Approaches to Quantum Cosmology

Alexander Vilenkin

Tufts Institute of Cosmology, Department of Physics and Astronomy,
Tufts University, Medford, MA 02155.

Abstract:

Different proposals for the wave function of the universe are analyzed, with an emphasis on various forms of the tunneling proposal. The issues discussed include the equivalence of the Lorentzian path integral and outgoing - wave proposals, the definitions of the outgoing waves and of superspace boundaries, topology change and the corresponding modification of the Wheeler - De Witt equation. Also discussed are the "generic" boundary condition and the third quantization approach.
In quantum cosmology the whole universe is treated quantum-mechanically and is described by a wave function rather than by a classical spacetime. This quantum approach to cosmology was originated by DeWitt \(^1\) more than 25 years ago, and after a somewhat slow start has attracted much interest during the last decade. The picture that has emerged from this line of development \(^2,3,4,5,6,7,8,9,10\); is that a small closed universe can spontaneously nucleate out of nothing, where ”nothing” refers to the absence of not only matter, but also of space and time.

The wave function of the universe is defined on superspace, which is the space of all 3-metrics \(h_{ij}(x)\) and matter field configurations \(\phi(x)\),

\[
\psi[h_{ij}(x), \phi(x)].
\] (1.1)

It is invariant under 3-dimensional diffeomorphisms and satisfies the Wheeler-DeWitt equation \([1]\)

\[
\mathcal{H}\psi[h_{ij}, \phi] = 0.
\] (1.2)

Here, \(\mathcal{H}\) is a second-order differential operator in superspace. In principle, \(\psi(h, \phi)\) should contain the answers to all meaningful, questions one can ask about the universe. However, the conditions necessary to specify the appropriate solution of eq.(1.2) and the procedure by which information can be extracted from that solution are far from being understood.

As (almost) any differential equation, the Wheeler-DeWitt equation has an infinite number of solutions. To get a unique solution, one has to specify some boundary conditions in superspace. In ordinary quantum mechanics, the boundary conditions for the wave function are determined by the physical setup external to the system under consideration. In quantum cosmology, there is nothing external to the universe, and it appears that a boundary condition should be added to eq. (1.2) as an independent physical law.
Several candidates for this law of boundary condition have been proposed. Hartle and Hawking suggested that $\psi(h, \phi)$ should be given by a Euclidean path integral over compact 4-geometries $g_{\mu\nu}(x, \tau)$ bounded by the 3-geometry $h_{ij}(x)$ with the field configuration $\phi(x)$,

$$\psi = \int (h, \phi) \left[dg \left[d\phi \right] \exp \left[-S_E(g, \phi) \right] \right].$$ \hspace{1cm} (1.3)

In this path-integral representation, the boundary condition corresponds to specifying the class of histories integrated over in eq (1.3). Compact 4-geometries can be thought of as histories interpolating between a point ("nothing") and a finite 3-geometry h_{ij}.

A Euclidean rotation of the time axis, $t \to -i\tau$, is often used in quantum field theory because it improves the convergence of the path integrals. However, in quantum gravity the situation is the opposite. The gravitational part of the Euclidean action S_E is unbounded from below, and the integral (1.3) is badly divergent. Attempts to fix this problem by analytic continuation were only partly successful, and at present it remains unclear whether one can meaningfully define an integral such as (1.3).

Alternatively, I proposed that $\psi(h, \phi)$ should be obtained by integrating over Lorentzian histories interpolating between a vanishing 3-geometry \emptyset and (h, ϕ) and lying to the past of (h, ϕ),

$$\psi(h, \phi) = \int_{\emptyset}^{(h, \phi)} \left[dg \left[d\phi \right] e^{iS} \right].$$ \hspace{1cm} (1.4)

This wave function is closely related to Teitelboim’s causal propagator $^{13, 14}$ $K(h_2, \phi_2|h_1, \phi_1)$,

$$\psi(h, \phi) = K(h, \phi|\emptyset).$$ \hspace{1cm} (1.5)

Linde suggested that, instead of the standard Euclidean rotation $t \to -i\tau$, the action S_E in (1.3) should be obtained by rotating in the opposite sense, $t \to +i\tau$. This gives a convergent path integral for the scale factor, which is all one needs in the simplest minisuperspace models. But in models including matter degrees of freedom or inhomogeneous modes of the metric one gets a divergent integral. Additional contour rotations might fix
this problem, but no specific proposals have yet been formulated. Halliwell and Hartle discussed a path integral over complex metrics which are not necessarily purely Lorentzian or purely Euclidean. This encompasses all of the above proposals and opens new possibilities. However, the space of complex metrics is very large, and no obvious choice of the integration contour suggests itself as the preferred one.

In addition to these path-integral no-boundary proposals, one candidate law of boundary conditions has been formulated directly as a boundary condition in superspace. This is the so-called tunneling boundary condition which requires that should include only outgoing waves at boundaries of superspace. The main weakness of this proposal is that "outgoing waves" and the "boundary of superspace" have not been rigorously defined. The Lorentzian path-integral proposal was originally suggested as a path integral version of the tunneling boundary condition, and indeed the two proposals give the same wave function in the simplest minisuperspace model. In the general case, the equivalence of the two proposals is far from being obvious.

I should also mention a completely different approach to quantum cosmology, the so-called third quantization. Here, the wave function of the universe is promoted to a quantum field operator and is expressed in terms of creation and annihilation operators for the universes. The problem of defining the boundary conditions is then replaced by the problem of determining the in-state of the quantum field. With the radius of the universe playing the role of time, it is argued that creation of universes from nothing corresponds to an "in-vacuum" state at vanishing radius.

The problem of boundary conditions for the cosmological wave function is related to the problem of topology change in quantum gravity. In the path integral approach, one has to specify whether the integration in (1.3), (1.4) is performed over 4-manifolds of arbitrary topology, or only a restricted class of topologies is included. In the tunneling approach, part of superspace boundary corresponds to boundaries between different topological sectors, and
one has to decide what kind of boundary condition should be imposed there. Moreover, we shall see in Section 7 that topology change not only affects the boundary conditions for ψ, but also leads to a modification of the Wheeler-DeWitt equation.

In this paper I shall review the status of the tunneling wave function of the universe and attempt a more precise formulation of the tunneling boundary condition. As a prototype for this boundary condition, the next section discusses the process of bubble nucleation in a false vacuum, which is in many ways analogous to the nucleation of universes. The outgoing-wave boundary condition for a nucleating bubble will be formulated using a spherical minisuperspace model. In Section 3, similar approach is applied to the simplest cosmological minisuperspace model: a Robertson-Walker universe with a cosmological constant, $\Lambda > 0$. In Section 4, the wave function for the same model is obtained by analytic continuation from the "bound-state" wave function for $\Lambda < 0$. Section 5 discusses the Lorentzian path integral approach and its equivalence to the outgoing wave boundary condition. A possible extension of these approaches beyond minisuperspace is discussed in Section 6. There, it is suggested that some general properties of the potential term in the Wheeler-DeWitt equation may allow one to define outgoing waves in the general case.

The issues of topology change is tackled in Section 7. It is argued that topology-changing transitions can occur through superspace boundaries, but generally involve configurations in the interior of superspace. This implies that the Wheeler-DeWitt equation needs to be modified. A possible form of this modified equation is suggested. Section 8 gives some critical comments on the third-quantization approach to topology change, and Section 9 contains some concluding remarks.

2. Bubble Nucleation

To discuss the nucleation of true vacuum bubbles in a metastable false vacuum, we shall make a number of simplifying assumptions. First, we shall assume that the bubble radius
at nucleation is much greater than the thickness of the bubble wall, so that the bubble can be approximated as an infinitely thin sheet. Second, we shall use the semiclassical approximation, assuming that the tunneling action is large. (This is always true for a thin-walled bubble, provided the theory is weakly interacting). The nucleating bubble is then nearly spherical and can be adequately described by a minisuperspace model with a single degree of freedom, the bubble radius R. Finally, we shall disregard the gravitational effects of the false vacuum and assume the spacetime to be Minkowskian.

In our minisuperspace model, the worldsheet of the bubble wall is described by a single function $R(t)$, and the Lagrangian is

$$L = -4\pi \sigma R^2 (1 - \dot{R}^2)^{1/2} + \frac{4\pi}{3} \epsilon R^3. \quad (2.1)$$

Here, σ is the wall tension, ϵ is the difference between the energy densities of the false and true vacuum, and $\dot{R} = dR/dt$. The momentum conjugate to the variable R is

$$p_R = 4\pi \sigma R^2 \dot{R}(1 - \dot{R}^2)^{-1/2} \quad (2.2)$$

and the Hamiltonian is

$$\mathcal{H} = [p_R^2 + (4\pi \sigma R^2)^2]^{1/2} - \frac{4\pi}{3} \epsilon R^3. \quad (2.3)$$

Bubble nucleation does not change the energy of the system, and if the false vacuum energy is set equal to zero, we have

$$\mathcal{H} = 0, \quad (2.4)$$

which can be rewritten using (2.3),

$$p_R^2 + U(R) = 0, \quad (2.5)$$

$$U(R) = (4\pi \sigma R^2)^2 (1 - R^2/R_0^2), \quad (2.6)$$

where $R_0 = 3\sigma/\epsilon$. The equation of motion for $R(t)$ can be obtained from (2.2), (2.5) and (2.6),

$$\dot{R}^2 \ddot{R}^2 = R^2 - R_0^2, \quad (2.7)$$
and the solution is
\[R(t) = (R_0^2 + t^2)^{1/2}. \] (2.8)

The worldsheet metric of the bubble is
\[ds^2 = (1 - \dot{R}^2) dt^2 - R^2(t) d\Omega^2, \] (2.9)
where \(d\Omega^2 \) is the metric on a unit sphere. With a new time coordinate,
\[\tau = R_0 \sinh^{-1}(t/R_0), \] (2.10)
we recognize it as the metric of a \((2+1)\)-dimensional de Sitter space,
\[ds^2 = d\tau^2 - R^2(\tau) d\Omega^2, \]
\[R(\tau) = R_0 \cosh(\tau/R_0). \] (2.11)

If the bubble wall gets inhabited by some 2-dimensional creatures, they will find themselves living in an expanding inflationary universe. If they are smart enough, they may also figure out that their universe was spontaneously created at \(\tau = 0 \), and thus eq.(2.11) applies only for \(\tau > 0 \).

How would these 2-dimensional physicists describe the quantum nucleation of the universe? In quantum theory, the energy conservation (2.4) gets replaced by
\[\mathcal{H}\psi = 0, \] (2.12)
where \(\psi(R) \) is the "wave function of the universe" and the momentum operator is \(p_R = -i\partial/\partial R \). The square root in (2.3) is complicated to deal with, and it is much easier to use the energy conservation law in the form (2.5),
\[[-\partial^2_R + U(R)]\psi = 0. \] (2.13)

The transition from (2.12) to (2.13) involves commutation of the non-commuting operators \(R \) and \(p_R \), which is justified, as long as
\[|R \partial R \psi| >> |[R, p_R] \psi| = |\psi|, \] (2.14)
that is, away from the classical turning points, where \(p_R \approx 0 \). Using the classical equations of motion for \(R(t) \), we find that (2.14) is violated in a small neighborhood of the turning point \(R_0 \),

\[
\delta R / R_0 \sim (\sigma R_0^3)^{-2} < 1 .
\]

(2.15)

Since the correct operator ordering is not known, we shall keep the simplest choice as in (2.13).

We now come to the problem of determining the boundary conditions for \(\psi(R) \). Only one non-trivial condition is required; the second would simply determine the overall multiplicative constant. The WKB solutions of eq.(2.13) for \(R > R_0 \) are

\[
\psi_{\pm}(R) = p(R)^{-1/2} \exp \left(\pm i \int_{R_0}^{R} p(R') dR' \mp i \pi/4 \right),
\]

(2.16)

where

\[
p(R) = [-U(R)]^{1/2}
\]

(2.17)

is the classical momentum. To the leading order in the WKB approximation,

\[
\hat{p}_R \psi_{\pm}(R) \approx \pm p(R) \psi_{\pm}(R),
\]

(2.18)

where \(\hat{p}_R = -i \partial / \partial R \). This shows that \(\psi_+(R) \) and \(\psi_-(R) \) describe, respectively, the expanding and contracting bubbles. In the quantum nucleation process, only an expanding bubble must be present, and thus we require that for \(R > R_0 \) the wave function should include only the outgoing wave, \(\psi_+(R) \).

In the classically forbidden range, \(0 < R < R_0 \), the two solutions of (2.13) are

\[
\check{\psi}_{\pm} = |p(R)|^{-1/2} \exp \left(\pm \int_{R}^{R_0} |p(R)| dR \right).
\]

(2.19)

With the outgoing wave boundary condition at large \(R \), the wave function in this range is determined \(^{25}\) by matching at \(R \approx R_0 \),

\[
\psi(R < R_0) = \check{\psi}_+(R) + \frac{i}{2} \check{\psi}_-(R).
\]

(2.20)
The two terms on the right-hand side of (2.20) have comparable magnitude at \(R \approx R_0 \), but in the most of the forbidden range the \(\tilde{\psi}_+(R) \) term dominates. The exponential factor in the tunneling probability can be determined \(^{26,27,28}\) from

\[
\left| \frac{\psi(R_0)}{\psi(0)} \right|^2 \sim \exp \left(-2 \int_0^{R_0} |p(R)|dR \right) = \exp(-\pi^2 \sigma R_0^3/2). \tag{2.21}
\]

A different choice of operator ordering would not affect (2.21), but it could affect the pre-exponential coefficient.

Having obtained the result (2.21), the 2-dimensional physicist could be puzzled about its meaning. What does it mean to find the nucleation probability for a bubble when there is only one bubble? Even if we assume that there are other bubbles, they are unobservable, so how can we test this theory observationally? Of course, in the case of a nucleating bubble, there is an external observer for whom the nucleation probability has a well-defined meaning. This may or may not be so in the case of the universe. But the point I want to make is that even a worldsheet observer can derive some useful information from the wave function of the universe. If, for example, several different types of bubble can nucleate, with different values of \(\sigma \) and \(\epsilon \), then the observer is more likely to find herself in the type of bubble with the highest nucleation probability (assuming, of course, that such bubbles are suitable for 2-d life).

Furthermore, nucleating bubbles are not exactly spherical, and one could in principle calculate the amplitude for a bubble to have a given shape. This problem has been solved in the perturbative superspace approximation which includes all the degrees of freedom of the bubble, but treats all but radial motions as small perturbations \(^{29,30}\). It turns out that perturbations of a spherical bubble can be represented as excitations of a scalar field \(\Phi \) that lives on the bubble worldsheet and has a tachyonic mass, \(m^2 = -3R_0^2 \). The mode expansion of this field contains four "zero modes" which represent overall space and time translations of the bubble, while the remaining modes describe deviations from spherical shape. As in
the cosmological case31,32, one finds that the bubble nucleates with the field Φ in a de
Sitter-invariant quantum state.33 This prediction should be testable both by external and
worldsheet observers.

Extension of this analysis beyond perturbative superspace is a very complicated problem
which has not yet been solved. The bubble worldsheet can, in general, be represented in
a parametric form as $x^\mu(\xi^a)$ with $a = 0, 1, 2$. An external observer would evaluate the
amplitude to find a bubble in a given configuration at $x^0 = T$ by evaluating the path integral

$$\psi = \int [dx^\mu] e^{iS}.$$ \hspace{1cm} (2.22)

Given that there was no bubble at $x^0 = 0$, the integration should be taken over all compact
worldsheets bounded by the given 2-surface at $x^0 = T$ and satisfying $0 < x^0(\xi) < T$. As I
said, calculating the integral (2.22), or even making it well defined, is a very difficult problem.

For a worldsheet observer, ξ^0 is a time coordinate and $x^\mu(\xi)$ is a set of four interacting
scalar fields. She would find the restriction on the range of $x^0(\xi)$ unnatural and would
probably define the no-boundary wave function ψ in (2.22) as an unrestricted integral over
$x^\mu(\xi)$. The two wave functions will generally be different, but in the semiclassical regime
the integral (2.22) is dominated by the neighborhood of the classical path, and the wave
functions will be essentially the same. It would be interesting to further investigate this
connection between the bubble wave functions from worldsheet and target space points of
view. At present, eq. (2.22) is purely formal, and its connection to the standard Euclidean
formalism27,28 for calculating the vacuum decay rate is obscure.

On a qualitative level, one expects quantum fluctuations to grow large at small length
scales, and if large deformations are allowed, then the bubble wall can cross itself, and small
"daughter bubbles" can be chopped off. When viewed at very small scales, the bubble wall
may in fact have a fractal structure, with a dense foam of small bubbles surrounding it.
Moreover, the worldsheet observer may discover that on sufficiently small scales her bubble
is not a 2-d surface after all, but is more adequately described by certain solutions of (3+1)-
dimensional field equations. Similar problems may face human observers as they explore
distances approaching the Planck scale.

3. de Sitter Minisuperspace

Turning now to the cosmological wave function, we first consider the simplest minisup-

erspace model,

\[S = \int d^4x \sqrt{-g} \left(\frac{R}{16\pi G} - \rho_v \right), \quad (3.1) \]

where \(\rho_v \) is a constant vacuum energy and the universe is assumed to be homogeneous,
isotropic, and closed:

\[ds^2 = \sigma^2 [N^2(t) dt^2 - a^2(t) d\Omega^2_3]. \quad (3.2) \]

Here, \(N(t) \) is an arbitrary lapse function, \(d\Omega^2_3 \) is the metric on a unit 3-sphere, and \(\sigma^2 = 2G/3\pi \) is a normalizing factor chosen for later convenience. Substituting (3.2) into (3.1), we
obtain the Lagrangian

\[\mathcal{L} = \frac{1}{2} N \left[a \left(1 - \frac{\dot{a}^2}{N^2} \right) - \Lambda a^3 \right], \quad (3.3) \]

and the momentum

\[p_a = -\dot{a} \dot{a}/N, \quad (3.4) \]

where \(\Lambda = (4G/3)^2 \rho_v \). The Lagrangian (3.3) can also be expressed in the canonical form,

\[\mathcal{L} = p_a \dot{a} - N \mathcal{H}, \quad (3.5) \]

where

\[\mathcal{H} = -\frac{1}{2} \left(\frac{p_a^2}{a} + a - \Lambda a^3 \right). \quad (3.6) \]

Variation with respect to \(p_a \) recovers eq.(3.4), and variation with respect to \(N \) gives the
constraint

\[\mathcal{H} = 0. \quad (3.7) \]
The corresponding equation of motion for a is (for $N = 1$)
\[
\dot{a}^2 + 1 - \Lambda a^2 = 0, \quad (3.8)
\]
and its solution is the de Sitter space,
\[
a(t) = H^{-1} \cosh(Ht), \quad (3.9)
\]
where $H = \Lambda^{1/2}$.

Quantization of this model amounts to replacing $p_a \rightarrow -i\partial/\partial a$ and imposing the Wheeler-De Witt equation
\[
\left[\frac{d^2}{da^2} + \gamma \frac{d}{a \, da} - U(a) \right] \psi(a) = 0, \quad (3.10)
\]
where
\[
U(a) = a^2(1 - \Lambda a^2) \quad (3.11)
\]
and the parameter γ represents the ambiguity in the ordering of non-commuting operators a and p_a. This equation is very similar to eq.(2.13) for a nucleating bubble, and the following discussion closely parallels that in Sec. 2.

The γ-dependent term in (3.10) does not affect the wave function in the semiclassical regime. Without this term, the equation has the form of a one-dimensional Schrödinger equation for a "particle" described by a coordinate $a(t)$, having zero energy and moving in a potential $U(a)$. The classically allowed region is $a \geq H^{-1}$, and the WKB solutions of eq.(3.10) in this region are
\[
\psi_{\pm}(a) = [p(a)]^{-1/2} \exp[\pm i \int_{H^{-1}}^{a} p(a') \, da' \mp i\pi/4], \quad (3.12)
\]
where $p(a) = [-U(a)]^{1/2}$. The under-barrier $a < H^{-1}$ solutions are
\[
\tilde{\psi}_{\pm}(a) = |p(a)|^{-1/2} \exp[\pm \int_{a}^{H^{-1}} |p(a')| \, da'], \quad (3.13)
\]
For $a \gg H^{-1}$,
\[
\hat{p}_a \psi_{\pm}(a) \approx \pm p(a) \psi_{\pm}(a), \quad (3.14)
\]
and eq. (3.4) tells us that $\psi_- (a)$ and $\psi_+ (a)$ describe an expanding and a contracting universe, respectively (assuming that $N > 0$).

In the tunneling picture, it is assumed that the universe originated at a small size and then expanded to its present, large size. This means that the component of the wave function describing a universe contracting from infinitely large size should be absent:

$$\psi (a > H^{-1}) = \psi_- (a). \quad (3.15)$$

The under-barrier wave function is found from the WKB connection formula,

$$\psi (a < H^{-1}) = \tilde{\psi}_+ (a) - \frac{i}{2} \tilde{\psi}_- (a). \quad (3.16)$$

Away from the classical turning point $a = H^{-1}$, the first term in (3.16) dominates, and the nucleation probability can be approximated as $^8, ^{10}$

$$\left| \frac{\psi (H^{-1})}{\psi (0)} \right|^2 \sim \exp \left(-2 \int_0^{H^{-1}} |p(a')| da' \right) = \exp \left(-\frac{3}{8G^2 \rho_v} \right). \quad (3.17)$$

It should be noted that the choice of $N > 0$ in (3.4) is a matter of convenience. With the opposite choice, the roles of $\psi_+ (a)$ and $\psi_- (a)$ would be reversed, and the boundary condition (3.15) would be replaced by $\psi (a > H^{-1}) = \psi_+ (a)$. This would result in a time reversal transformation $\psi (a) \rightarrow \psi^* (a)$. Another way to look at this is to note that the time coordinate t is an arbitrary label in general relativity, and it is a matter of convention to choose time growing or decreasing towards the future (where "future" is defined, e.g., by the growth of entropy or by the expansion of the universe). Clearly, there is no physical ambiguity here, and once the convention is set, the tunneling wave function in this model is uniquely defined.

At this point, I would like to mention the "generic" boundary condition suggested by Strominger 34. He argued that since the nucleation of the universe is governed by small-scale physics, the boundary condition on ψ should be imposed at small a, rather than at large a
as in the tunneling approach. The large-scale behavior of ψ can then be determined without specifying the precise form of this boundary condition. The under-barrier wave function is generally given by a linear combination of $\psi_+(a)$ and $\psi_-(a)$, and for a "generic" boundary condition at $a = 0$, one expects the two terms to be comparable at small a. However, $\psi_+(a)$ decreases exponentially with a, while $\psi_-(a)$ exponentially grows and therefore dominates for all but very small a. The corresponding wave function in the classically allowed range is found with the aid of the WKB connection formula:

$$\psi(a < H^{-1}) = \psi_-(a),$$

$$\psi(a > H^{-1}) = \psi_+(a) + \psi_-(a). \quad (3.18)$$

The same wave function is obtained35 by applying the Hartle-Hawking prescription to this model.36

The case for imposing boundary conditions at small a appears to me unconvincing. The same argument could be applied to bubble nucleation, but there we know that the correct boundary condition is the outgoing wave at large radii. Another familiar case when physics is confined to small scales while the boundary conditions are imposed at infinity is a bound state, like the hydrogen atom. In the next section, we shall discuss how the tunneling wave function can be obtained by analytic continuation from a "bound-state" universe.

4. **Tunneling Wave Function by Analytic Continuation**

The quantum-mechanical wave function for the decay of a metastable state is often obtained by analytically continuing the bound state wave function from the parameter values for which the corresponding state is stable. A similar approach can be adopted in quantum cosmology. As an example, we again consider the minisuperspace model (3.1), but now with $\rho_v < 0$. In this case $\Lambda < 0$, and it is clear that the classical equation of motion (3.8) has no solutions. However, microscopic, Planck-size universes could still pop out and collapse as
quantum fluctuations. Then one expects the wave function to be peaked at very small scales and to vanish at $a \to \infty$.

When dealing with analytic continuation, approximate solutions like (3.12), (3.13) are not sufficient, since the neglected terms can become large after continuation. We shall, therefore, use the exact solutions to eq.(3.10) which can be obtained\(^{37}\) for a particular choice of the factor-ordering parameter, $\gamma = -1$. With the boundary condition

$$
\psi(a \to \infty) = 0, \tag{4.1}
$$

the solution is the Airy function

$$
\psi(a) = Ai(z), \tag{4.2}
$$

where

$$
z = (-2\Lambda)^{-2/3}(1 - \Lambda a^2). \tag{4.3}
$$

The asymptotic behavior of (4.2) at large a is

$$
\psi(a) \propto a^{-1/2}\exp[-(-\Lambda)^{1/2}a^3/3]. \tag{4.4}
$$

Continuation to positive values of Λ amounts to changing $(-2\Lambda)^{-2/3} \to (2\Lambda)^{-2/3}\exp(\mp 2\pi i/3)$, where the sign depends on the direction of rotation in the complex Λ-plane. Choosing the upper sign and using the relation\(^ {38}\)

$$
2e^{\pm \pi i/3}Ai(ze^{\mp 2\pi i/3}) = Ai(z) \pm iBi(z), \tag{4.5}
$$

we conclude that the wave function for $\Lambda > 0$ is

$$
\psi(a) = Ai(\tilde{z}) + iBi(\tilde{z}), \tag{4.6}
$$

with

$$
\tilde{z} = (2\Lambda)^{-2/3}(1 - \Lambda a^2). \tag{4.7}
$$
This is the tunneling wave function17. The corresponding asymptotic form at large \(a \) is

\[\psi(a) \propto a^{-1/2} \exp(-i\Lambda^1/2a^3/3). \]

(4.8)

At this point, I would like to comment on one important difference between the above analysis and the standard treatment of the decay of a metastable state. In the standard approach, the Schrodinger equation for the bound state of a particle,

\[\mathcal{H}\psi = E\psi, \]

(4.9)

is solved with the boundary conditions \(\psi \to 0 \) at both \(x \to \infty \) and \(x \to -\infty \). The energy eigenvalues \(E_n \) are then completely determined by the Hamiltonian \(\mathcal{H} = -\partial_x^2 + U(x) \). In the course of analytic continuation, as the parameters of the potential \(U(x) \) are changed, the eigenvalues \(E_n \) also change and develop imaginary parts as the corresponding states become metastable. The resulting wave functions describe a probability that is exponentially decreasing with time inside the potential well by gradually leaking to infinity. On the other hand, in the quantum-cosmological model (3.10) the eigenvalue of the Wheeler-De Witt operator is fixed at \(E=0 \). At the same time, the wave function is defined on a half-line \(a > 0 \), and the boundary condition (4.1) is imposed only at \(a \to \infty \). The wave function is time-independent, and a steady probability flux at \(a \to \infty \) is sustained by an incoming flux through the boundary at \(a = 0 \). In fact, as eq.(1.5) suggests, the tunneling wave function is more appropriately thought of as a Green's function with a source at \(a = 0 \), rather than an eigenstate of the Wheeler-DeWitt operator. This will be further discussed in Sec.5.7.

We note finally that a "generic" choice of boundary condition at \(a = 0 \) would lead, for \(\Lambda < 0 \), to a wave function which is not confined to small scales, but instead increases without bound at \(a \to \infty \).

5. TUNNELING WAVE FUNCTION FROM A PATH INTEGRAL

To discuss the relation between the outgoing-wave and path-integral forms of the tun-
neling proposal, we shall consider a slightly more complicated minisuperspace model: a Robertson-Walker universe with a homogeneous scalar field. After appropriate rescalings of the scalar field \(\phi \) and scale factor \(a \), the corresponding Lagrangian and Hamiltonian can be written as

\[
\mathcal{L} = \frac{1}{2} [e^\alpha + e^{3\alpha} (-\dot{\phi}^2 + \phi^2 - V(\phi))] \tag{5.1}
\]

\[
\mathcal{H} = \frac{1}{2} [e^{3\alpha} (-p_\alpha^2 + p_\phi^2) - e^\alpha + e^{3\alpha} V(\phi)] \tag{5.2}
\]

Here, \(\alpha = \ln a \), \(V(\phi) \) is the scalar field potential, and the lapse function has been set \(N = 1 \).

The path integral (1.4) for this model can be expressed in the form \(^{14,18}\)

\[
K(q_2, q_1) = \int_0^\infty dTk(q_2, q_1; T), \tag{5.3}
\]

\[
k(q_2, q_1; T) = \int_{q_1}^{q_2} dq \exp \left(i \int_0^T \mathcal{L} dt \right), \tag{5.4}
\]

where \(q = (\alpha, \phi) \) and the integration is taken over all paths \(\alpha(t), \phi(t) \) beginning at \(q_1 = (\alpha_1, \phi_1) \) at \(t = 0 \) and ending at \(q_2 = (\alpha_2, \phi_2) \) at \(t = T \). The function \(k(q_2, q_1, T) \) in eq. (5.4) has the familiar form of an amplitude for a "particle" to propagate from \(q_1 \) to \(q_2 \) in time \(T \) and satisfies the Schrödinger equation

\[
\left(i \frac{\partial}{\partial T} - \mathcal{H}_2 \right) k(q_2, q_1; T) = 0 \tag{5.5}
\]

with the initial condition

\[
k(q_2, q_1; 0) = \delta(q_2, q_1). \tag{5.6}
\]

The equation for \(K(q_2, q_1) \) follows from (5.5), (5.6):

\[
\mathcal{H}_2 K(q_2, q_1) = -i \delta(q_2, q_1). \tag{5.7}
\]

Here, \(\mathcal{H} \) is the Wheeler-DeWitt operator,

\[
\mathcal{H} = \frac{1}{2} e^{-3\alpha} [\partial_\alpha^2 - \partial_\phi^2 - U(\alpha, \phi)] \tag{5.8}
\]
with "superpotential"

\[U(\alpha, \phi) = e^{4\alpha} [1 - e^{2\alpha} V(\phi)], \quad (5.9) \]

and I am ignoring the factor-ordering ambiguity. The subscript "2" of \(H \) in (5.5) and (5.7) indicates that \(\alpha \) and \(\phi \) in (5.8) are taken to be \(\alpha_2 \) and \(\phi_2 \).

Apart from an overall factor, the operator \(H \) in (5.8) is just the Klein-Gordon operator for a relativistic "particle" in a (1+1)-dimensional "spacetime", with \(\phi \) playing the role of a spatial coordinate and \(\alpha \) the role of time. The "particle" moves in an external potential \(U(\alpha, \phi) \). Let us now consider the behavior of \(K(q_2, q_1) \) as \(\alpha_2 \to \pm \infty \) with \(\alpha_1 \) fixed. We must first note that for \(\alpha \to -\infty \) the potential (5.9) vanishes, and \(K(q_2, q_1) \) should be given by a superposition of plane waves, \(\exp[ik(\alpha_2 \pm \phi_2)] \). Since the path integral in (5.4) is taken over paths originating at some finite \((\alpha_1, \phi_1)\) and going off to large negative \(\alpha_2 \), this superposition should include only waves with \(k > 0 \). (Recall that \(p_\alpha > 0 \) corresponds to \(\dot{\alpha} < 0 \).

As \(\alpha_2 \to +\infty \), the potential \(U(\alpha, \phi) \) diverges, and the WKB approximation becomes increasingly accurate. The dependence of \(K(q_2, q_1) \) on \(q_2 \) is then given by a superposition of terms \(e^{iS} \), where \(S \) is a solution of the Hamilton-Jacobi equation,

\[\left(\frac{\partial S}{\partial \alpha} \right)^2 - \left(\frac{\partial S}{\partial \phi} \right)^2 + U(\alpha, \phi) = 0. \quad (5.10) \]

In each term, the function \(S(\alpha, \phi) \) describes a congruence of classical paths with

\[\frac{d\phi}{d\alpha} = -\frac{(\partial S/\partial \phi)}{(\partial S/\partial \alpha)}. \quad (5.11) \]

For \(V(\phi) > 0, U(\alpha, \phi) \approx -e^{6\alpha} V(\phi) < 0 \), and it follows from (5.11) that \(|d\phi/d\alpha| < 1\). Hence, the "particle" trajectories are asymptotically "timelike" and correspond either to expanding universes with \(p_\alpha = \partial S/\partial \alpha < 0 \) or to universes contracting from an infinite size with \(\partial S/\partial \alpha > 0 \). Since all paths originate at \(\alpha_1 < \infty \), the superposition should include only terms with \(\partial S/\partial \alpha < 0 \). For \(V(\phi) < 0 \), the trajectories are asymptotically "spacelike"
and cannot extend to timelike infinity i_+ or to null infinity I_+. One expects, therefore, that $K(q_2, q_1) \to 0$ for q_2 at i_+ or I_+.

Thus we see that the propagator $K(q_2, q_1)$ satisfies the outgoing-wave boundary conditions both at $\alpha \to -\infty$ and $\alpha \to +\infty$. The tunneling wave function (1.4) is obtained by letting $\alpha_1 \to -\infty$ and integrating over all initial values of ϕ,

$$\psi(\alpha, \phi) = \int_{-\infty}^{\infty} d\phi' K(\alpha, \phi| -\infty, \phi').$$

The trajectories then originate at the past timelike infinity i_-, but the behavior of ψ on the rest of the superspace boundary should be the same as that of K. This is illustrated in Fig. 1 for the case of $V(\phi) > 0$. The probability flux is injected into superspace at i- and exits in the form of outgoing waves through I_- and i_+. We conclude that the path-integral and the outgoing-wave forms of the tunneling wave function are equivalent, at least in the simple model (5.1). This is not very surprising, since eqs.(5.3)-(5.7) coincide with the standard equations for Feynman propagator in the proper-time representation, and the causal boundary conditions for the propagator are the same as the outgoing-wave boundary conditions for ψ.

6. BEYOND MINISUPERSPACE

The main difficulty in formulating the outgoing-wave boundary condition in the general case is similar to the difficulty with the definition of positive-frequency modes in a general curved spacetime. There is, however, a hopeful sign. Our definition of outgoing waves in the minisuperspace model (5.1) was based on rather general properties of the potential $U(\alpha, \phi)$: its unbounded growth at $\alpha \to +\infty$ and its vanishing at $\alpha \to -\infty$. It is not difficult to verify that the superpotential in the Wheeler-DeWitt equation has similar properties in the general case.
The general form of the Wheeler-DeWitt equation can be written as \(^{(6.1)}\)

\[
(\nabla^2 - U)\psi = 0,
\]

where

\[
\nabla^2 = \int d^3 x N \left[G_{ijkl} \frac{\delta}{\delta h_{ij}} \frac{\delta}{\delta h_{kl}} + \frac{1}{2} h^{-1/2} \frac{\delta^2}{\delta \phi^2} \right]
\]

is the superspace Laplacian,

\[
G_{ijkl} = \frac{1}{2} h^{-1/2} (h_{ik} h_{jl} + h_{il} h_{jk} - h_{ij} h_{kl})
\]

is the superspace metric,

\[
U = \int d^3 x N h^{1/2} \left[-R^{(3)} + \frac{1}{2} h^{ij} \phi_{,i} \phi_{,j} + V(\phi) \right]
\]

is the superpotential, \(h_{ij}(x)\) and \(N(x)\) are, respectively, the 3-metric and the lapse function in the (3+1) decomposition of spacetime,

\[
d s^2 = (N^2 + N_i N^i) d t^2 - 2 N_i d x^i d t - h_{ij} d x^i d x^j,
\]

\(h = \det(h_{ij})\) and \(R^{(3)}\) is the curvature of 3-space. As before, matter fields are represented by a single scalar field \(\phi\) and I have ignored the factor-ordering problem. The wave function \(\psi\) is a function of \(h_{ij}(x)\) and \(\phi(x)\), but is independent of \(N(x)\). The metric \(h_{ij}\) can be represented as

\[
h_{ij} = e^{2\alpha} \tilde{h}_{ij},
\]

where \(\det(\tilde{h}_{ij}) = 1\). Then the Laplacian term in \((6.1)\) is \(\propto \exp(-3\alpha)\), the first two terms in the superpotential \((6.4)\) are \(\propto \exp(\alpha)\), and the last term is \(\propto \exp(3\alpha)\). The relative magnitude of these terms for \(\alpha \rightarrow \pm \infty\) is the same as in eq. \((5.9)\).

In the limit \(\alpha \rightarrow -\infty\), the superpotential \(U\) in \((6.1)\) becomes negligible, and one can hope to define outgoing modes analogous to the plane waves of the previous section. This possibility has also been suggested by Wald in a different context. Here, I will not attempt
to analyze the most general case and illustrate the idea in a reduced superspace model which includes all degrees of freedom of the scalar field \(\phi \), but only one gravitational variable \(\alpha \). With the scalar field represented as

\[
\phi(x) = (2\pi^2)^{1/2} \sum_n f_n Q_n(x),
\]

where \(Q_n(x) \) are the harmonics on a 3-sphere, the superspace Laplacian (6.2) takes the form \(^{31,32}\)

\[
\nabla^2 = e^{-3\alpha} \left(\frac{\partial^2}{\partial \alpha^2} - \sum_n \frac{\partial^2}{\partial f_n^2} \right). \tag{6.8}
\]

The plane-wave asymptotic solutions are then

\[
\psi(\alpha, f_n) = \exp(ik_\alpha \alpha + i \sum_n k_n f_n) \tag{6.9}
\]

with

\[
k_\alpha^2 - \sum_n k_n^2 = 0. \tag{6.10}
\]

The tunneling wave function includes only terms with \(k_\alpha > 0 \). This is the boundary condition at \(\alpha \to -\infty \).

To formulate the tunneling condition on the remainder of superspace boundary, one first has to specify what that boundary is. In other words, we should decide what class of metrics and matter fields should be included in superspace. The form of the Wheeler-DeWitt equation (6.1)-(6.4) suggests that we should include all configurations \(\{ h_{ij}(x), \phi(x) \} \) for which \(h^{1/2} p^{(3)} \), \(h^{1/2} h^{ij} \phi_{,i} \phi_{,j} \) and \(h^{1/2} V(\phi) \) are integrable functions. Then the superpotential \(U \) is finite everywhere in superspace and will generically diverge towards the boundary. This happens, in particular, at \(\alpha \to +\infty \). As \(|U| \to \infty \), some components of the gradient \(\nabla S \) in the Hamilton-Jacobi equation

\[
(\nabla S)^2 + U = 0 \tag{6.11}
\]

should also diverge, and one can hope that the WKB approximation will become asymptotically exact, thus allowing one to define outgoing waves. \(^{31,32}\) For example, when some
dimensions of the universe become very large (e.g., $\alpha \to \infty$), the classical description of the corresponding degrees of freedom becomes increasingly accurate. Denoting these classical variables by c_i; and the remaining variables by q_j, the asymptotic form of the wave function can be written as

$$\psi(c, q) = \sum N e^{iS_N(c)} \chi_N(c, q).$$

(6.12)

The Hamilton-Jacobi functions $S_N(c)$ describe congruences of classical paths, $p_i = -\partial S/\partial c_i$. The tunneling boundary condition selects the solutions of (6.10) which include only outgoing paths, evolving towards the boundary.

It should be noted that superspace defined by the condition $|U| < \infty$ includes a very wide class of configurations. The metric and matter fields have to be continuous, but not necessarily differentiable. In particular, scalar fields with discontinuous derivatives and metrics with δ-function curvature singularities on surfaces, lines, and points are acceptable configurations. This conclusion fits well with the path integral approach, where it is known that the path integral is dominated by the paths which are continuous, but not differentiable. The superspace configurations can be thought of as slices of these paths.

If the definition of outgoing waves along the lines indicated in this section is indeed possible, then the same argument as in Section 5 suggests that the wave function defined by the path integral (1.4) should satisfy the outgoing-wave boundary condition. One advantage of the path-integral definition is that it may be consistent even if outgoing waves cannot always be defined. Another advantage is that the path integral version appears to be better suited to handle topology change (see Sec. 7).

7. Topology change

In the discussion, so far, I have not touched upon the issue of topology change in quantum gravity. This issue, however, can hardly be avoided, since the “creation of a universe from
nothing" is an example of topology-changing event.

The Wheeler-DeWitt equation (6.1) is based on canonical quantum gravity, which assumes the spacetime to be a manifold of topology $R \times \Sigma$, where R is a real line and Σ is a closed 3-manifold of arbitrary but fixed topology. The corresponding superspace \mathcal{G}_Σ includes only 3-metrics of topology Σ. We can define the extended superspace \mathcal{G} including all possible topologies. It can be split into topological sectors, with all metrics in each sector having the same topology.

The division of superspace into topological sectors can be illustrated by lower-dimensional examples. In the (1+1)-dimensional case, 3-geometries are replaced by lines (strings), and topological sectors can simply be labeled by the occupation number of closed strings. In (2+1) dimensions, a point $g \in \mathcal{G}$ corresponds to a number of closed surfaces (membranes), and each surface can be characterized by the number of handles. Each topological sector of \mathcal{G} can thus be labeled by an infinite set of integers $\{n_0, n_1, \ldots\}$ giving respectively the occupation numbers for surfaces with $0, 1, \ldots$ handles. In the (3+1)-dimensional case, there is a much richer structure, but a topological classification of 3-dimensional manifolds has not yet been given.

Creation of a universe from nothing described in Sections 3-5 is a transition from the null topological sector containing no universes at all to the sector with one universe of topology S_3. The surface $\alpha = -\infty, |\phi| < \infty$ can be thought of as a boundary between the two sectors. The probability flux is injected into superspace through this boundary (see Fig.1) and flows out of superspace through the remaining boundary ($\alpha \to -\infty$ with $|\phi| \to \infty$, or $\alpha \to +\infty$). One could have thought that topology-changing transitions always occur through the boundaries of the corresponding superspace sectors. This was the point of view I adopted in my earlier formulation of the tunneling boundary condition17. I no longer believe this picture to be correct, but it may still be useful in cases when topology change is a semiclassical tunneling event. In this section I shall first review the motivation for the
Tunneling amplitudes in quantum field theory are often evaluated semiclassically using the steepest descent approximation. One then finds that the path integral for the amplitude is dominated by a solution of Euclidean field equations, called the instanton. If topology change is a quantum tunneling event, one can similarly expect it to be represented by a smooth Euclidean manifold, \mathcal{M}, interpolating between the initial configuration Σ_1 and the final configuration, Σ_2. The intermediate superspace configurations can be obtained as slices of \mathcal{M} and can be conveniently described using the concepts of Morse theory.\(^4^7\)

Consider a smooth real function $f(x)$ on manifold \mathcal{M}. A point x_0 is called a critical point of f if $\partial_{\mu} f(x_0) = 0$. A critical point is called non-degenerate if $\det [\partial_{\mu} \partial_{\nu} f(x_0)] \neq 0$. We shall call $f(x)$ a Morse function if it has the following properties: (i) $f(x)$ takes values between 0 and 1, with $f(x) = 0$ iff $x \in \Sigma_1$, and $f(x) = 1$ iff $x \in \Sigma_2$; (ii) all critical points of f are in the interior of \mathcal{M} (that is, not on the boundary) and are non-degenerate.

In a 2-d example of Fig. 2, the manifold \mathcal{M} is shown embedded in a 3-dimensional space, and the Morse function is given by the projection on the vertical axis. In this case, the saddle point P is a critical point of $f(x)$. It can be shown that a Morse function can always be defined and that it always has some critical points if Σ_1 and Σ_2 have different topology. We shall assume that $f(x)$ is chosen so that it has the smallest possible number of critical points, that is, no more than dictated by topology.

Slices of \mathcal{M} corresponding to superspace configurations can be obtained as surfaces of constant f. (Different choices of Morse function will, of course, give different slicings). These slices will have a smooth geometry, except the critical slices passing through critical points. With an appropriate choice of locally-Cartesian coordinates, the Morse function in
the vicinity of the critical point can be represented as

\[f(x) = \sum_{i=1}^{d} a_i x_i^2, \quad (7.1) \]

where \(d \) is the dimensionality of space \((d = 3)\). The critical section, \(f(x) = 0 \), is a generalized cone. For \(d \geq 3 \) it has a curvature singularity of the form\(^{48}\)

\[R \propto r^{-2}, \quad (7.2) \]

where \(r \) is the distance from the critical point, \(r^2 = \sum_i x_i^2 \). For \(d = 2 \), the curvature has a \(\delta \)-function singularity, \(R^{(2)} h^{1/2} \propto \delta^{(2)}(x) \). An important special case of topology change is the "creation of universes from nothing", when the initial configuration is absent. A 2-dimensional illustration is shown in Fig. 3. Here, the critical slice is a single point. For near-critical slices, in \(d \geq 2 \) the curvature is again given by \((7.2)\), where now \(r \) is the characteristic size of \(d \)-space.

The idea of Ref.17 was that the boundary of superspace can be divided into regular and singular parts. The regular boundary includes only configurations which can be obtained as critical slices of smooth Euclidean manifolds. Such configurations correspond to transitions between different topological sectors. The remaining part of the boundary is called the singular boundary, and the outgoing-wave boundary condition is imposed only on that part. The boundary condition on regular boundary was supposed to enforce conservation of probability flux as it flows from one topological sector to another, but no specific form of the boundary condition was proposed. The overall picture was that the probability flux is injected into superspace through the boundary with the null sector, it then flows between different topological sectors through the regular boundaries, and finally flows out of superspace through the singular boundary.\(^{49}\)

As I mentioned earlier, I no longer think this picture can be valid in the general case. The main reason is that topology change does not necessarily occur between configurations
at the boundaries of superspace sectors, but generally involves configurations in the interior of these sectors. It is true that, in order to change topology, one has to go through a singular 3-geometry. But, as we discussed in Section 6, superspace includes a very wide class of configurations, such as metrics with integrable curvature singularities and scalar fields with discontinuous derivatives. Note in particular that curvature singularities (7.2) on critical slices are integrable, and therefore the critical slices will generally lie in the interior of superspace.

To give a specific example, consider creation of a wormhole in a universe having initially the topology of S_3. The transition is then between the topological sectors S_3 and $S_1 \times S_2$. The wormhole radius can be defined as $r = (A_{\text{min}}/4\pi)^{1/2}$, where A_{min} is the smallest cross-sectional area of the wormhole, and can be used as one of superspace variables. Since r has a semi-infinite range, $r = 0$ is a superspace boundary in the sector $S_1 \times S_2$. On dimensional grounds, the curvature in the wormhole vicinity is $R^{(3)} \sim r^{-2}$, and the integral of $R^{(3)}h^{1/2}$ does not diverge as $r \to 0$. The boundary at $r = 0$ is therefore similar to what was called the regular boundary in Ref.17. On the other hand, configurations in the S_3 sector "right before" topology change do not lie on any boundary. These configurations should only satisfy the continuity requirement: all matter fields should take the same values at the points that are about to be identified.

An important example of topology change in lower dimensions is reconnection of intersecting strings. At the classical level, this process plays a crucial role in the evolution of cosmic strings (see Fig.4). At the quantum level, it represents the elementary interaction vertex in fundamental string theories. A string loop can be thought of as a one-dimensional closed universe. The superspace configurations for the loop are given by the functions $x^\mu(\sigma)$, where σ is a parameter on the loop and the spacetime coordinates x^μ play the role of worldsheet scalar fields. Topology change (loop splitting) can occur in configurations where the loop self-intersects, that is, when $x^\mu(\sigma_1) = x^\mu(\sigma_2)$ for some σ_1, σ_2. These configurations are
not special in any other way and do not lie on superspace boundary. The configurations immediately after splitting have discontinuous derivatives of $x^\mu(\sigma)$ at reconnection points. They are also legitimate superspace configurations and do not belong to a boundary.51

The conclusion is that topology-changing transitions affect not only superspace boundary, but can occur between points in the interior of different topological sectors. This has an important implication: in order to account for topology change, the Wheeler-DeWitt equation has to be modified. In the tradition of the subject, I would like to offer some speculations regarding the form of this modified equation.

My suggestion is that the Wheeler-DeWitt operator \mathcal{H} in (1.2) should be modified by adding an operator $\tilde{\delta}$ that has matrix elements between different superspace sectors. The corresponding action can be written symbolically as

$$ S = \int [dh] \Psi^* \mathcal{H} \Psi + \int [dh][dh'] \Psi^*(h) \tilde{\delta}(h,h') \Psi(h'), $$

where the integration is taken over all superspace sectors and h stands for all superspace variables. It seems reasonable to assume that topology change is a local process, then we should have $\tilde{\delta}(h_1,h_2) = 0$ unless h_1 and h_2 can be obtained from one another by changing topological relations at a single point. The Wheeler-DeWitt equation for $\psi_N(h)$ in topological sector N is obtained by varying (7.3):

$$ \mathcal{H} \psi_N(h) + \sum_{N' \neq N} \int [dh'] \tilde{\delta}_{NN'}(h,h') \psi_{N'}(h') = 0. $$

The form of the operator $\tilde{\delta}(h,h')$ is, of course, unknown. One can hope to gain some insight into it by studying lower-dimensional examples. In the case of strings, the topological sectors can be labelled by the number of disconnected loops, n, and $\tilde{\delta}_{nn'}$ has matrix elements with $n' = n \pm 1$. An even simpler example is given by pointlike particles, which can be thought of as $(0+1)$-dimensional universes with spacetime coordinates x^μ playing the role of scalar fields and the Klein-Gordon operator $\nabla^2 + m^2$ playing the role of the Wheeler-DeWitt
operator. Topology change corresponds to elementary particle interactions, like the one illustrated in Fig.5 for a $\lambda\phi^3$ theory. Here, two particles merge into one, and the δ operator should be proportional to δ-functions ensuring that the initial and final particles have the same coordinates at the moment of interaction. It would be interesting to develop the first-quantized formalism for particle interactions in the form (7.4) and verify its equivalence to a quantum field theory with non-linear interactions. The possibility of equivalence between a linear system of equations (7.4) and a non-linear field theory may seem rather unlikely. It is well known, however, that the full content of a perturbative quantum field theory can be expressed as an infinite set of linear relations between the Green’s functions (Schwinger-Dyson equations). A similar representation has also been obtained in matrix models of two-dimensional quantum gravity.

To formulate the boundary conditions for the functions $\psi_N(h)$ in (7.4), we again divide the superspace boundary into singular and regular parts. The singular boundary includes configurations with $|U| \to \infty$ and the null part of the boundary at $\alpha \to -\infty$ (see Section 6). The functions ψ_N should have only outgoing waves at the singular boundary. These waves carry the probability flux,

$$J_N = i(\psi_N^* \nabla \psi_N - \psi_N \nabla \psi_N^*), \quad (7.5)$$

out of superspace. The waves flowing into and out of the regular boundary correspond to transitions between topological sectors. In the example of the $S_1 \times S_2 \to S_3$ transition, the flux flowing into the regular part of the boundary at $r = 0$ in the $S_1 \times S_2$ sector reappears through the source term on the right-hand side of (7.4) in the S_3 sector. The boundary condition at $r = 0$ should enforce flux conservation between the two sectors. I will not attempt to write down a specific form of this boundary condition.

Assuming that outgoing waves can be defined along the lines of the previous section and that the flux conservation condition is formulated, one can hope that the wave function defined by eqs. (7.4) is equivalent to the one given by the path integral (1.3), where
the integration is performed over 4-manifolds of arbitrary topology. It is known that any Lorentzian metric interpolating between two compact spacelike surfaces of different topology must either be singular or contain closed timelike curves53. The singularities, however, can be very mild54, and there seems to be no reason for excluding the corresponding spacetimes from the path integral. If all metrics of finite action are included, this would be more than sufficient to permit Lorentzian topology change.

8. Comments on Third Quantization

It has often been argued19,20,21,22,23,24 that an adequate description of topology change can be given in the third-quantization approach, where the wave function ψ is promoted to the status of a quantum field operator. Topology change is then accounted for by self-interaction of ψ. For example, a ψ^3 interaction allows a parent universe, say of topology S^3, to split into two daughter universes of the same topology. This is probably adequate for one-dimensional universes (strings), where topology is characterized simply by the occupation number of closed loops. However, in higher dimensions the situation is not so simple. For two-dimensional universes, one would have to introduce an additional field creating and annihilating handles, while three-dimensional topologies have not yet been classified, and one may need to introduce an infinite number of fields and interaction types. It is not evident, therefore, that third quantization offers any advantages in describing topology change, compared to the "first quantized" approaches like (7.4) or (1.4).

I would also like to comment on the specific implementation of the third quantization picture in simple minisuperspace models19,21,24. Without introducing non-linearity, the creation of universes in this approach is described in a manner similar to the description of particle creation in a time-varying external field. The idea is suggested by the fact that the Wheeler-DeWitt equation is similar to Klein-Gordon equation with the scale variable α playing the role of time and the superpotential U playing the role of a time-dependent
external potential. For $\alpha \to -\infty$ the potential vanishes (see Sec. 6), and one can expand
the filed operator ψ into positive and negative-frequency modes,

$$\psi = \sum_k (a_k \psi_k + a_k^+ \psi_k^*)$$ \hspace{1cm} (8.1)

with $\psi_k(\alpha \to -\infty) \propto \exp(i \omega_k \alpha)$, $\omega_k > 0$ and creation and annihilation operators satisfying
the usual commutation relations. The "in-vacuum" state, containing no universes at $\alpha \to -\infty$, would then be defined by $a_k|0 >_{in} = 0$, and single-universe states would be given by $|k > = a_k^+|0 >$. In the opposite limit of $\alpha \to +\infty$, one can similarly define a complete set of
mode functions $\tilde{\psi}_k, \tilde{\psi}_k^*$, such that $\tilde{\psi}_k(\alpha \to +\infty) \propto \exp(i S)$ with $\partial S/\partial \alpha > 0$, and write

$$\psi = \sum_k (\tilde{a}_k \tilde{\psi}_k + \tilde{a}_k^+ \tilde{\psi}_k^*) \cdot$$ \hspace{1cm} (8.2)

The state containing no universes at $\alpha \to +\infty$ is then $|0 >_{out}$ with $\tilde{a}_k|0 >_{out} = 0$, and single-universe states are $\tilde{a}_k^+|0 >_{out}$.

Since both sets of functions are complete, they must be linearly related to one another,

$$\tilde{\psi}_k = \sum_{k'} (\alpha_{kk'} \psi_{k'} + \beta_{kk'} \psi_{k'}^*),$$ \hspace{1cm} (8.3)

and eqs. (8.1), (8.2) then imply a linear relation between the creation and annihilation operators,

$$\tilde{a}_k = \sum_{k'} (\alpha_{kk'}^* a_{k'}^* - \beta_{kk'} a_{k'}^+).$$ \hspace{1cm} (8.4)

If the universal field ψ is in the state $|0 >_{in}$ containing no universes at $\alpha \to -\infty$, then the
average number of universes in state k at $\alpha \to +\infty$ is generally non-zero and is given by

$$< \tilde{n}_k > = \langle 0| \tilde{a}_k^+ \tilde{a}_k |0 >_{in} = \sum_{k'} |\beta_{kk'}|^2.$$ \hspace{1cm} (8.5)

The suggestion in Refs. 19,21,24 is that $< \tilde{n}_k >$ should be interpreted as the number of
universes created from nothing. I disagree with this interpretation for the reasons that I will
now explain.
In the third quantization picture, there are no universes of vanishing size ($\alpha \to -\infty$), and as α grows, the number of universes increases and finally reaches its asymptotic value $<\hat{n}_k>$ at $\alpha \to +\infty$. The universes are created at finite values of α, that is, with a finite size. This is drastically different from the creation-from-nothing picture, where the universes start at zero size and continuously evolve towards larger sizes, so that all the "creation" occurs at $\alpha \to -\infty$.

The origin of the difference between the two pictures is in the fact that the "time" α is not really a monotonic variable: the universes can both expand and contract. The positive- and negative-frequency mode functions ψ_k and ψ_k^* correspond, respectively, to expanding and contracting universes. From this point of view, what is described in third quantization as creation of a pair of universes at some $\alpha = \alpha_0$, is simply a contracting universe that turns around and starts re-expanding at $\alpha = \alpha_0$.

This can be illustrated using a (0+1)-dimensional example: pair creation in an external field. Following Feynman, antiparticles can be interpreted as particles travelling backwards in time, and pair creation corresponds to a particle trajectory like the one shown in Fig.6. The trajectory can be represented as $x^\mu(\tau)$ with $-\infty < \tau < \infty$. Using the string theory language, τ is a worldsheet time coordinate, and x^μ are target space coordinates. For an observer riding on the particle, τ is a suitable time coordinate and $x^\mu(\tau)$ is a set of interacting scalar fields. The field $x^0(\tau)$ decreases with $\tau \to -\infty$ and grows at $\tau \to +\infty$. On the other hand, an external (e.g., human) observer, whose home is in the target space, will use x^0 as his time coordinate.

In the third quantization picture, the variable α plays the role of target-space time, x^0. It is not impossible that some super-human observer living in this target space will observe the creation of pairs of universes. However, we are interested in what happens from the point of view of a worldsheet observer, living inside the universe and using the worldsheet time τ. In any case, it appears that the process described by the third quantization formalism (8.1-
5) does not correspond to a topology-changing nucleation of the universe that the authors of19,21,24 had in mind.

9. Conclusions

The wave function of the universe ψ can be obtained either by solving the Wheeler - De Witt equation with appropriate boundary conditions or by performing a path integral over an appropriate class of paths. Our discussion in this paper was focused on the tunneling proposal for ψ. Although little was proved, our discussion lead to several conjectures which will be briefly summarized here.

In the path integral approach, the tunneling wave function is defined as a sum over Lorentzian 4-geometries interpolating between a vanishing 3-geometry (a point) and given 3-geometry. The sum is, in general, performed over manifolds of arbitrary topology. I have argued that the wave function defined in this way should satisfy the outgoing - wave condition on a part of superspace boundary.

Superspace can be divided into topological sectors, and part of its boundary can be thought of as the boundary between different sectors. We call it regular boundary. The rest of the boundary, which includes "incurably" singular configurations, is called singular boundary (see Sec. 6 for more details). The outgoing - wave condition should be satisfied only on the singular boundary. I have argued that the superpotential (6.4) of the Wheeler - De Witt equation either vanishes or diverges almost everywhere at this boundary and that this may enable one to give a precise definition of outgoing waves.

If the topology of the universe is restricted to be that of a sphere, then the outgoing - wave boundary condition may be sufficient to determine the tunneling wave function. However, in the general case, this condition has to be supplemented by some boundary conditions at the regular boundary.
If topology change is allowed, then I have argued that it will occur not only through the boundaries between the superspace sectors, but will generally involve configurations in the superspace interior. This will result in a modification of the Wheeler - De Witt equation. A possible form of the modified equation is suggested in Sec. 7.

Apart from the tunneling approach, I gave a critical discussion of the "generic" boundary condition (in Sec. 3) and of the third quantization picture (in Sec. 8).

The tunneling approach to the wave function of the universe was motivated by the analogy with bubble nucleation and we may still gain important insights into the complicated issues of quantum cosmology by studying the wave function of the nucleating bubble. We may also learn a great deal from quantum gravity in two dimensions, which can be thought of as quantum cosmology of one-dimensional closed universes (strings), and even from the ordinary quantum field theory, in which the branching propagator lines in Feynman diagrams can be thought of as branching 0-dimensional universes (particles). However, in pursuing these analogies, one should remember that in all these cases the observer is usually assumed to be in the target space, while in quantum cosmology the observer lives on the worldsheet. The relation between the wave functions of the universe (bubble, string, particle) obtained by these different observers is an intriguing problem for future research.

Acknowledgements

I am grateful to Valery Rubakov and Andy Strominger for discussions and comments and to Alan Guth for his hospitality at MIT. I also acknowledge support by the National Science Foundation and by the U.S. Department of Energy.

References

2. E. P. Tryon, Nature 246, 396 (1973)
Although there seems to be no dispute about this result, the exact form of the boundary condition that selects this wave function is not clear. The non-perturbative, radial part of ψ should certainly satisfy the outgoing-wave boundary condition, and it was argued in Refs. 29,30 that the rest of ψ should be fixed by the regularity condition, $|\psi| < \infty$. However, it was later realized that this is not sufficient: the wave function obtained from ψ by acting with Φ-particle creation operators still satisfies all the boundary conditions. Sasaki et al. 58,59 emphasized that the boundary condition should reflect the fact that the bubble nucleates from vacuum and not from some other excited state. However, the specific form of the boundary condition they suggest is not suitable for a thin-wall bubble. It is possible that ψ can be completely fixed only by requiring that it respects the Lorentz invariance of the false vacuum.

36. The wave function (3.18) includes expanding and contracting components with equal amplitudes, and it is natural to interpret it as describing a contracting and re-expanding de Sitter universe (3.9). An alternative view 60,19, is to interpret $\psi_-(a)$ and its time-reverse $\psi_+(a)$ as describing the same nucleating universe, but with a different choice made for the direction of the time coordinate. This interpretation may be problematic due to interference between the two components of ψ.
39. I assume that $V(\phi)$ grows slower than $\exp(6|\phi|)$ at $\phi \to \pm\infty$.

41. Whether or not this actually happens, depends on how fast U diverges towards the boundary.

 The WKB approximation assumes that $|\nabla^2 S| \ll |(\nabla S)^2|$. With $\nabla S \sim U^{1/2}$, this implies $|\nabla U| \ll |U|^{3/2}$.

42. We note in passing, that the wave function (6.9) in the $\alpha \to -\infty$ limit is also of the semi-classical form $\exp(i S)$ and that the WKB approximation becomes increasingly accurate as $\alpha \to -\infty$.

46. Two-dimensional closed manifolds split into two cobordism classes, corresponding to even and odd Euler characteristics, respectively. The Euler characteristic for a sphere is $E = 2$, for a torus is $E = 0$, and each additional handle reduces it by 2. An example of a manifold with an odd Euler characteristic is a sphere with opposite points identified ($E = 1$). Since 2-manifolds belonging to different cobordism classes cannot be connected by an interpolating 3-manifold, the transition amplitude between them is zero. One can therefore consistently assume that only manifolds with even Euler characteristic are included in superspace, as I did in the text.

47. J. Milnor, ”Lectures on h-Cobordism Theorem”, Princeton University Press (1965)

48. S. del Campo and A. Vilenkin, unpublished

49. In Ref.17 I defined the regular boundary as consisting of singular configurations which can be obtained by slicing regular Euclidean 4-geometries, but the relation to Morse functions was not spelled out. This is somewhat imprecise and has lead to mis-interpretations. 61,62,63

Consider, for example, a manifold \mathcal{M} of topology $S_2 \times S_2$ with the metric $ds^2 = R_1^2d\Omega_1^2 + R_2^2d\Omega_2^2$, where $R_1, R_2 = \text{const}$ and $d\Omega_a^2 = d\theta_a^2 + \sin^2\theta_a d\varphi_a^2$. A possible slicing of \mathcal{M} can be obtained by settling $\theta_1 = \text{const}$. This gives 3-manifolds of topology
$S_1 \times S_2$, where S_1 is a circle of radius $0 \leq r \leq R_1$. One could have thought that the configuration with $r = 0$ belongs to the regular boundary. However, it is easily understood that such configurations cannot be obtained as critical slices using a Morse function. In order to give slices of $\theta_1 = \text{const}$, the Morse function should be a function only of θ_1, but then $\det(\partial_\mu \partial_\nu f) = 0$, and the critical points are always degenerate. To see what is wrong with degenerate critical points, consider a doughnut (torus) lying on a horizontal surface and imagine slicing it with horizontal planes. The slice at the bottom is a circle. But if the torus is slightly tilted, the circular slice disappears, and the bottom slice is an isolated point. The circular slice is degenerate in the sense that it is present only for a very special slicing. It can be shown that critical points of a Morse function are always isolated points.

51. It is interesting to note that discontinuities resulting from string reconnection are preserved at later times by the classical string evolution. They are known as "kinks" and propagate around the string at the speed of light.

55. M. Henneaux and C. Teitelboim, [Ann. Phys. \textbf{143}, 127 (1982)] have shown that a consistent quantum theory of a particle in an external field can be constructed using the particle's proper time as a time coordinate. It would be interesting to extend this approach to interacting particles. The interaction vertices would then correspond to topology changing events in quantum cosmology.

56. This target space is what Banks called E-space in Ref.64

57. T. Vachaspati, unpublished
64. T. Banks, in Physicalia Magazine, vol.12, Special issue in honor of the 60th birthday of R. Brout (Ghent, 1990)

Figure Captions

Fig. 1 The probability flow in the minisuperspace model (5.1). In this conformal diagram, α plays the role of time and φ the role of a spatial coordinate.

Fig. 2 Topology change in two dimensions. The initial configuration Σ₁ has topology S₁ and the final configuration Σ₂ has topology S₁ ⊕ S₁. The manifold M interpolating between Σ₁ and Σ₂ is shown embedded in three-dimensional space. The Morse function f(x) is given by the projection on the vertical axis. The critical point P and the critical section f(x) = f(P) are indicated.

Fig. 3 Creation of a two-dimensional universe from nothing. Here, the manifold M has a single boundary Σ, and the critical section consists of a single point P.

Fig. 4 A loop of string intersects itself and splits into two. Sharp angles (kinks) formed at the point of reconnection propagate around the ”daughter” loops at the speed of light.

Fig. 5 This φ³ interaction diagram corresponds to two scalar particles merging into one.

Fig. 6 Feynman’s picture of pair creation in external field. A particle travelling backwards in time from \(t = +\infty \) turns around and travels back to \(t = +\infty \).