NON-ABELIAN EXCITATIONS OF THE QUARK-GLUON PLASMA

Jean-Paul BLAIZOT1 and Edmond IANCU

\emph{Service de Physique Théorique2, CE-Saclay}

\textit{91191 Gif-sur-Yvette, France}

January 1994

Abstract

We present new, non-abelian, solutions to the equations of motion which describe the collective excitations of a quark-gluon plasma at high temperature. These solutions correspond to spatially uniform color oscillations.

Submitted to Physical Review Letters
PACS No: 12.38.Mh, 12.38.Bx, 52.25.Dg

1CNRS
2Laboratoire de la Direction des Sciences de la Matière du Commissariat à l’Energie Atomique
The long wavelength excitations of a quark-gluon plasma are collective excitations which are described by nonlinear equations generalizing the classical Yang-Mills equations in the vacuum. Most studies of such equations have been limited so far to their weak field limit, where the modes reduce essentially to abelian-like plasma waves. The purpose of this letter is to present new, truly non-abelian, solutions that we have obtained recently. At leading order in the gauge coupling g, (we assume $g \ll 1$ in the high temperature deconfined plasma), the collective dynamics is entirely described by a set of effective equations for the soft gauge mean fields $A_\mu^a(x)$ which describe the long wavelength ($\lambda \sim 1/gT$) and low frequency ($\omega \sim gT$) excitations (T denotes the temperature)[1, 2]. (Throughout this work, the greek indices refer to Minkovski space, while the latin subscripts are color indices for the adjoint representation of the gauge group $SU(N)$). The equations satisfied by $A_\mu^a(x)$ are

$$[D^\mu, F_{\nu \mu}(x)]_a = j_{\mu \nu}^{ind}(x),$$

where $D^\mu = \partial^\mu + igA^\mu(x)$, $(A^\mu \equiv A_\mu^aT^a)$, and $F^{\mu \nu} = [D^\mu, D^\nu]/(ig) = F_{a}^{\mu \nu}T^a$. The induced current $j_{\mu \nu}^{ind}$ describes the response of the plasma to the color gauge fields A_μ^a. It is proportional to the fluctuations in the phase-space color densities of quarks and gluons. Its expression is[1, 3]

$$j_{\mu \nu}^{ind}(x) = 3\omega_p^2 \int \frac{d\Omega}{4\pi} v_{\nu} W_a(x; v),$$

for retarded boundary conditions ($A_\mu^a(x) \rightarrow 0$ as $x_0 \rightarrow -\infty$). The notations here are as follows: $\omega_p^2 \equiv (2N + N_f)g^2T^2/18$ is the plasma frequency, $v^\mu \equiv (1, v)$, where $v \equiv k/k$ is the velocity of the hard particle with momentum k ($k \equiv |k|$), and the integral $\int d\Omega$ runs over all the directions of the unit vector v. Furthermore, the functions $W_a(x; v)$ are generally nonlocal and nonlinear functionals of the gauge fields, defined by

$$W_a(x; v) = \int_0^\infty du U_{ab}(x, x - vu) v \cdot E_b(x - vu)$$
where $E^i \equiv F^{i0}$ is the chromoelectric field, and $U(x, y)$ is the parallel transporter along the straight line γ joining x and y. The induced current (2) is covariantly conserved,
\[[D^\mu, j^{\text{ind}}_\mu(x)] = 0. \] The energy density of an arbitrary gauge field configuration in the plasma has been recently computed as\[3\]
\[T^{00}(x) = \frac{1}{2} \left(E_a(x) \cdot E_a(x) + B_a(x) \cdot B_a(x) \right) + \frac{3}{2} \omega^2 \rho_a \int \frac{d\Omega}{4\pi} W^0_a(x; v) W^0_a(x; v), \] (4)
with $B^{i}_a(x) \equiv -(1/2)\epsilon^{ijk} F^{jk}_a(x)$. Remark that $T^{00}(x)$ is manifestly positive, and so is therefore the excitation energy $E(t) = \int d^3x T^{00}(t, x)$, at any time t.

The solutions to the non-abelian field equations (1) have direct physical relevance: they correspond to collective excitations of the high temperature quark-gluon plasma. In this letter, we study particular solutions which are uniform in space. (Another interesting limit, that of a static field configuration, has been considered recently\[4\], with the conclusion that no finite energy solution exists). For convenience, we choose the temporal gauge, $A^{a}_0(x) = 0$. Hence, $A^{\mu}_a(x) \equiv (0, A_a(t))$.

For uniform fields, the functions $W_a(t; v)$ are simple local functionals of the gauge potentials\[3\],
\[W_a(t; v) = -v \cdot A_a(t), \] (5)
and the same holds for the induced current (2), $j^{\text{ind}}_a(t) = -\omega^2 \rho_a(t)$, $\rho^{\text{ind}}_a(t) = 0$, and for the energy density (4),
\[T^{00}(t) = \frac{1}{2} \left(\frac{dA_a}{dt} \cdot \frac{dA_a}{dt} + \omega^2 A_a \cdot A_a \right) + \frac{g^2}{4} f^{abc} f^{ade} (A_b \cdot A_d) (A_c \cdot A_e). \] (6)

We have used here the expressions of the field strengths in terms of the vector potentials,
\[E_a(t) = -\frac{dA_a}{dt}, \quad B_a(t) = \frac{g}{2} f^{abc} A_b(t) \times A_c(t). \] (7)

The field equations (1) reduce then to the following equations for the vector potentials $A^i(t) = A^i_a(t) T^a$,
\[\frac{d^2 A^i}{dt^2} + \omega^2 A^i + g^2 \left[[A^i, A^j], A^j \right] = 0, \] (8)
together with a constraint (Gauss’s law)

\[
\left[A^i, \frac{dA^i}{dt} \right] = 0, \quad (9)
\]
corresponding to the component \(\mu = 0 \) of eq. (1). These equations are similar to
the classical Yang-Mills equations in the vacuum, which have been extensively inves-
tigated already for the case of \(SU(2) \)[5, 6, 7, 8]. They differ, however, by the
presence of the thermal mass term \(\omega_p^2 A^i \), which, as we shall see, has a strong effect
on the dynamics. Note incidentally that, for gauge fields satisfying Gauss’s law (9),
the Poynting vector \(S^i \equiv T^{0i} \) vanishes[3].

The constraint (9) is satisfied, in particular, by field configurations of the form
\(A^i_\alpha (t) = A^i_\alpha \ h^i(t) \) (no summation over \(i \)), with constant \(A^i_\alpha \) and arbitrary functions
\(h^i(t) \). Indeed, for such fields, the three color vectors \(\{ A^i_\alpha (t) \} \) and \(\{ dA^i_\alpha /dt \} \) \((i = 1, 2, 3)\) are parallel in color space. In the rest of this letter we restrict ourselves to
\(SU(2) \), and assume \(A^i_\alpha = \delta^i_\alpha \). This Ansatz is equivalent to that proposed by Baiseyan
et al.[5], up to a trivial global gauge rotation [8]. The functions \(h^i(t) \) then satisfy

\[
\frac{d^2 h_1}{dt^2} + \omega_p^2 h_1 + g^2 h_1 (h_2^2 + h_3^2) = 0, \quad (10)
\]

plus two similar equations for \(h_2 \) and \(h_3 \). The associated energy density,

\[
T^{00} = \frac{1}{2} \sum_i \left(\left(\frac{dh_i}{dt} \right)^2 + \omega_p^2 h_i^2 \right) + \frac{g^2}{2} \left(h_1^2 h_2^2 + h_1^2 h_3^2 + h_2^2 h_3^2 \right), \quad (11)
\]
is an integral of motion and acts as an effective Hamiltonian for the functions \(h_i(t) \).

At this point, it is convenient to make a scale transformation and define the dimen-
sionless variable \(x \equiv \omega_p t \), as well as the dimensionless functions \(f_i(x) \equiv (g/\omega_p) h_i(t) \).
We also assume \(f_3 = 0 \), with no significant loss of generality. We obtain then for \(f_1 \)
and \(f_2 \) the coupled nonlinear equations

\[
\tilde{f}_1(x) + \left[1 + (f_2(x))^2 \right] f_1(x) = 0, \quad \tilde{f}_2(x) + \left[1 + (f_1(x))^2 \right] f_2(x) = 0, \quad (12)
\]
where the overdots indicate derivatives with respect to x. The energy density (11) is then

$$T^{00} = \frac{\omega_p^4}{g^2} \frac{1}{2} \left(\dot{f}_1^2 + \dot{f}_2^2 + f_1^2 + f_2^2 + f_1^2 f_2^2 \right) \equiv \frac{\omega_p^4}{g^2} \mathcal{H}. \quad (13)$$

The Hamiltonian \mathcal{H} is that of a system of two nonlinearly coupled harmonic oscillators with coordinates f_1 and f_2. Note that the different parameters characterizing the initial system (i.e., ω_p, g, T^{00}) combine into a single, dimensionless, one, $\theta^2 \equiv (g^2/\omega_p^4)T^{00}$, which measures the total energy of the mechanical system: $\mathcal{H} = \theta^2$.

In deriving eq. (1), we have assumed the gauge fields to be weak ($A \ll T$) and slowly varying ($\partial A \sim g TA$)[1]. Remembering that $\omega_p \sim gT$, one sees that these conditions imply $|\dot{f}_i(x)| \lesssim 1$ and $|\dot{f}_i(x)| \sim |f_i(x)|$, so that θ is, at most, of order unity, $\theta \lesssim 1$. These limitations are consistent with the dynamics described by eqs. (12).

The quadratic terms $f_1^2 + f_2^2$ in the Hamiltonian (13), which originates from the thermal mass, play an essential role in this respect. Because of them, and of energy conservation, a trajectory $\{f_i(x)\}$ cannot leave the bounded domain delineated by the equipotential lines $f_1^2 + f_2^2 + f_1^2 f_2^2 = 2\theta^2$ (Fig.1). Let us assume $\theta \lesssim 1$. Then, since $|f_i(x)| \leq \sqrt{2} \theta$ (see Fig.1), it follows that $|\dot{f}_i(x)| \lesssim 1$ for any x. Furthermore, the quantity $(1 + f_i^2(x))$, which plays the role of an effective frequency squared for the motion in the direction $j \neq i$, remains of order 1 for any x, so that f_i and \dot{f}_i remain of the same order of magnitude. Consequently, if the conditions on the functions f_i mentioned above are satisfied for some x_0, then they are valid for any x. The situation here is different from the classical, vacuum, case, were the equipotential lines are given by $h_1^2 h_2^2 = (2/g^2)T^{00}$; then, for given energy T^{00}, the motion could extend arbitrary far along the h_1 or the h_2 axis. Using the language of dynamical systems, one may observe that, for the system (12), the origin of the four-dimensional phase-space $(f_1, \dot{f}_1, f_2, \dot{f}_2)$ is an elliptic fixed point, corresponding to a neutrally stable equilibrium[10]. At $T = 0$, this same point is marginally unstable. Thus, apart from ensuring bounded trajectories $\{f_i(x)\}$, the quadratic terms f_i^2 in eq. (13) also improve
the stability of the system.

Let us consider now simple, periodic, solutions to the system (12).

(a) The simplest motion is one-dimensional along the axes 1 or 2. Assume, e.g., $f_2 = 0$. We get then a simple harmonic oscillator equation for f_1,

$$\ddot{f}_1(x) + f_1(x) = 0. \quad (14)$$

The general solution is $f_1 = a_1 \cos x + a_2 \sin x$, with $a_1^2 + a_2^2 = 2\theta^2$. The corresponding field configuration, $A^1(t) = (C_1 \cos \omega_p t + C_2 \sin \omega_p t) T^1$, (with $C_i \equiv (\omega_p / g) a_i$), and $A^2 = A^3 = 0$, describes periodic oscillations (with period $\mathcal{T}_0 = 2\pi / \omega_p$) in space-color direction 1.

(b) Another one-dimensional, but less trivial, example corresponds to periodic solutions with $f_2(x) = \pm f_1(x) \equiv \pm f(x)$. These solutions describe in or out of phase oscillations of the colors 1 and 2. The function $f(x)$ satisfies the nonlinear equation

$$\ddot{f}(x) + f(x) + f^3(x) = 0, \quad (15)$$

for which the integral of motion is

$$\theta^2 = \dot{\theta}^2 + f^2 + \frac{1}{2} f^4. \quad (16)$$

A particular solution to (15) is

$$f(x) = f_\theta \text{cn}\left((2\theta^2 + 1)^{1/4}(x - x_0); k\right), \quad (17)$$

where $\text{cn}(x; k)$ is the Jacobi elliptic cosine of argument x and modulus k, and x_0 is the arbitrary origin of the time. The parameters k and f_θ are related to θ by

$$k = \frac{1}{\sqrt{2}} \left(1 - \frac{1}{\sqrt{2\theta^2 + 1}}\right)^{1/2}, \quad (18)$$

and

$$f_\theta = \left(\sqrt{2\theta^2 + 1} - 1\right)^{1/2}. \quad (19)$$
It can be easily seen that \(f_1 = \pm f_2 = \pm f_\theta \) are the coordinates of the intersection points between the trajectories and the equipotential lines in Fig. 1. The solution (17) corresponds to the initial conditions \(f(x_0) = f_\theta \) and \(\dot{f}(x_0) = 0 \). For the in-phase oscillations, the associated gauge potentials are \(A^1(t) = h(t)T^1 \), \(A^2(t) = h(t)T^2 \), and \(A^3(t) = 0 \), where \(h(t) = (\omega_p/g) f(\omega_p t) \) is a periodic function, with period

\[
T = \frac{4}{\omega_p} \left(\frac{1}{2\theta^2 + 1} \right)^{1/4} K(k),
\]

and \(K(k) \) is the complete elliptic integral of modulus \(k \). Since \(\theta \ll 1 \), \(T \) remains of order of \(T_0 = 2\pi/\omega_p \). Thus, it is the plasma frequency \(\omega_p \sim gT \) which controls the time variation of the nonlinear color oscillations (17), for any value of the parameter \(\theta \ll 1 \). This is true, in particular, for small oscillations, that is, when the energy density \(T^{00} \to 0 \), so that \(\theta \approx f_\theta \ll 1 \) and \(k \to 0 \). Then, the periodic solution (17) reduces to a simple harmonic oscillation, and \(T \to T_0 \). In contrast, in the zero temperature case, as \(T^{00} \to 0 \), the corresponding period is diverging\(^{[5]}\). (The \(T = 0 \) expression for \(T \) is obtained from eq. (20) by replacing \((2\theta^2 + 1)^{1/4} \omega_p \to (2g^2 T^{00})^{1/4} \) and \(k \to 1/\sqrt{T_0} \).)

For this solution, the non-trivial field strengths are \(E^i_a = -\delta^i_a \dot{h} \), with \(i = 1, 2 \), and \(B^3_a = g h^2 \delta^3_a \). Accordingly, the three vectors \(E_1, E_2 \), and \(B_3 \) are mutually orthogonal.

An important question concerns the stability of the periodic orbits of the system (12). For the corresponding equations at zero temperature, it has been shown, through a numerical analysis, that unstable periodic trajectories exist\(^{[5]}\). In particular, the in-phase oscillations of two colors (the vacuum analog of (17)) are unstable\(^{[6, 7]}\). In the case of the system (12), the presence of the linear terms \(f_1 \) and \(f_2 \), which originate from the thermal mass in (11), guarantees the stability of the solutions, for small oscillations and for most initial conditions. This is verified in the numerical analysis of the system (12) performed in Ref.\(^{[9]}\) in the physically different context of a classical Yang-Mills-Higgs system in the vacuum. There, the mass terms for the gauge fields are generated through spontaneous symmetry breaking and are proportional to
the vacuum expectation value of the scalar field, $\eta = \langle \phi \rangle$. The correspondence between the two sets of equations is simply given by $\omega_p^2 \rightarrow g^2 \eta^2 / 2$. The numerical experiment in Ref. [9] clearly shows that for $\theta \ll 1$ (e.g., for $\theta \approx 0.2$) most of the trajectories are quasi-periodic. As θ increases, the stochastic motion strongly develops and, beyond a critical value $\theta_c^2 \approx 6.6$, it fills the entire permissible range of motion in the phase space. As the above value of θ_c stays in the limits of validity of the present approach, it would be worth to further investigate the physical signification of this transition. Analogous findings, concerning the non-integrability and the stochastic behaviour of the dynamical system (12), are presented in Refs. [11] and [12].

In conclusion, we have studied here global color oscillations of the high temperature quark-gluon plasma, by looking at the spatially uniform limit of the effective equations of motion derived in Refs. [1]. We have shown that the plasma frequency $\omega_p = gT(N + N_f/2)^{1/2}/3$ characterizes the inertial properties of the plasma both for the abelian-like and for the genuine non-abelian collective motion. The phase-space motion is bounded and quasi-periodic for small oscillations and for most initial conditions. We have obtained explicit nonlinear solutions for $SU(2)$ which describe in or out of phase oscillations of two colors (the generalization to the in-phase oscillations of the three colors, i.e., $h_1 = h_2 = h_3$ in eq. (10), is straightforward[3]). Such solutions can be imbedded in any larger $SU(N)$ theory in the standard way[13].

Acknowledgements

We would like to thank D. Ullmo far having indicated to us Refs. [11] and [12].
References

