance. En outre, du fait que les fréquences à corriger sont plus élevées, les effets des retards fixes que nous avons évoqués au chapitre 6 sont alors beaucoup plus critiques.

Pour éviter ce problème nous pourrions envisager, non plus de conserver le retard total du régulateur égal à la durée d'un tour, mais de définir la réponse en phase du système de façon à optimiser l'amortissement de chacun des modes instables. Pour ce faire, l'utilisation d'un filtre numérique non récursif permet de simplifier les calculs et semble préférable. Ses coefficients peuvent alors être déterminés de manière à couvrir la variation de Q et celle de la fréquence d'accélération [37]. Par ailleurs, pour bénéficier d'une résolution plus fine de la phase, il est possible d'échantillonner à une fréquence plus élevée, multiple de la fréquence d'accélération.

Pour terminer, nous évoquerons le problème qui se pose lorsque l'orbite fermée du mouvement du faisceau ne passe pas au centre du pick-up. Comme nous l'avons souligné au chapitre 5, le signal de mesure contient alors de fortes composantes à la fréquence de révolution. Or, dans le cas le plus défavorable, où l'erreur de centrage est grande et l'oscillation des paquets de particules est faible, comme il faut éviter de saturer l'entrée du convertisseur analogique numérique, il se peut que cette oscillation ne soit représentée que par quelques bits.

Afin de remédier à cette situation, il serait souhaitable d'essayer de compenser les effets des erreurs d'orbite fermée, soit en réalisant directement l'acquisition numérique des signaux de chaque électrode du pick-up et en les traitant ensuite, soit en contrôlant de manière analogue le gain de chaque électrode, en fonction de la position réelle du faisceau.
10 Remerciements

L'étude présentée dans ce mémoire a été réalisée au CERN, au sein du groupe instrumentation de la division PS.

La réalisation d'un tel travail nécessite, bien entendu, un effort personnel considérable, mais elle suppose aussi l'intérêt et le support de nombreuses autres personnes. C'est à ce propos que je tiens à remercier sincèrement tous ceux qui ont contribué à ce projet et qui m'ont encouragé et conseillé, facilitant ainsi son accomplissement.

Monsieur J. Rozinoer, Professeur à l'Ecole Centrale de Lyon, pour l'attention avec laquelle il a suivi et guidé mon travail.

Monsieur R. Cappi, responsable du projet au CERN, pour les discussions fructueuses que nous avons eues en matière d'instabilités transversales.

Monsieur E. Schulte, mon supérieur hiérarchique direct, pour ses conseils et son soutien constant, pendant l'exécution du projet, ainsi que pour son attitude compréhensive durant la rédaction du mémoire qui s'est faite parfois au détriment d'autres tâches.

Messieurs Y. Baconnier, J.P. Riunaud et H. Koziol, mes chefs de groupe successifs, pour avoir permis de mener à bien cette étude dans le cadre des activités du groupe.

Monsieur M. Paoluzzi, pour la fabrication des amplificateurs de puissance.

Monsieur S. Johnston, pour son aimable collaboration pendant les mesures des faisceaux et pour le traitement numérique des données.

Monsieur C. Bertuzzi, pour ses conseils pendant la rédaction de ce mémoire.

Monsieur J. Bosser, pour avoir accepté de lire attentivement ce rapport et pour les critiques constructives dont il m'a fait part.

Messieurs J. Belleman, M. Martini, F. Pedersen, J.L. Perinet-Marquet et M. Thivent pour les nombreux commentaires apportés à la lecture de ce texte.

Messieurs les professeurs du CNAM de Ferney-Voltaire et de Lyon, pour leur enseignement et l'aide morale qu'ils m'ont accordée tout au long de mes études.

Je voudrais également exprimer ma gratitude à tous ceux qui, trop nombreux pour pouvoir les citer ici, ont participé à la construction et à l'installation des divers éléments de ce projet.

Enfin, j'aimerais remercier tout particulièrement mon épouse pour la compréhension et la patience dont elle a fait preuve à mon égard durant ces longues années d'études.
11 Références bibliographiques

[27] L. Vos, Transverse stability considerations for the SPS beam in fixed target operation, CERN/SPS 86-3 (DI-MST), March 1986.

[34] R. Cappi, communication personnelle.

12 Annexes

12.1 Les unités de la physique des particules

Pour des raisons de commodité, les physiciens des hautes énergies ont établi de nouvelles unités, à partir de la charge élémentaire e de l'électron et de la vitesse c de la lumière [38].

Ainsi, en écrivant la charge q de la particule en fonction de celle de l'électron, l'énergie W, dont l'unité dans le système MKSA est le joule (J), est exprimée en électronvolt (eV), soit

$$ W = q \cdot U = k \cdot e \cdot U \quad \text{en } J \quad \xrightarrow{\text{avec } e = 1} \quad \text{en eV} $$

(1.1)

De même, grâce au facteur relativiste β (vitesse normalisée), l'unité utilisée pour la vitesse v des particules est c

$$ v = \beta \cdot c \quad \text{en } m \cdot s^{-1} \quad \xrightarrow{\text{avec } c = 1} \quad \text{en } c $$

(1.2)

Enfin, puisque l'énergie cinétique E_c et la masse m sont fonction de la masse au repos m_0, les relations suivantes montrent comment m et m_0 s'expriment en eV/c².

$$ m = \gamma \cdot m_0 \quad \text{avec } \gamma = \frac{1}{\sqrt{1-\beta^2}} $$

(1.3)

$$ E_c = E - E_0 = (\gamma - 1) m_0 c^2 \quad \Rightarrow \quad m_0 = \frac{E_c}{(\gamma - 1)} \quad \text{en eV/c}^2 $$

(1.4)

Les unités habituelles de la physique des hautes énergies ainsi que leurs facteurs de conversion, dans le système d'unités MKSA, sont regroupés dans le tableau (1.1).

Tableau A.1 : Unités de la physique des particules.

<table>
<thead>
<tr>
<th></th>
<th>Unités MKSA</th>
<th>Unités de la physique des particules</th>
<th>Facteurs de conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge : q</td>
<td>C</td>
<td>e</td>
<td>$1 \text{ e } = 1,6021.10^{-9} \text{ C}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1 \text{ C } = 6.242.10^{18} \text{ e}$</td>
</tr>
<tr>
<td>Vitesse : v</td>
<td>$m.s^{-1}$</td>
<td>c</td>
<td>$c = 3.10^8 \text{ m.s}^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1 \text{ m.s}^{-1} = 3.33.10^{10} \text{ c}$</td>
</tr>
<tr>
<td>Masse : m, m_0</td>
<td>kg</td>
<td>GeV/c²</td>
<td>$1 \text{ GeV/c}^2 = 1,78.10^{-7} \text{ kg}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1 \text{ kg } = 5,62.10^{27} \text{ kg}$</td>
</tr>
<tr>
<td>Quantité de mouvement : p</td>
<td>kg.m.s⁻¹</td>
<td>GeV/c</td>
<td>$1 \text{ GeV/c } = 5,34.10^{-36} \text{ kg.m.s}^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1 \text{ kg.m.s}^{-1} = 1,87.10^{18} \text{ GeV/c}$</td>
</tr>
<tr>
<td>Energie : W, E, E_0, E_c</td>
<td>J</td>
<td>GeV</td>
<td>$1 \text{ eV } = 1,6021.10^{-19} \text{ J}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1 \text{ GeV } = 1,6021.10^{-10} \text{ J}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1 \text{ J } = 6,242.10^{6} \text{ GeV}$</td>
</tr>
</tbody>
</table>
12.2 L'amplificateur de puissance

L'amplificateur à transistors (schéma chap. 13, fig. 13.2), développé spécialement pour le système de correction des instabilités transversales du PS, peut fournir une puissance efficace de 1 kW à une charge de 50 Ohms. Son gain est égal à 53 ± 1,5 dB, dans un domaine de fréquences qui s'étend de 60 kHz à 12 MHz [39].

Le signal d'entrée de l'amplificateur est distribué à quatre modules d'amplification de 250 W chacun de telle sorte que, connectés à un coupleur à quatre voies, ils permettent d'obtenir la puissance requise. L'adaptation d'impédance entre le coupleur et la sortie est réalisée à par un transformateur à ligne de transmission (de rapport 1 : 4).

Le refroidissement des transistors est garanti par une circulation d'eau déminéralisée dans les serpentins qui équipent leur support en cuivre. Quant au coupleur et au transformateur, du fait qu'ils utilisent des tores en ferrite dont les pertes magnétiques provoquent un échauffement lorsque le système fonctionne en basse fréquence, ils nécessitent une ventilation efficace.

La protection de l'amplificateur est assurée par (schéma chap. 13, fig. 13.3) :

- des détecteurs qui mesurent la puissance de sortie ainsi que la puissance réfléchie,
- un circuit de limitation, dont le rôle est de réduire le signal d'entrée en cas de dépassement des puissances autorisées,
- un relais Eleta, pour la mesure du débit d'eau,
- une chaîne de relais, pour s'assurer de la présence des tensions d'alimentation, et
- un ensemble de thermostats, fixés sur les éléments les plus critiques.

Trois sources de tension alimentent les différents circuits de l'amplificateur : +15, -15 et +55 V. Les deux premières sont générées directement dans le châssis de l'amplificateur, à partir du secteur, avec un transformateur et des régulateurs.

Quant à l'alimentation de 55 V/50 A, nécessaire aux étages de puissance, elle est fournie par un appareil commercial (Lambda LT-884) dont la tension s'ajuste de 0 à 60 V et dont l'intensité peut être limitée entre 0 et 70 A. Grâce à une régulation de 0,02 %, aussi bien pour le secteur que pour la charge, cette alimentation permet d'obtenir l'amplification désirée avec le faible niveau de bruit exigé par le régulateur. Elle est, bien entendu, munie de circuits de limitation de la tension et du courant de sortie ainsi que de diverses autres protections. En outre, une entrée et une sortie logiques, de niveau TTL, permettent respectivement la commande à distance et la surveillance de l'état de l'alimentation.

Le déclenchement de l'alimentation, suite à une surtension ou à une surcharge, nécessite la coupure du secteur avant de pouvoir rétablir son opération normale. Cette tâche est effectuée par une électronique de contrôle spécifique qui a été élaborée pour permettre aussi la commande manuelle et la commande à distance du système (schéma chap. 13, fig. 13.7). Le réarmement automatique est réalisé, à l'aide d'une logique composée essentiellement de circuits intégrés programmables, en commandant des contacteurs électromécaniques qui agissent directement sur le réseau triphasé d'entrée. Cette logique est conçue également pour protéger l'ensemble, acquérir l'état du système et signaler la panne dans le cas où trois tentatives de réarmement successives sont restées infructueuses.
12.3 Calcul des lignes microstrip du déflecteur

Le déflecteur qui est utilisé actuellement dans la correction des instabilités transversales a été conçu pour une application électrostatique. C'est la raison pour laquelle ses électrodes n'offrent pas la qualité de véritables lignes de transmission. Pour estimer cependant la valeur de leur impédance caractéristique sur la partie rectiligne de leur géométrie, nous allons nous appuyer sur une méthode de calcul des lignes de type microstrip1, proposée par T. V. Cefalo dans la revue RF Design [40]. Ses formules, que nous reprenons ici, se réfèrent au modèle mécanique de la ligne de transmission couverte représentée par la figure (A.1).

Pour la validité des résultats, il est supposé que le diélectrique qui sépare le conducteur du couvercle est uniquement constitué d'air. En outre, pour que la constante \(\varepsilon \) du diélectrique ne soit pas affectée, il faut que la dimension de \(x \) soit telle que la distance entre la ligne et chacun des côtés métalliques de l'enceinte soit supérieure à 5 fois la largeur \(w \) du conducteur.

![Diagramme de la ligne de transmission microstrip](image)

Fig. A.1 : Dimensions de la ligne de transmission, microstrip.

L'impédance caractéristique \(Z_{0w} \) de la ligne sans couvercle est déterminée par

\[
Z_{0w} = 60 \ln \left[\frac{f(w/h)}{w'/h} + \sqrt{1 + \left(\frac{2h}{w'} \right)^2} \right]
\]

(A.5)

où

\[
f(w/h) = 6 + (2\pi - 6) \exp \left[- \left(\frac{30,666}{w/h} \right)^{0.7528} \right]
\]

(A.6)

et

\[
w' = w + \frac{t}{\pi} \left[1 + \ln \left(4 - 0.5 \ln \left(\frac{t}{h} \right)^2 + \left(\frac{t}{\pi w} \right)^2 \right) \right]
\]

(A.7)

Dans le cas où le diélectrique entre le conducteur et le plan de masse est de l'air, l'impédance caractéristique \(Z_{0a} \) de la ligne est égale à

\[
Z_{0a} = Z_{0w} - \Delta Z_{0a}
\]

(A.8)

1 Microstrip : ligne dont le conducteur est séparé du plan de masse par un diélectrique.
\[\Delta Z_{\text{v0}} = P \cdot Q \]
(A.9)

\[P = 270 \left[1 - \tanh \left(1,192 - \frac{1,389}{1 + (h_l/h)} + 0,706 \sqrt{1 + \frac{h_l}{h}} \right) \right] \]
(A.10)

\[Q = 1,0109 - \tanh^{-1} \left[\frac{0,012 \frac{w}{h} + 0,177 \left(\frac{w}{h} \right)^2 - 0,025 \left(\frac{w}{h} \right)^3}{1 + \left(\frac{h_l}{h} \right)^2} \right] \]
(A.11)

Si le diélectrique est autre que de l'air (\(\varepsilon_r \neq 1\)), l'impédance caractéristique \(Z_0\) de la ligne est alors égale à

\[Z_0 = Z_{\text{v0}} \sqrt{\varepsilon_{\text{eff}}} \]
(A.12)

La permittivité efficace \(\varepsilon_{\text{eff}}\) est un coefficient qui apporte une correction en fonction de l'épaisseur du conducteur et de sa distance au couvercle, soit

\[\varepsilon_{\text{eff}} = \left(\frac{\varepsilon_r + 1}{2} \right) + q \left(\frac{\varepsilon_r - 1}{2} \right) \]
(A.13)

\(q\) est appelé le facteur de remplissage

\[q = (q_\infty - q_0) \cdot q_c \]
(A.14)

\(q_\infty\) correspond à l'absence de couvercle,

\[q_\infty = \left(1 + \frac{10 \ h}{w} \right)^{0.5 \ln 18.7} \]
(A.15)

\[J = -0.564 \left(\frac{\varepsilon_r - 0.9}{\varepsilon_r + 3} \right)^{0.053} \left[1 + \frac{1}{18.7} \ln \left(1 + \left(\frac{w}{18.1 \ h} \right)^3 \right) + \frac{1}{49} \ln \left(\frac{(w/h)^2 + (1/52)^2}{0.432 + (w/h)^4} \right) \right] \]
(A.16)

\(q_c\) est un terme de correction pour une distance finie entre la ligne et le couvercle

\[q_c = \tanh \left(1,043 + 0,121 \frac{h_l}{h} - \frac{1,164}{h_l/h} \right) \]
(A.17)

et \(q_i\) est aussi un facteur de correction qui tient compte de l'épaisseur du conducteur

\[q_i = \frac{2 \ln 2}{\pi} \cdot \frac{t/h}{\sqrt{w/h}} \]
(A.18)
Afin d'exploiter les résultats du modèle précédent pour calculer l'impédance caractéristique des électrodes du déflecteur, nous admettrons que la masse virtuelle du centre du déflecteur est équivalente au couvercle. Néanmoins, puisque la géométrie du déflecteur est cylindrique alors que la section du modèle est rectangulaire, nous devons admettre que l'application des relations précédentes ne peut fournir qu'une valeur approximative de leur impédance.

En utilisant les notations précédentes, avec les indices \(h \) ou \(v \) selon qu'il s'agit du plan horizontal ou vertical du déflecteur, les dimensions des lignes sont les suivantes :

- épaisseur : \(t = 2 \) mm
- largeur : \(w = 3 \) cm
- distances au plan de masse :
 - \(h_h = 105 - t \) mm
 - \(h_v = 145 - t \) mm
- distances au plan de masse virtuel :
 - \(h_{fh} = 7 \) cm
 - \(h_{fv} = 3 \) cm
- diélectrique (air) :
 - \(\varepsilon_r = 1 \)

Les impédances caractéristiques des lignes de transmission, \(Z_{0h} \) et \(Z_{0v} \), du déflecteur sont représentées, en fonction de l'épaisseur \(t \) du conducteur, par la figure (A.2).

Fig. A.2 : Calcul de l'impédance caractéristique des électrodes du déflecteur en fonction de l'épaisseur \(t \) du conducteur, à l'aide des formules des lignes de transmission de type microstrip.
12.4 Filtrage numérique

Avant de présenter les principes du filtrage numérique, voici tout d’abord quelques remarques d’ordre général à propos des systèmes linéaires invariants discrets [41] :

- Ces systèmes peuvent être réalisés à l’aide de trois éléments de base (fig. A.3) :
 - l’additionneur, qui fournit la somme de deux entrées,
 - le multiplicateur, qui effectue le produit d’un signal par une constante, et
 - l’élément de retard unitaire, grâce auquel le signal est retardé d’une période d’échantillonnage.
- Ils sont entièrement caractérisés par la réponse impulsionnelle \(h[n] \).
- La transformée en \(z \), appliquée à la réponse impulsionnelle \(h[n] \), permet d’obtenir la fonction de transfert \(H(z) \), quant à la réponse en fréquence du système \(H(e^{j\omega T}) \), elle découle de la transformée de Fourier discrète de \(h[n] \).

\[
\begin{align*}
x_1[n] & \quad \q
Les filtres numériques sont généralement classés, d'après leur structure, en deux catégories :

- les **filtres non récursifs**, dans lesquels il n'y a pas de contre-réaction du signal de sortie, ce qui implique que les coefficients \(a \), de la fonction de transfert (A.21) sont nuls

- les **filtres récursifs**, qui ont au moins un retour du signal de sortie et par conséquent un ou plusieurs coefficients \(a \), non nuls.

Les filtres en peigne, réalisés à partir d'un filtre discret quelconque en substituant le retard unitaire \(z^{-1} \) par \(r \) retards en cascade, constituent un groupe de filtres particuliers. Leur fonction de transfert, dérivée de l'équation (A.21), s'écrit

\[
G(z) = H(z^{-r})
\]

(C.22)

Ce genre de filtres est extrêmement intéressant, par le fait que la réponse en fréquence \(H(e^{j\omega T}) \) du filtre de base, évaluée dans l'intervalle \(-\pi \leq \omega T \leq \pi\), est reproduite \(r \) fois dans ce même intervalle, \(-\pi \leq r \omega T \leq \pi\).

12.4.1 Filtres non récursifs

La fonction de transfert discrète d'un filtre numérique non récursif comportant \(N \) cellules de retard est donnée par

\[
H(z) = \frac{Y(z)}{X(z)} = \sum_{i=0}^{N} b_i z^{-i}
\]

(C.23)

N'ayant que des pôles à l'origine, les filtres non récursifs sont *inconditionnellement stables*.

![Diagram](image.png)

Fig. A.4 : Le filtre transversal est un filtre non récursif dans lequel seul le signal d'entrée est stocké dans les cellules de retard unitaire \(z^{-1} \). L'amplitude des échantillons successifs de la réponse impulsionnelle \(h[n] \) correspond aux valeurs \(b_i \) des coefficients de la fonction de transfert \(H(z) = \sum b_i z^{-i} \).

La structure la plus utilisée pour la réalisation de ce type de filtres est sans doute celle du *filtre transversal* (fig. A.4). Cette configuration présente en outre l'avantage de permettre de vérifier immédiatement, par le seul examen des coefficients \(b_i \) de la fonction de transfert, si la phase de la réponse en fréquence est linéaire. Il suffit pour cela que la réponse impulsionnelle du filtre soit symétrique, autrement dit que \(h[i] = h[N-i] \), ou antisymétrique, \(h[i] = -h[N-i] \).
La réponse impulsionnelle souhaitée fournit ainsi directement les coefficients b_i du filtre, soit

$$h[n] = \sum_{i=0}^{N} b_i \delta[n-i] \quad \text{(A.24)}$$

Considérons par exemple le filtre passe-haut non récursif (fig. A.5), dont la réponse temporelle est donnée par l'équation aux différences suivante

$$y[n] = x[n] - x[n-1] \quad \text{(A.25)}$$

Sa fonction de transfert s'écrit

$$H(z) = 1 - z^{-1} \quad \text{(A.26)}$$

En remplaçant z par $e^{j\theta}$, où $\theta = \omega T = 2\pi f T$, nous obtenons sa réponse en fréquence

$$H(e^{j\theta}) = 1 - e^{-j\theta} \quad \text{(A.27)}$$

Soit, en développant

$$H(e^{j\theta}) = 1 - (\cos \theta - j \sin \theta) \quad \text{(A.28)}$$

$$H(e^{j\theta}) = 2 \sin \frac{\theta}{2} \left(\sin \frac{\theta}{2} + j \cos \frac{\theta}{2} \right) \quad \text{(A.29)}$$

D'où nous en déduisons l'amplitude et la phase de la réponse en fréquence

$$|H(e^{j\theta})| = 2 \sin \frac{\theta}{2} \quad \text{(A.30)}$$

$$\text{Arg}[H(e^{j\theta})] = \arctg \left(\cot \frac{\theta}{2} \right) \quad \text{(A.31)}$$

Un critère important pour le régulateur de correction des instabilités transversales est que le retard du système soit constant, afin de ne pas introduire de distorsion dans les signaux que nous voulons corriger. Or, bien que la phase de ce filtre soit parfaitement linéaire, ce qui implique un retard constant, son amplitude ne correspond pas au gabarit du filtre que nous avons défini pour rejeter les harmoniques de la fréquence de révolution (chap. 5, fig. 5.1).

12.4.2 Filtres récursifs

La fonction de transfert discrète des filtres récursifs est en général exprimée par le rapport de deux polynômes en z^{-1} (A.21)

$$H(z) = \frac{B(z)}{A(z)} \quad \text{(A.32)}$$

104
Parmi les diverses structures qui permettent de réaliser ces filtres nous ne citerons que deux :

- La plus répandue, celle qui se déduit de l’équation aux différences (A.19), est appelée la structure directe I (fig. A.6 a). Elle comprend un filtre transversal, dont les coefficients sont \(b_0, b_1, \ldots, b_N \), et une section récursive qui a pour coefficients \(a_1, a_2, \ldots, a_M \). Sa réalisation nécessite \(M+N \) retards unitaires.

- La deuxième configuration, nommée structure directe II (fig. A.6 b), permet de réduire le nombre de cellules de retard à \(M \) au détriment de la facilité de mise en œuvre, car les coefficients \(b_i \) et \(a_i \) ne sont plus découplés et affectent chacun les pôles et les zéros de la fonction de transfert.

Pour déterminer les pôles et les zéros, il faut écrire le numérateur et le dénominateur de \(H(z) \) sous forme de produits de facteurs en \(z \), de la manière suivante

\[
H(z) = b_0 \frac{(z - z_1)(z - z_2) \cdots (z - z_N)}{(z - p_1)(z - p_2) \cdots (z - p_M)} z^{M-N}
\]

(A.33)

Dans cette relation, \(p_i \) et \(z_i \) sont respectivement les pôles et les zéros. Le terme \(z^{M-N} \) représente, soit un zéro multiple à l’origine, si \(M \) est supérieur à \(N \), soit \(M-N \) retards unitaires, lorsque \(M \) est inférieur à \(N \).
Leurs propriétés essentielles peuvent souvent être analysées en examinant leur position dans le plan complexe (fig. A.7):

- Si les coefficients \(b_i \) et \(a_i \) sont réels, les pôles et les zéros ne peuvent être que réels ou complexes conjugués. Dans ce cas, le lieu des pôles et des zéros est symétrique par rapport à l’axe réel.

- Les effets d’un pôle ou d’un zéro sont d’autant plus importants qu’ils se situent près du cercle unité. Dans le cas extrême où ils sont sur le cercle (fig. A.7), la réponse s’annule pour le zéro \(z = e^{i\theta_1} \) ou devient infinie pour le pôle \(z = e^{i\theta_2} \), avec un saut de phase de \(\pi \) radians dans les deux cas.

- Pour que le système soit stable, tous les pôles doivent être à l’intérieur du cercle unité, les zéros pouvant se situer dans tout l’espace complexe.

- Si tous les zéros de la fonction de transfert sont à l’intérieur du cercle unité, le système est dit à phase minimum.

\[H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - a_i z^{-1}} \quad \text{(A.34)} \]

Cette fonction, qui possède un zéro à l’origine et un pôle \(p_i = a_i \), est stable lorsque, dans le plan complexe, le pôle est à l’intérieur du cercle unité, c’est-à-dire si \(-1 < a_i < 1\). Toutefois, le filtre ne se comporte pas comme un passe-bas que si la valeur de \(a_i \) est positive.
Sa réponse en fréquence est calculée en développant l'expression suivante

\[H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - a_1 z^{-1}} \] \hspace{1cm} (A.35)

soit,

\[|H(e^{j\theta})| = (1 + a_1^2 - 2a_1 \cos \theta)^{-1/2} \] \hspace{1cm} (A.36)

\[\text{Arg} \left[H(e^{j\theta}) \right] = \text{Arc tg} \left[-\frac{a_1 \sin \theta}{1 - a_1 \cos \theta} \right] \] \hspace{1cm} (A.37)

La structure directe de type I du filtre récursif est mise en évidence en écrivant la fonction de transfert sous la forme d'une équation aux différences

\[y[n] = x[n] - a_1 y[n-1] \] \hspace{1cm} (A.38)

Le schéma de principe de ce filtre récursif ainsi que les réponses en fréquence, correspondant à différentes valeurs positives du pôle réel \(p_1 = a_1 \), sont représentés par la figure (A.8).

Nous pouvons constater que la linéarité de la phase de ce filtre s'améliore au fur et à mesure que \(a_1 \) s'approche de 1.

12.4.3 Filtres en peigne

Stables et faciles à mettre en œuvre, les filtres numériques en peigne sont couramment utilisés dans les applications qui exigent des fréquences d'échantillonnage très élevées, 200 MHz par exemple dans le système de refroidissement stochastique des antiprotons au CERN [42].

Considérons d'abord la fonction de transfert du filtre en peigne non récursif réalisée à partir de l'équation (A.26), en remplaçant le retard unitaire \(z^{-1} \) par une série de \(r \) retards

\[H(z) = 1 - z^{-r} \] \hspace{1cm} (A.39)

Les pôles et les zéros sont mis en évidence en exprimant cette fonction sous la forme

\[H(z) = k \prod_{i=1}^{r} \frac{z - z_i}{z'} \] \hspace{1cm} (A.40)

soit \(r \) pôles, à l'origine du plan complexe, et \(r \) zéros équidistants sur le cercle unité.
Dans le cas de la correction des instabilités transversales du PS, où il est nécessaire de rejeter les harmoniques de la fréquence de révolution des paquets de particules en échantillonnant à la fréquence d'accélération, \(r \) doit être égal au nombre harmonique \(h = 20 \), correspondant aux cycles d'accélération des faisceaux de protons

\[
H(z) = 1 - z^{-20}
\]

(A.41)

La figure (A.9) illustre la structure de ce type de filtre ainsi que le placement des pôles et des zéros dans le plan complexe et sa réponse en fréquence \(H(e^{j\theta}) \).

![Diagram](image)

Fig. A.9 : a) Schéma de principe du filtre en peigne non récursif \(H(z) = 1 - z^{-20} \). b) Placement des 20 pôles et des 20 zéros dans le plan complexe. c) Réponse en fréquence.

Ce type de filtre n'a pas été retenu pour réaliser le correcteur des instabilités transversales des faisceaux de protons, car son amplitude en fonction de la fréquence ne correspond pas à la réponse souhaitée (définie par la figure 5.1). Celui qui a finalement été adopté, présenté dans le chapitre (5.1), utilise le filtre passe-bas récursif décrit par l'équation (A.34), avec les 20 cellules de retard nécessaires, soit

\[
H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - az^{-20}}
\]

(A.42)
13 Schémas

Le schéma fonctionnel de l'ensemble du système ainsi que les schémas des amplificateurs et d'une partie des circuits électroniques réalisés pour cette application sont représentés par les figures suivantes.

- Figure 13.1 : Schéma fonctionnel du régulateur
- Figure 13.2 : L'amplificateur de puissance (1 kW)
- Figure 13.3 : Alimentation et circuits de protection de l'amplificateur de puissance
- Figure 13.4 : Normalisation Δ / Σ
- Figure 13.5 : Filtre numérique
- Figure 13.6 : Préamplificateurs et circuits de détection
- Figure 13.7 : Circuits de contrôle des amplificateurs et des relais de puissance
Figure 13.2 : L'amplificateur de puissance (1 kW).

113
Figure 13.3 : Alimentation et circuits de protection de l'amplificateur de puissance.

115
Figure 13.5 : Filtre numérique.
Figure 13.6 : Préamplificateurs et circuits de détection.
Figure 13.7a : Circuits de contrôle des amplificateurs et des relais de puissance.
Figure 13.7b : Circuits de contrôle des amplificateurs et des relais de puissance.
Figure 13.7c : Circuits de contrôle des amplificateurs et des relais de puissance.