RAPID COMMUNICATIONS

RAPID COMMUNICATIONS are intended for important new results which deserve accelerated publication, and are therefore given priority in editorial processing and production. A Rapid Communication in Physical Review D should be no longer than five printed pages and must be accompanied by an abstract. Page proofs are sent to authors, but because of the accelerated schedule, publication is generally not delayed for receipt of corrections unless requested by the author.

Reevaluation of the Gottfried sum

(New Muon Collaboration)

1Bielefeld University, Universitätsstrasse 25, D-33501, Bielefeld, Germany
2CERN, CH-1211, Geneva 23, Switzerland
3Freiburg University, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
4Max-Planck Institut für Kernphysik, Postf. 103980, D-69020, Heidelberg, Germany
5Heidelberg University, D-69120, Heidelberg, Germany
6Mainz University, D-55009, Mainz, Germany
7Mons University, Mons, Hainaut, Belgium
8Neuchâtel University, Neuchâtel, Switzerland
9NIKHEF-K, P.O. Box 41882, NL-1009DB, Amsterdam, The Netherlands
10DAPNIA/SPS, CEN-Scany, F-9191 Gil-sur-Yvette, France
11University of California, Santa Cruz, California, 95064
12Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
13Torino University, Via Pietro Giuria 1, 10125, Torino, Italy and Istituto Nazionale di Fisica Nucleare, Torino, Italy
14Uppsala University, S-75121, Uppsala, Sweden
15Soltan Institute for Nuclear Studies, Warsaw, Poland
16Warsaw University, Warsaw, Poland

(Received 28 July 1993; revised manuscript received 1 March 1994)
We present a new determination of the nonsinglet structure function $F_2^n - F_2^n$ at $Q^2 = 4$ GeV2 using recently measured values of F_2^p and F_2^n/F_2^p. A new evaluation of the Gottfried sum is given, which remains below the simple quark-parton model value of $\frac{3}{2}$.

PACS number(s): 13.60.Hb, 11.55.Hx

In 1991 the New Muon Collaboration (NMC) published an evaluation of the Gottfried sum $S_G = \int (F_2^p - F_2^n)dx/x$ which showed that the simple quark model expectation of $1/3$ was not reached [1]. In that analysis the nonsinglet structure function was obtained as

$$F_2^p - F_2^n = 2F_2^d/(1 - F_2^d/F_2^n)/(1 + F_2^d/F_2^n).$$

(1)

The ratio F_2^d/F_2^n, defined as $2F_2^d/f_2^n - 1$, was taken from the precise NMC measurements of the ratio F_2^d/F_2^n at 90 and 280 GeV, and the deuteron structure function in Eq. (1) was taken from a global fit to the results of earlier experiments.

Recently the NMC has published [2] its own values of F_2^p and F_2^n. These are the first accurate measurements at low x; in this region the results for F_2^n differ significantly from the parametrization used in Ref. [1]. A new parametrization of F_2^n using the NMC, SLAC, and BCDMS data was included in Ref. [2].

We report here a reevaluation of $F_2^p - F_2^n$ and S_G, using the new F_2^n parametrization and newly determined values of the ratio F_2^d/F_2^n. The latter were determined from the data set reported in Ref. [3], but with the radiative corrections applied using the new F_2^d parametrization, and following the method of Akhundov et al. [4]. In addition, a more precise calibration for the scattered muon momentum was applied to the 90 GeV data. The data set of Ref. [3] is slightly more extensive than that used in Ref. [1].

At small values of x the changes in $F_2^p - F_2^n$ reported here, relative to the values in Ref. [1], are due to the changed values of F_2^p which have increased by up to 18% at $x = 0.007$ (compared to a systematic error of 7% given in Ref. [1]). It may be noted that most previous structure function parametrizations underestimated F_2^p for $x < 0.07$ [2]. The value of F_2^p affects the result for the nonsinglet structure function both through the factor in Eq. (1), and via its influence on the ratio F_2^d/F_2^n through the radiative corrections. This is because the term $(1 - F_2^n/F_2^p)$ in Eq. (1) is close to zero at low x. At large values of x the changes in $F_2^p - F_2^n$ are caused by the new momentum calibration.

The method of determining $F_2^p - F_2^n$ used here and in Ref. [1] gives more accurate results than can be obtained from the values of F_2^p and F_2^n given in Ref. [2]. This is because it takes advantage of the NMC experiment’s ability to make precise measurements of cross-section ratios [3], in which more data, covering a larger Q^2 range, can be used. This leads to smaller systematic and statistical errors on S_G.

The results presented here are evaluated at $Q^2 = 4$ GeV2: this value of Q^2 was chosen as it is covered by the F_2^n/F_2^p data over the range $0.004 < x < 0.5$. The values of F_2^n/F_2^p were obtained from fits to the data, linear in $\ln(Q^2)$, at each interval of x, as in Ref. [1]. These were then used, together with the values of F_2^n taken directly from the parametrization [2], to evaluate $F_2^n - F_2^n$ according to Eq. (1). No corrections were applied for target mass, higher twist, or nuclear effects, as discussed in Ref. [1].

The results for $F_2^n - F_2^n$ are given in Table I and in Fig. 1, where they are compared to those published in Ref. [1]. Table I also gives the values of F_2^n/F_2^p and F_2^p used in the present evaluation. The causes of the differences between the $F_2^n - F_2^n$ values presented here and those of Ref. [1] have been discussed above. The value of the Gottfried sum at $Q^2 = 4$ GeV2 over the interval $0.004 < x < 0.8$ is found to be

$$S_G(0.004 - 0.8) = 0.221 \pm 0.008 \text{(stat)} \pm 0.019 \text{(syst)}.$$

The systematic error has been reevaluated. For the radiative corrections we have now followed the prescription given in Ref. [3] which leads to an uncertainty of 0.011. In combining this with the uncertainty (systematic and statistical) in F_2^n, the correlation between them was taken fully into account. The

<table>
<thead>
<tr>
<th>$x_{\text{min}} - x_{\text{max}}$</th>
<th>F_2^n</th>
<th>F_2^d/F_2^n</th>
<th>$F_2^n - F_2^n$</th>
<th>S_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.004 - 0.100</td>
<td>0.413 ± 0.020</td>
<td>0.976 ± 0.017</td>
<td>0.010 ± 0.007</td>
<td>0.221 ± 0.008</td>
</tr>
<tr>
<td>0.010 - 0.020</td>
<td>0.394 ± 0.016</td>
<td>0.963 ± 0.011</td>
<td>0.015 ± 0.004</td>
<td>0.213 ± 0.005</td>
</tr>
<tr>
<td>0.020 - 0.040</td>
<td>0.378 ± 0.013</td>
<td>0.927 ± 0.007</td>
<td>0.029 ± 0.003</td>
<td>0.203 ± 0.004</td>
</tr>
<tr>
<td>0.040 - 0.060</td>
<td>0.365 ± 0.012</td>
<td>0.919 ± 0.007</td>
<td>0.031 ± 0.003</td>
<td>0.183 ± 0.004</td>
</tr>
<tr>
<td>0.060 - 0.100</td>
<td>0.350 ± 0.012</td>
<td>0.881 ± 0.006</td>
<td>0.044 ± 0.002</td>
<td>0.171 ± 0.003</td>
</tr>
<tr>
<td>0.100 - 0.150</td>
<td>0.331 ± 0.011</td>
<td>0.836 ± 0.007</td>
<td>0.059 ± 0.003</td>
<td>0.149 ± 0.003</td>
</tr>
<tr>
<td>0.150 - 0.200</td>
<td>0.310 ± 0.010</td>
<td>0.812 ± 0.009</td>
<td>0.064 ± 0.003</td>
<td>0.125 ± 0.003</td>
</tr>
<tr>
<td>0.200 - 0.300</td>
<td>0.274 ± 0.008</td>
<td>0.740 ± 0.008</td>
<td>0.082 ± 0.003</td>
<td>0.107 ± 0.003</td>
</tr>
<tr>
<td>0.300 - 0.400</td>
<td>0.214 ± 0.006</td>
<td>0.637 ± 0.012</td>
<td>0.095 ± 0.004</td>
<td>0.074 ± 0.003</td>
</tr>
<tr>
<td>0.400 - 0.500</td>
<td>0.152 ± 0.005</td>
<td>0.497 ± 0.019</td>
<td>0.102 ± 0.005</td>
<td>0.047 ± 0.002</td>
</tr>
<tr>
<td>0.500 - 0.600</td>
<td>0.101 ± 0.002</td>
<td>0.502 ± 0.038</td>
<td>0.067 ± 0.007</td>
<td>0.025 ± 0.002</td>
</tr>
<tr>
<td>0.600 - 0.800</td>
<td>0.048 ± 0.001</td>
<td>0.382 ± 0.058</td>
<td>0.043 ± 0.006</td>
<td>0.012 ± 0.002</td>
</tr>
</tbody>
</table>
FIG. 1. The difference $F^p_G - F^n_G$ (full symbols and scale to the right) and $\int_x (F^p_G - F^n_G) dx / x$ (open symbols and scale to the left) at $Q^2 = 4 \text{ GeV}^2$, as a function of x from the present reevaluation (circles) and from Ref. [1] (triangles). The extrapolated result S_G from the present work and the prediction of the simple quark-parton model (QPM) are also shown.

uncertainty from the momentum calibration is reduced compared to that given in Table 2 of Ref. [1], while the other contributions are unchanged.

To evaluate the contributions to S_G from the unmeasured regions at high and low x, extrapolations of $F^p_G - F^n_G$ to $x = 1$ and $x = 0$ were made using the same procedures as described in Ref. [1]. The contribution from the region $x > 0.8$ is 0.001 ± 0.001. For the region $x < 0.004$, the expression ax^b, appropriate for a Regge-like behavior, was again fitted to the data in the range $0.004 < x < 0.15$ and extrapolated to $x = 0$. The fit yields the values $a = 0.20 \pm 0.03$ and $b = 0.59 \pm 0.06$ and a contribution to S_G of 0.013 ± 0.005 (stat) for $x < 0.004$. The quality of the fit is as good as that in Ref. [1] and the result is insensitive to the upper limit of the fitted range (up to $x = 0.40$).

Summing the contributions from the measured and unmeasured regions we obtain for the Gottfried sum

$$S_G = 0.235 \pm 0.026.$$

The error is the result of combining the statistical and systematic errors in quadrature, and including the effect of the (correlated) systematic uncertainties on the extrapolations of $F^p_G - F^n_G$ to $x = 1$ and $x = 0$. This new value of S_G agrees well with that in Ref. [1]. However, the total error given here is larger than that quoted in Ref. [1] due to the more extensive examination of the systematic uncertainties. Nevertheless, the result for S_G is significantly below the simple quark-parton model value of $1/3$, so that the conclusions of Ref. [1] are unchanged.

The evaluation of the Gottfried sum at higher Q^2 requires large extrapolations of the measured values of F^p_G/F^n_G at low x, which rapidly reduces the accuracy of $F^p_G - F^n_G$. For this reason a precise determination of the Gottfried sum from the NMC data is restricted to Q^2 around 4 GeV^2.

Bielefeld University, Freiburg University, Max Planck Institute Heidelberg, Heidelberg University, and Mainz University were supported by Bundesministerium für Forschung und Technologie. NIKHEF-K was supported in part by FOM, Vrije Universiteit Amsterdam and NWO. Soltan Institute for Nuclear Studies and Warsaw University were supported by KBN Grant No. 2 0958 9101. The work of D.S. was supported by the NSF and DOE.