1 Introduction

In previous papers [1, 2] it has been shown that there exist non-trivial, non-linear symmetries acting on the parameter space of lattice models of statistical mechanics generated by the so-called inversion relations [3, 4, 5]. These non-linear groups of symmetries appeared as powerful tools to study integrable models in lattice statistical mechanics, for instance to find the critical varieties of their phase diagrams [6]. These symmetry groups can also be seen as symmetries of the Yang-Baxter equations (or star-triangle equations, when dealing with spin models) and their higher-dimensional generalisations. It is important to note that these groups exist as symmetry groups of lattice models even when one is no longer restricted to an integrable framework [7, 8].

In this point of view, the straight, but tedious, analysis of a three-dimensional model through transfer matrix formalism, or any other natural method is replaced by an analysis of the transformations corresponding to the symmetries, acting in the parameter space and therefore, at first sight, less sensitive to the lattice space and of course even to the dimension of the lattice.

However, in both cases, integrable or not, known in the literature, a drastic difference seems to appear between two-dimensional and three-dimensional models, suggesting a way to understand the obstruction for a "true" three-dimensional integrability, and also suggesting to give an algebraic definition of the notion of dimension of the model. In this framework the dimension of the lattice re-emerges through the "size" of the symmetry group. As far as two-dimensional models are concerned, their symmetry group is either a finite group [9, 10] or a group isomorphic to products of Z up to a semi direct product by a finite group [7, 10, 11]. Whereas for lattice models of dimension three, these symmetry groups are much larger: generically they are free groups with three generators. With such symmetry groups, the very existence of solutions of the tetrahedron equations \(^1\) having a "true three-dimensional symmetry" seems highly problematic [11]; the only possibility for solutions of the tetrahedron equations are probably cases where the representations of such "large" groups degenerate into products of Z or even into finite groups [14, 15].

It will be shown here that the analysis of the symmetry group of models on triangular lattices weakens this opposition between dimension two and dimension three. More precisely, this study suggests that the coordination number of the lattice could be a parameter more relevant for the structure of the symmetry group than the lattice dimension. In the following, we will analyse vertex model on triangular lattice, and the standard scalar q-state Potts model with two and three spin interaction [16]. Generically, their symmetry groups are free groups with two generators. One recovers a situation similar to the one encountered in dimension three, these models on triangular lattice thus provide examples giving hints for the analysis of such large symmetry groups in dimension three.

Moreover, these hyperbolic Coxeter groups of symmetries can actually degenerate into more "reasonable" groups leaving room for integrability in two cases: one corresponding to a Z-invariant like situation [17] and another one, reminiscent of the occurrence of Tutte-Beraha numbers [18].

Finally we will consider the consequences of these symmetries, with a special emphasis on criticality conditions. Actually many criticality conditions have been conjectured in

\(^1\)Generalisations of the Yang-Baxter equations in dimension three [7, 12, 13].
the literature of lattice models of statistical mechanics, and of course, all these conjectures were algebraic [6, 8, 19]. However, when exactly proved, they were always related to some integrability of the model, the algebraicity thus being a consequence of the integrability [20].

With a noticeable exception: the (self-dual) critical variety given by F.Y.Wu [16, 21], on the two and three site Potts model on the triangular lattice, that we revisit here.

We will analyse here this algebraic variety, which is a critical condition in some “ferromagnetic region” [21], but is not related to any simple “Yang-Baxter-like integrability”. Moreover, we will discuss the status of other remarkable varieties emerging from this algebraic study.

2 Recalls on symmetries of lattice models

Let us recall the symmetry group generated by the inversion relations for lattices of coordination number six, first on the cubic three-dimensional vertex model [14, 15] and then on the triangular lattice.

2.1 Inversion relations and the group Γ_{3D}

Let us consider a vertex model on a three-dimensional cubic lattice of size $M \times M$. With each bond is associated a variable with q possible states. A Boltzmann weight $w(i, j, k, l, m, n)$ is assigned to each vertex configuration [22], and can be represented pictorially by:

\[
\begin{array}{c}
\text{i} \\
R \\
\text{j}
\end{array}
\begin{array}{c}
\text{k} \\
\text{l}
\end{array}
\begin{array}{c}
\text{m} \\
\text{n}
\end{array}
\]

The q^3 homogeneous weights $w(i, j, k, l, m, n)$ are first arranged in a $q^3 \times q^3$ matrix R of entries:

\[
R_{ijk}^{klm} = w(i, j, k, l, m, n).
\]

One may [15] introduce an involution I which transforms R into IR according to:

\[
\sum_{\alpha, \beta, \gamma, \delta} \{IR\}_{\alpha \beta \gamma \delta}^{\alpha \beta \gamma \delta} = \lambda \delta_{\alpha}^{\gamma} \delta_{\beta}^{\gamma} \delta_{\gamma}^{\delta}
\]

where λ is an arbitrary multiplicative factor. This relation can be represented pictorially:

The inversion transformation I amounts to taking the inverse of the $q^3 \times q^3$ matrix R.
One also introduces the partial transpositions t_1, t_2, and t_3 with:

\[
(t_1 R)_{\alpha \beta \gamma}^{\alpha \beta \gamma} = R_{\alpha \beta \gamma}^{\alpha \beta \gamma},
\]

and similar definitions for t_2 and t_3.

For three-dimensional vertex models, one has four such involutions acting as symmetries of the R-matrix [15]:

\[
I_2 = I, \quad I_3 = t_1 I t_2 t_3, \quad I_4 = t_3 I t_4 t_3, \quad I_5 = t_5 I t_1 t_2.
\]

These four involutions generate an infinite discrete group Γ_{3D} [15]. Let us note that the full transformation is nothing but the product $t = t_1 t_2 t_3$.

Considering the parameter space as a projective space (the entries of the R-matrix are homogeneous parameters), the elements of the group Γ_{3D} have a non-linear representation in terms of birational transformations. This group of symmetry of the parameter space of the model is very large. This is in fact a hyperbolic Coxeter group [23, 24, 25, 26, 27, 28].

Remark: coming back to integrability, it has been shown that the tetrahedron equations (generalisation in three dimensions of the Yang-Baxter equations [8, 12, 13, 29]) do have an infinite group of symmetry generated by four involutions K_1, K_2, K_3, K_4 [15]. They satisfy various relations, for instance $(K_1 K_2 K_3 K_4)^2 = I_d$, where I_d denotes the identity transformation. This group of symmetry of the tetrahedron equation is quite “monstrous” since the number of elements of length smaller than l is of exponential growth with respect to l, unlike the symmetry group of the Yang-Baxter equations which identifies with the affine Coxeter group $A_1^{(1)}$ [14, 15, 24].

2.2 Inversion relations on the triangular lattice

For the triangular lattice the vertex Boltzmann weight [16], also reads $w(i, j, k, l, m, n)$, and can be represented by:

\[
\begin{array}{c}
\text{i} \\
R \\
\text{j}
\end{array}
\begin{array}{c}
\text{k} \\
\text{l}
\end{array}
\begin{array}{c}
\text{m} \\
\text{n}
\end{array}
\]

\[3\]
Similarly to the cubic vertex model [14, 15], the weights may be arranged in an $q^4 \times q^4$ matrix. However, for the triangular model there are only three inversion transformations, I_1, I_2, I_3, which actually coincide with three among the four of the cubic lattice (2.1). The fourth transformation I_4 corresponds to a non-planar picture, which is meaningless for the triangular lattice. Let us denote Γ_{3g+2} the symmetry group generated by I_1, I_2, I_3. As will be shown in the following using the equivalence between vertex and spin representation for this model [16], this group also has generically an exponential growth.

Let us recall the results obtained by Baxter, Temperley and Ashley on the triangular vertex and spin models [16]. They noticed that the integrable case discovered by Knudsen for a triangular vertex model (a 20-vertex model) [30], actually corresponds to the following situation: the vertex Boltzmann weight can alternatively be seen as either a left-hand side or a right-hand side of a Yang-Baxter equation (more generally this refers to the Z-invariance concept) [17].

\[R = \begin{array}{ccc}
A & B & C \\
C & B & A \\
B & A & C \\
\end{array} = \begin{array}{ccc}
A & B & C \\
\end{array} \\
\begin{array}{ccc}
A & B & C \\
(2.2)
\end{array}
\]

In the framework of this very model, they brought out the correspondence between such a vertex model and the standard scalar q-state Potts model for anisotropic triangular lattices with two and three-site interaction (only on up-pointing triangles) through the Lieb-Temperley algebra [16, 31]. In terms of the two and three-site interaction spin model, these integrability conditions correspond to have no three spin interaction and also to be at the transition temperature [16].

In the following, the symmetry group of both vertex and spin models on triangular lattice will be analysed.

3 Triangular vertex model

As far as the triangular vertex model is concerned, an interesting subcase pops out, for which the group no longer has an exponential growth. It occurs when the vertex of the triangular model spread out in three square vertices (A, B, C) (i.e. the left, or right, hand sides of a Yang-Baxter relation):

\[R = \begin{array}{ccc}
A & B & C \\
C & B & A \\
B & A & C \\
\end{array} = \begin{array}{ccc}
A & C & B \\
(3.1)
\end{array}
\]

This model is a generalisation of model (2.2), without assuming any Yang-Baxter integrability condition.

In order to write the three inverse transformations I_1, I_2, I_3 restricted to this subcase (3.1), let us introduce I and J, the two inverse transformations on the square lattice vertex model [16]. A Boltzmann weight $w(i, j, k, l)$ is assigned to each square vertex configuration [22]:

\[I = \begin{array}{ccc}
i & j & k \\
l & R & i \\
\end{array} \\
\]

The q^4 homogeneous weights $w(i, j, k, l)$ are first arranged in a $q^4 \times q^4$ matrix R:

\[R^{ij}_{kl} = w(i, j, k, l) \]

We introduce (see [1, 14, 15]) the inverse I by:

\[\sum_{a, \alpha} R^{ij}_{a\alpha} (IR)^{\alpha\beta}_{a\alpha} = \delta_i^{\alpha} \delta_j^{\beta} = \sum_{a, \beta} (IR)^{a\beta}_{\alpha\beta} R^{\alpha\beta}_{a\alpha} \]

and the other inverse J by:

\[\sum_{a, \alpha} R^{\alpha\beta}_{a\alpha} (JR)^{\alpha\beta}_{a\alpha} = \delta_i^{\alpha} \delta_j^{\beta} = \sum_{a, \beta} (JR)^{a\beta}_{\alpha\beta} R^{\alpha\beta}_{a\alpha} \]

Similarly to the situation occurring for the cubic lattice, I and J are two involutions related by a partial transposition (denoted t_1 in [32]) of the indices: $J = t_1 I t_1$. Namely, t_1 reads: $(I R R^{t_1} I) = R^{t_1} I$.

The three inverse transformations I_1's read:

\[I_1 (A, B, C) = (IA, JC, JB), \]
\[I_2 (A, B, C) = (JC, IB, JA), \]
\[I_3 (A, B, C) = (JB, JA, IC) \]

as shown on the following picture:

\[J = \begin{array}{ccc}
J & A & B \\
C & A & J \\
IA & B & C \\
\end{array} = \begin{array}{ccc}
J & A & B \\
\end{array} \\
\begin{array}{ccc}
J & A & B \\
(3.1)
\end{array}
\]

Let us now introduce the following transformations $i_1 = I_2 I_3, i_2 = I_3 I_1, i_3 = I_1 I_2$, which are generically of infinite order:

\[i_1 (A, B, C) = (K^{-1}C, KA, B), \]
\[i_2 (A, B, C) = (C, K^{-1}A, KB), \]
\[i_3 (A, B, C) = (KC, A, K^{-1}B) \]
Obviously group Γ_{trang} is also generated by i_1, i_2, i_3, up to a semi-direct product by a finite group. These new generators do not commute, but they only differ from the generators I_1, I_2, I_3, which commute two by two, by the 3-cycle, $r(A, B, C) = (C, A, B)$. These three generators I_1, I_2, I_3 act on a triplet (A, B, C) as follows:

$I_1 (A, B, C) = (A, K^{-1}B, KC),$
$I_2 (A, B, C) = (KA, B, K^{-1}C),$
$I_3 (A, B, C) = (K^{-1}A, KB, C).$

One easily notes the following relations:

$I_1 r = i_2, \quad r I_1 = i_3, \quad I_2 r = i_1, \quad r I_2 = i_3, \quad I_3 r = i_1, \quad r I_3 = i_2.$

Because of the commutation of its generators, the group generated by I_1, I_2, I_3 is, at first sight, the following group:

$\{I_1^n I_2^m I_3^p, \quad (n_1, n_2, n_3) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}\}$

Since I_1, I_2, I_3 are identity, one has $n_3 + n_2 + n_1 = 0$. Thus the group generated by I_1, I_2, I_3 is isomorphic to $\mathbb{Z} \times \mathbb{Z}$. As a direct consequence Γ_{trang} is isomorphic to $\mathbb{Z} \times \mathbb{Z}$ up the semi-direct product by a finite group [33, 34].

Heuristically, one can understand this subcase as follows: the similarity group Γ_{trang} of the “six-legs” Boltzmann weight, R, becomes quite similar to the symmetry group of the Yang-Baxter equations, which is known to be isomorphic to $A_2^{(1)}$ [10].

4 Triangular spin model

4.1 Notations for the spin model

Let us now consider the standard scalar q-state Potts model on a triangular lattice with nearest neighbour interaction and three spin interaction only on the up-pointing triangles:

\[
\begin{array}{c}
\text{2} \\
\text{3} \\
\text{1}
\end{array}
\]

With each bond is associated a variable with q possible states. A Boltzmann weight $w(i,j,k,l,m,n)$ is assigned to each vertex configuration [22], and can be represented pictorially by:

\[
Z = \prod_{(i,j,k) \in <k>^3} e^{K_i b_{i,j} s_i} \prod_{(i,j,k) \in <k>^3} e^{K_j b_{j,i} s_j} \prod_{(i,j) \in <k>^3} e^{K_k b_{k,j} s_k}
\] (4.1)

The first three products denote the product over the edge two-site interaction Boltzmann weights along the three directions of the triangular model, and the last product denotes the product of all up-pointing triangles of the three-site interaction Boltzmann weights. The sum is taken over all spin configurations.

In this framework one can now introduce the following notations:

\[
x_i = e^{K_i}, \quad i = 1, 2, 3 \]
\[
x = e^{K}, \quad y = x x_2 x_3 - (x_1 + x_2 + x_3) + 2
\] (4.2)

Of course for $q = 2$, the model degenerates into the nearest neighbour interaction triangular Ising model since the three site interaction becomes irrelevant. Therefore one will not consider this $q = 2$ case in following (even if most of the results one will get are also valid in this very case).

4.2 Duality transformation

Let us recall that on this model a duality transformation does exist [16, 21]. With notations (4.2) this duality denoted D reads:

\[
D: \begin{cases}
 x \rightarrow x' = \frac{x^2}{y + x^2 - 2 + q^2/y} \\
 y \rightarrow y' = q^2/y
\end{cases}
\] (4.3)

This duality is associated with a rotation of 180° of the corresponding vertex model on a triangular lattice through the correspondence detailed in [16]. D is an involution.

Introducing well suited homogeneous variables, the duality transformation D can be represented as a linear transformation D_h (see section 4.6), which satisfies relation: $D_h^2 = q^4 I_d$, where I_d denotes the identity transformation. The hyperplanes stable by D_h correspond to eigenforms associated with eigenvalues $\pm q$. The eigenspace corresponding to y is of dimension four, the associated eigenplanes reading:

\[
x x_1 x_2 x_3 - (x_1 + x_2 + x_3) + q + 2 = 0
\] (4.4)
\[
x x_1 x_2 x_3 - x_1 + x_2 + x_3 + q - 2 = 0 \quad \text{with} \quad \{i, j, k\} = \{1, 2, 3\}
\] (4.5)

These four involutions generate an infinite discrete group $\Gamma_{120} [15]$. Let us note that the full transposition is nothing but the product $t = t_1 \cdot t_2 \cdot t_3$.
The eigenform associated with eigenvalue $-q$ reads:

$$x_1 x_2 x_3 - (x_1 + x_2 + x_3) + 2 - q = 0 \quad (4.6)$$

The two only self-dual varieties symmetric under permutations of 1, 2 and 3 ((4.4) and (4.6)) have already been introduced in [16, 21]. They can be respectively written as follows:

$$y = -q \quad \text{and} \quad y = q$$

Hyperplane (4.6) is a subvariety of the critical manifold in some ferromagnetic region [21], whereas (4.4) has no such property. Let us notice that hyperplane (4.6) is the only variety stable point by point by duality D.

Note that the well known case, of no three site interaction, (that is $x = 1$) is not stable under D. Namely, variety $x = 1$ becomes:

$$(x_1 x_2 + x_2 x_3 + x_3 x_1 - x_1 + x_2 - x_3 - x_1 x_2 x_3 + 1) y + q(x_1 - 1)(x_2 - 1)(x_3 - 1) = 0 \quad (4.7)$$

4.3 Disorder solutions

Disorder variates are algebraic varieties for which dimensional reductions occur for vertex or spin models, thus enabling to calculate exactly physical quantities such as partition function, correlation functions ... [34, 35]. A straightforward calculation, using a "disorder criterion" explained in [36], yields the following disorder conditions:

$$x_1 x_2 x_3 - (x_1 + x_2 + x_3) + 2 - q + q x_1 = 0 \quad i = 1, 2, 3 \quad (4.8)$$

When there is no three sites interaction ($x = 1$) one recovers the known disorder conditions of the two site nearest neighbor triangular Potts model [36, 37].

One directly sees that these disorder conditions are nothing but the vanishing conditions of the x_i^q's.

As it should [34], these three disorder varieties have no intersection with the ferromagnetic critical variety (4.6).

4.4 Inversion relations

The inversion relations [33, 34] for the two and three site interaction spin model can be represented pictorially as follows:

![Diagram](image)

which analytically means:

$$\sum_{\beta} w(\alpha, \beta, \gamma) \cdot I(\alpha, \beta, \gamma) = \lambda \delta_{\alpha, \gamma} \quad (4.9)$$

The Boltzmann weight $w(\alpha, \beta, \gamma)$ of model (4.1) is invariant under a common shift of each spin α, β and γ. Therefore, γ can be fixed in a particular colour, namely zero. Thus the Boltzmann weight can be represented by a $q \times q$ matrix (α being the column index, and β the row one), with entries $w(\alpha, \beta, 0)$. Equation (4.9) thus becomes the following matricial relation:

$$W \cdot I(W) = \lambda \mathcal{I}_q$$

where \mathcal{I}_q denotes the $q \times q$ identity matrix, and the $q \times q$ matrix Boltzmann weight W reads:

$$W = \begin{bmatrix}
x_1 x_2 x_3 & x_2 x_3 & \cdots & \cdots & x_3 \\
x_3 & x_1 & \cdots & \cdots & 1 \\
x_3 & x_1 & \cdots & \cdots & 1 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
x_3 & 1 & \cdots & \cdots & 1 \\
1 & 1 & \cdots & \cdots & 1 \\
1 & 1 & \cdots & \cdots & 1 \\
1 & 1 & \cdots & \cdots & 1
\end{bmatrix}$$

Using a "Z_{q-1} Fourier transformation" [38, 39], this $q \times q$ matrix can be block-diagonalized into one 2×2 block and a $(q - 2) \times (q - 2)$ matrix proportional to the identity matrix, $(q - 1) \times \mathcal{I}_{q-2}$. Then one can easily obtain the matrix inverse $I(W)$. Note that $I(W)$ is of the same form as W, x_1, x_2, x_3, being changed according to the following birational
transformation I:

$$
\begin{align*}
I :& \quad x \rightarrow \frac{(x x_1 - 1)^2 (x_1 + q - 2)}{x x_1^2 + x x_1 (q - 3) - q + 2 (x_1 - 1)} \\
& \quad x_1 \rightarrow \frac{x x_1^2 + x x_1 (q - 3) - q + 2}{x x_1 - 1} \times \frac{x_1 (x - 1)}{x_1 - 1} = 2 - q - x_1 + x_1 (x - 1) \\
& \quad x_2 \rightarrow \frac{x_1 - 1}{x_2 (x x_1 - 1)} \\
& \quad x_3 \rightarrow \frac{x_1 - 1}{x_2 (x x_1 - 1)}
\end{align*}
$$

(4.10)

Obviously permutations of indices 1, 2 and 3 are also symmetries of the model. Introducing p_{23} the permutation of x_2 and x_3, and similarly p_{12} and p_{13}, one can define the three following transformations:

$$
\begin{align*}
I_1 &= p_{12} I p_{23} \\
I_2 &= p_{13} p_{12} I p_{12} p_{13} = p_{13} I p_{12} p_{13} \\
I_3 &= p_{12} p_{13} I p_{13} p_{12} = p_{12} p_{13} I p_{13} p_{12}
\end{align*}
$$

corresponding to the three inversion transformations of the model [40].

4.5 The symmetry group

Inversion I, permutations of x_1, x_2, x_3, and duality relation D (defined by (4.3)) generate a symmetry group of the parameter space of the model, denoted Γ_{opt} in the following.

At this point it is worth noticing that duality transformation D, does actually commute with I, and also with the group of permutations S_3. This commutation property enables to see Γ_{opt} as a hyperbolic Coxeter group generated by two infinite order transformations, up to the semi-direct product by a finite group. These generically infinite order transformations read:

$$
\begin{align*}
J_1 = I_3 I_2 I_3, \quad J_2 = I_1 I_2 I_3, \quad J_3 = I_2 I_1 I_3
\end{align*}
$$

(4.11)

By definition the J_i's satisfy relation:

$$
J_3 J_2 J_1 = \text{Identity}
$$

(4.12)

Two of these J_i's generate Γ_{opt}, up to the semi-direct product by a finite group.

Let us recall that for generic values of q, when $x = 1$, Γ_{opt} is isomorphic to $\mathbb{Z} \times \mathbb{Z}$ up to a semi-direct product by a finite group and degenerates into a finite group for Tutte-Borchard numbers [18] ($q = 2 - 2 \cos(\pi/N)$). In fact for $x = 1$, the J_i's do commute and the elements of group Γ_{opt} read:

$$
\gamma = J_1^{\alpha_1} J_2^{\alpha_2} J_3^{\alpha_3}, \quad \text{where } \alpha_i = 0, 1
$$

Generically n_1 and n_2 are relative integers. For q a Tutte-Borchard number associated with N, n_1 and n_2 run into $\{0, \ldots, N - 1\}$, the group Γ_{opt} being therefore isomorphic to the product $\mathbb{Z}_N \times \mathbb{Z}_N \ltimes \mathbb{Z}_2$.

In order to analyse the general case ($x \neq 1$), let us introduce the 3-cycle $c = p_{12} p_{13}$, and let us write the J_i's in term of c and a only one (generically) infinite order transformation, namely $(c I)^2$:

$$
\begin{align*}
J_1 &= c (c I)^2 c^2, \\
J_2 &= c^3 (c I)^2 c, \\
J_3 &= (c I)^2
\end{align*}
$$

(4.13)

4.5.1 Transformation $(c I)^2$

For the sake of simplicity, one will consider transformation $(c I)^2$ as a homogeneous transformation, introducing $x_0 = x_1 x_2 x_3$ and a fifth homogenization variable t. One can then define a homogeneous inverse I_h (corresponding to (4.10)):

$$
\begin{align*}
I_h :& \quad x_0 \rightarrow -x_1 - (q - 2) t \\
& \quad x_1 \rightarrow -(q - 2) \frac{x_0 t - x_2 x_3}{x_1 - t} - x_0 \\
& \quad x_2 \rightarrow x_2 \\
& \quad x_3 \rightarrow x_3 \\
& \quad t \rightarrow \frac{x_0 t - x_2 x_3}{x_1 - t}
\end{align*}
$$

Transformation $c I_h$ then reads:

$$
\begin{align*}
c I_h :& \quad x_0 \rightarrow -x_1 - (q - 2) t \\
& \quad x_1 \rightarrow x_3 \\
& \quad x_2 \rightarrow -(q - 2) \frac{x_0 t - x_2 x_3}{x_1 - t} - x_0 \\
& \quad x_3 \rightarrow x_2 \\
& \quad t \rightarrow \frac{x_0 t - x_2 x_3}{x_1 - t}
\end{align*}
$$

One notices that $u_3 = x_1 + x_3 + (q - 2) t$ and $v_3 = x_3 - x_0$ are permuted by transformation $c I_h$: $u_3 \leftrightarrow v_3$. With these new variables, one also has:

$$
\begin{align*}
c I_h :& \quad z_1 \rightarrow z_3 \\
z_1 \rightarrow u_3 - x_1 - (q - 2) t \quad \text{where } F_0 = \frac{x_0 t - x_2 x_3}{t(x_1 - t)}
\end{align*}
$$

12
Transformation \((c I_2)^2\) then reads:

\[
(c I_2)^2 : \begin{cases}
 u_2 &\rightarrow u_3 \\
v_3 &\rightarrow v_3 \\
x_1 &\rightarrow u_4 - x_1 - (q - 2) t \\
x_3 &\rightarrow v_3 - x_3 - (q - 2) F_0 t \\
t &\rightarrow F_0 F_1 t
\end{cases}
\]

where \(F_1 = F_0(c I_2)\) is the same expression as \(F_0\), where the \(x_i\)'s have been replaced by their images by \(c F_0\).

One can now define the successive iterates of \(F_0\) by transformation \(c I_2\), which will be called \(F_n\) in the following: \(F_{n+1} = F_n(c I_2)\). One can also introduce new variables \(A_n\) defined as the successive products of the \(F_n\)’s:

\[A_n = F_0 F_1 F_2 \cdots F_{2^n - 1}\]

Taking \(A_0 = 1\), one gets for any integer \(n\), the explicit expression of \((c I_2)^{2^n}\):

\[
(c I_2)^{2^n} : \begin{cases}
 u_2 &\rightarrow u_3 \\
v_3 &\rightarrow v_3 \\
x_1 &\rightarrow (-1)^n x_1 + \frac{1 - (-1)^n}{2} u_3 + \frac{(-1)^n}{q - 2} \sum_{k=0}^{n-1} (-1)^k A_k F_{2^k} t
\end{cases}
\]

One can then show recursively that:

\[A_n - 1 = a_n (A_{n-1} - 1) + b_n (q - 2) \frac{x_1 - x_3}{t}\] (4.14)

the \(a_n\)'s and \(b_n\)'s satisfying the following recurrences:

\[a_{n+1} = (q - 2)^2 - 1 \quad a_n - (q - 2)^2 b_n + 1\]

\[b_{n+1} = a_n - b_n\] (4.15)

One can initiate these recurrences with \(a_0 = b_0 = 0\) (that is \(A_0 = 1\)). One then gets:

\[a_n = \frac{1}{q(q-4)} \left(\lambda^n_2 + \lambda^n_2 - 2 \right)\]

\[b_n = \frac{-1}{q(q-4)(q-2)} \left(\lambda_n^{(2)} + \lambda_n^{(2)} + (q - 2) \right)\] (4.16)

where \(\lambda_2\) are the roots of the quadratic polynomial \[x^2 + \left(2 - (q - 2)^2 \right) x + 1\].

Remark:

One has to consider \(q=0\) and \(q=4\) separately.\(^3\) Solutions of recurrences (4.15) now read:

\[a_n = n^2, \quad b_n = \frac{n(n-1)}{2}\]

Equation \(A_N = 1\) has no other solution than \(n = 0\), therefore transformation \((c I_2)^2\) is of infinite order. Moreover, recalling the \(x = 1\) limit, one gets that this transformation is equivalent to some translation in the variables \(1/(1 + x_i)\).

1.5.2 Tutte-Beraha numbers

Let us recall that, when there is no three site interaction (that is \(x = 1\)), there does exist particular values of \(q\), the so-called Tutte-Beraha numbers [18, 41], for which transformations \(J_k\), or equivalently transformation \((c I_2)J_k\), become finite order ones. Introducing \(q_2\), the roots of the second order equation \(x^2 + (q - 2) x + 1\), \(q_2\) corresponds to a Tutte-Beraha number when \(q_2^k\) are \(N^*\) root of unity. In the \(x = 1\) case, it has been shown that for these values\(^4\) of \(q\) the \(J_k\)'s are transformations of order \(N\) [35, 40]. Amazingly, this situation still holds for the generic case (with \(x \neq 1\)).

In fact, one notices that \(\lambda_2 = q_2^2\), so one has to calculate transformation \((c I_2)^2\) when \(\lambda_2^N = 1\). In this case, relations (4.14) and (4.16) yield:

\[a_N = b_N = 0, \quad \text{and} \quad A_N = 1\] (4.17)

Straightforward calculations yield:

\[
\sum_{k=0}^{N-2} (-1)^k a_k = 0
\]

\[
\sum_{k=0}^{N-2} (-1)^k b_k = \frac{1 - (-1)^N}{2(q-2)^2}
\] (4.18)

and these relations (4.18) enable to get:

\[
\sum_{k=0}^{N-2} (-1)^k A_k = \frac{1 - (-1)^N}{2} \left(1 + \frac{x_2 - x_3}{t(q-2)} \right)
\]

Finally, one notes that \(x_3\) is invariant by \((c I_2)^N\), as well as \(t\) (see equation (4.17)). At first sight, one should also verify that \(x_3\) is preserved by transformation \((c I_2)^N\), in fact in the following (see section (4.6)), one will see that there exists a rational invariant under the whole group \(\Gamma_{\text{opt}}\). Since this invariant involves variable \(x_3\), it is not necessary to perform this last calculation: the invariance of \(x_3\) under \((c I_2)^N\) is a straightforward consequence of the invariance of \(u_3, v_3, x_1\) and \(t\).

\(^3\)At first sight, one should also consider \(q = 2\) as a particular case. In fact only \(q = 0\) is relevant, and it actually is given by relation (4.16) with \(q = 2\).

\(^4\)One considers only \(N \geq 2\), since for \(N = 1\) that is \(q = 0\) or \(q = 4\) transformation \((c I_2)^2\) is of infinite order (see remark in the previous section).
One has thus established for $q = 2 - 2 \cos(k \pi/N)$ (a Tutte-Beraha number) that transformation $(e^{i\theta})^N$ reduces to identity, that is equivalently:

$$J_i^N = Id, \quad \text{with} \quad i = 1, 2, 3 \quad (4.19)$$

Remark:

Such Coxeter groups can be seen as the fundamental group of a surface of genus g minus k points [28]. Here one has a genus zero Riemann surface minus three points. At this step the Coxeter group one has to deal with is reminiscent of the Schwarzs's triangular groups 3. Considering a geodesic triangle of angles $\pi/n_1, \pi/n_2, \pi/n_3$, and considering S_1, S_2, S_3 the symmetries with respect to the edges of the triangle, and defining the "rotations":

$$R_1 = S_2 S_1, \quad R_2 = S_3 S_1, \quad R_3 = S_1 S_2$$

the R_i's verify:

$$R_i^N = Id, \quad \text{with} \quad i = 1, 2, 3$$

and:

$$R_1 R_2 R_3 = Id$$

In the study of these triangular groups, three different cases have to be distinguished: depending on $1/n_1 + 1/n_2 + 1/n_3$ greater, lower or equal to 1.

Because of symmetry of our triangular Potts model we have here $n_1 = n_2 = n_3 = N$. The only euclidean case is $N = 3$, the other values of N yielding hyperbolic triangles and hyperbolic geometries.

$N = 2$ corresponds to $q = 2$, that is the Ising subcase of the model (for which the three site interaction becomes irrelevant).

Thus, the first interesting case is $N = 3$, that is, that $q = 1$ or $q = 3$.

4.5.3 The euclidean case: $q = 1 \quad \text{or} \quad q = 3$

In this section one will restrict to $N = 3$.

Introducing the well-suited transformations:

$$G_1 = p_{12} J_1 p_{11}, \quad G_2 = p_{23} J_2 p_{22}, \quad G_3 = p_{31} J_3 p_{33} \quad (4.20)$$

one will show that for $N = 3$, Γ_{aut} is not a group with an exponential growth anymore but reduces down to $Z \times Z$ up to a semi-direct product by a finite group (like the affine Coxeter group A_3 [41]).

First, one notices that the G_i's do satisfy a relation similar to relation (4.12):

$$G_3 G_2 G_1 = Id \quad (4.21)$$

Let us first study the group G, generated by G_1, G_2 and G_3. With relations (4.11) and (4.11) the G_i's can be written in terms of transformation I and of the 3-cycle c:

$$G_1 = c^2 I c^2 I c^2, \quad G_2 = I c^2 I c, \quad G_3 = c I c^2 I \quad (4.22)$$

Using $(c I)^p = Identity$, $G_1 G_2$ reads:

$$G_1 G_2 = c^2 I c^2 I c^2 I c = c^2 (c I)^2 = c^2 (c I)^2 = I c I c^2 = G_2 G_1 \quad (4.23)$$

Thus, the G_i's actually commute. From relations (4.21) and (4.23), it is clear that a generic element of G reads:

$$g = G_i^{n_1} G_j^{n_2}$$

where n_1 and n_2 are relative integers, which explicitly means that G is isomorphic to $Z \times Z$.

Let us now show that Γ_{aut} is isomorphic to G up to a semi-direct product by a finite group.

Γ_{aut} can be seen to be generated by I and c, up to some semi-direct product by a finite group. From relation (4.22), one gets at once:

$$c I c I = G_1^{-1} c^3, \quad c I c^2 I = G_2, \quad c^2 I c I = G_3^{-1}, \quad c^3 I c^2 I = G_1 c$$

$$I c I c^3 = G_1^{-1} c^3, \quad I c I c^2 = G_2^{-1}, \quad I c^2 I c = G_3, \quad I c I c^2 = G_2 c$$

Thus Γ_{aut} is isomorphic to G, up to a semi-direct product by a finite group, that is, isomorphic to $Z \times Z$ up to a semi-direct product by a finite group.

4.5.4 Numerical analysis

For $0 < q < 2$, the infinite set of points of the orbits of the automorphism group is dense in an algebraic curve while, in the other case, they accumulate to fixed points. This situation has already been noticed [42] in the $x = 1$ subcase. Therefore in this section, we will restrict our study to $0 < q < 4$.

To complete the analysis of the symmetry group, one has to study its generically infinite order generators (the J_i's). We will draw here their orbits in the four dimensional parameter space (C_P) of the model. From relation (4.13), it is clear that the iterations of the J_i's amount to perform the transformation $(c I)^p$. For generic values of q (of course different from Tutte-Beraha numbers, see section (1.5.2)), the iteration of $(c I)^P$ yields curves. Figure (1) shows such a curve obtained for $q = 3.5$ (which is not a Tutte-Beraha number).

For Tutte-Beraha numbers, since the J_i's are finite order transformations, one has to consider other elements of the group. As far as the euclidean case is concerned ($q = 1$ or $q = 3$), let us recall that the G_i's are the commuting generators of the symmetry group isomorphic to $Z \times Z$. Figure (2a) illustrates the iteration of G_2 for $q = 3$. Remarkably one again gets curves. Of course, iterating G_2 for $q = 3$ also yields curves as can be seen on figure (2b). Considering one orbit of the symmetry group generated by the G_i's, one gets, as it should, a surface which can clearly be seen on figure (2c) as the "product of curves" like (2a) and (2b). This last figure gives a nice illustration of the $Z \times Z$ structure of the group. One gets similar results for the other euclidean case $q = 1$: figure (2d) shows the surface corresponding to one orbit of the whole symmetry group generated by the G_i's.
Amazingly, the G_i's which do not commute anymore when q is no longer equal to 1 or 3, do yield curves as can be seen on figure (3), which represents the iteration of G_2 for $q = 0.5$ (which is not a Tutte-Bruha number).

All these examples are remarkable: if one considers the iteration of more involved elements of the group, one generally gets quite chaotic figures (except for $q = 1$ or $q = 3$). Figure (4a) shows such a "chaotic" orbit for a Tutte-Bruha number ($q = 2 + \sqrt{3}$) and figure (4b) for $q = 3.3$ (which is not a Tutte-Bruha number). Both figures (4a) and (4b) correspond to the iteration of $J_i J_i^*$. These last figures and the study of many other orbits not given here, give a good hint of the complexity of these infinite Coxeter groups. They are generically of exponential growth, even when additional relations occur [see relation (4.19)].

This numerical study indicates that for generic values of q, the generators of the symmetry group (the J_i's) seem integrable since their iterations yield curves apparently in the whole parameter space. Moreover, the G_i's seem to satisfy the same property for any value of q, though they emerged from the analysis of the euclidean case ($q = 1$ or $q = 3$). A way to verify this assumption, is to give the algebraic equations of these curves. For this purpose, we will in the next section seek for algebraic varieties invariant under the J_i's and the G_i's.
4.6 Group invariants

Let us first remark that there exist three (homogeneous) polynomials, of degree respectively 1, 2 and 3, invariant under permutation of x_1, x_2 and x_3, and covariant under transformation I. These three polynomials read:

\[D_1 = x_1 + x_2 + x_3 - x_0 + (q - 2)t, \]
\[D_2 = t(x_1 + x_2 + x_3 + x_0 - t) - x_1 x_2 - x_2 x_3 - x_3 x_1, \]
\[D_3 = t^2 x_0 - x_1 x_2 x_3. \]

Let us note that the cofactor (under the action of I) of D_3 is the product of the respective cofactors (under the action of I) of D_1 and D_2.

As a consequence, one directly gets an invariant under the group generated by I and the permutations of 1, 2 and 3:

\[\Delta \equiv \frac{D_1 D_2^2}{D_3}. \tag{4.24} \]

This provides, for arbitrary q, a canonical foliation of the parameter space ($\mathbb{C}P^2$) by codimension one algebraic varieties.

It has been seen in the previous section that the iterations of the J_i's yield curves in the whole parameter space. In order to prove that these curves are actually algebraic, one has to exhibit two other algebraic invariants for these transformations. From relations (4.13), it is clear that one can restrict to study transformation $(cI)^2$. One can show that the two polynomials:

\[E_1 = x_1 + x_2 - x_3 + x_0 + (q - 2)t, \]
\[E_2 = t(x_1 + x_2 - x_3 - x_0 - t) - x_1 x_2 + x_2 x_3 + x_3 x_1, \]

are actually covariant under the action of $(cI)^2$ as D_1 and D_2. This provides immediately two additional algebraic invariants under $(cI)^2$:

\[\Delta_1 = \frac{D_1}{E_1}, \quad \Delta_2 = \frac{D_2}{E_2}. \]

Curves like figure (1) are thus given as intersections of cubics, quadrics and hyperplanes, namely:

\[\Delta = \delta, \quad \Delta_1 = \delta_1, \quad \Delta_2 = \delta_2, \tag{4.25} \]

where the δ's denote arbitrary constant.

Such algebraic curves, with an infinite number of automorphisms are either elliptic or rational curves [20]. Amazingly, eliminating x_0 and x_3 from relations (4.25) one gets (coming back to inhomogeneous variables):

\[(\delta_1 + 1)(\delta_2 + 1)(x_1 x_2 - 1) = \\
(4\delta_1 \delta_2 \delta (x_1 + x_2 - 2) + (\delta_1 - 1)(\delta_2 - 1)) \{x_1 + x_2 - 2 + q\}
\]

which proves that these curves are actually rational curves.

The previous numerical analysis indicated remarkable occurrence of curves, when iterating the G_i's for any value of q. Let us for instance consider G_3. One notices that polynomials:

\[F_1 = x_3, \]
\[F_4 = (x_1 x_3 + x_2 x_3 - x_3 t - x_0 t)(x_1 x_2 + (q - 3)x_0 t - (q - 2)x_2 x_3) \]

are actually covariant under the action of G_3. The values of the cofactors of these F_i's enable to get two G_3 invariants:

\[\Delta'_1 = \frac{D_1}{F_1}, \quad \Delta'_2 = \frac{D_1 D_2}{F_1 F_2}. \]

Figures like figures (2a), (2b) or (3) are thus algebraic (elliptic) curves given by intersections of cubics, quadrics and hyperplanes.

Let us recall that for $q = 1$ or $q = 3$, these G_i's do commute and that: $G_3 G_2 G_1 = I_d$. We have just seen that each of the G_i's generates algebraic elliptic curves. Therefore for $q = 1$ and $q = 3$, the orbits of the group generated by the G_i's yield algebraic surfaces which are products of two elliptic curves, as clearly seen on figure (2c). Since this surface is stable under permutations of x_1, x_2 and x_3, it is natural to give its equation without referring to two of the G_i's, that is without having any direction singled out. For $q = 3$ an additional polynomial:

\[D_3 = -x_1 x_2 x_3(x_0^2 + x_1^2 + x_2^2 + x_3^2 - t^2) + x_0 (x_1^2 x_2^2 + x_2^2 x_3^2 + x_3^2 x_1^2) \]

is symmetric under permutations of 1, 2 and 3 and covariant under I. Symmetric invariant:

\[\Delta'_3 = \frac{D_1 D_2 D_3}{D_3}, \]

together with invariant (4.24) thus give symmetric equations of these algebraic surfaces. Similarly for $q = 1$, polynomial:

\[D'_3 = x_0 D_3 \]

is a symmetric covariant under the action of I, yielding the following symmetric invariant:

\[\Delta'_3 = \frac{D_1 D_2}{D_3} \]

Let us now recall that duality transformation D, defined in section (4.2), is also a symmetry of the model, which commutes with transformation I and with permutations of 1, 2 and 3. Let us notice that D is actually a linear transformation when written in terms of homogeneous variables:

\[D_3 : \begin{cases} x_0 &\rightarrow x_0 + (q - 1)(x_1 x_2 + x_3 + (q - 2)t) \\
x_1 &\rightarrow (q - 1)x_1 - x_2 - x_3 - (q - 2)t \\
x_2 &\rightarrow (q - 1)x_2 + x_0 - x_1 - x_3 - (q - 2)t \\
x_3 &\rightarrow (q - 1)x_3 + x_0 - x_2 - x_1 - (q - 2)t \\
t &\rightarrow x_0 - x_1 - x_2 - x_3 + 2t \end{cases} \]
Considering the previous covariant polynomials, one notices that five of them are "eigen-polyomials" of the duality transformation:

\[
\begin{align*}
D_1 & \rightarrow -q D_1 \\
D_2 & \rightarrow q^2 D_2 \\
E_1 & \rightarrow q E_1 \\
E_2 & \rightarrow q^2 E_2 \\
D'_1 & \rightarrow q^3 D'_1
\end{align*}
\]

As far as the other covariant polynomials are concerned, one has to barter them for new homogeneous polynomials, namely:

\[
\begin{align*}
D_{21} & = 2 q D_2 - D_1 D_2, \\
F_{1d} & = 2 q x_1 - D_1, \\
F_{2d} & = 2 q F_1 - (q^2 - 3 q + 1) D_1 (D_3 - x_1 D_2), \\
D_{2d} & = 2 q^3 D_3 - D_1^2 D_3
\end{align*}
\]

to get the self-dual covariant.

Algebraic varieties \(D_1, D_2\) and \(D_{2d}\) are actually remarkable since they do have covariance properties with respect to the whole group \(\Gamma_{opt}\), which is (generically) a hyperbolic group. From a point of view of effective algebraic geometry, it provides examples of algebraic varieties with very large groups of automorphisms. Moreover these varieties also provide examples of algebraic varieties with an infinite number of rational points (when \(q\) is rational itself). This is a direct consequence of the representation of the hyperbolic group \(\Gamma_{opt}\) in terms of birational transformations with integer coefficients with respect to the \(x_i\)'s and \(q\). This situation can straightforwardly be generalised to algebraic numbers.

In the next section, we discuss the actual status of these algebraic varieties.

4.7 Remarkable algebraic varieties

Let us first recall that critical manifolds have to be compatible with all the symmetries of the lattice model. The self-dual variety (4.6) is already known as the critical variety of the Potts model for arbitrary \(q\) in some ferromagnetic region \([21]\). It is also known that this variety is, as it should, stable under the whole hyperbolic Coxeter group \([40]\). One recovers this result, noticing that this symmetric self-dual variety (4.6) is nothing but variety \(D_1 = 0\). Conversely the same argument confirms that the self-dual variety (4.4) cannot be critical since it is not stable under \(\Gamma_{opt}\).

Moreover in the previous section, other algebraic varieties have been shown to be stable under the whole infinite Coxeter group, namely the vanishing conditions of the expressions: \(D_3, D_{2d}\) and also \(D_{2d}\) when \(q = 3\). We do not consider here \(D'_1 = 0\) for \(q = 1\) since it reduces to the previous \(D_2 = 0\) case and to condition \(x_2 = 0\) for which the analysis of the model becomes of a more "combinatorial" nature and deserves a specific study.

Variety \(D_1 = 0\) was not previously known in the literature: it is a good candidate for being a critical variety. However, the \(x = 1\) limit of this variety has already been introduced in \([43]\). Monte-Carlo calculations of the \(q = 3\) isotropic limit of the model have been performed on this subvariety \([44]\). These studies confirmed the existence of an antiferromagnetic critical point (in addition to the well-known ferromagnetic one) probably corresponding to a first order transition. Though very close from the \(x = 1, q = 3\) isotropic limit of \(D_2 = 0\), this antiferromagnetic critical point is definitely different \([44]\). This negative result does not rule out \(D_0 = 0\) as a critical variety in some region of the parameter space which could depend on the value of \(q\).

Variety \(D_{2d} = 0\) is also a good candidate for criticality. Unfortunately no partial results are available in the literature. If one comes back to \(D_0 = 0\), which is not self-dual, this condition corresponds to the vanishing of the three spin interaction (\(x = 1\)). Variety \(x = 1\) is well known \([34]\) and plays a special role: the symmetry group \(\Gamma_{opt}\) is isomorphic to \(\mathbb{Z} \times \mathbb{Z}\) (up to some semi direct product by a finite group). Since duality \(D\) commutes with \(\Gamma_{opt}\), the dual variety of \(x = 1\) also corresponds to the degeneracy of \(\Gamma_{opt}\) into a group isomorphic to \(\mathbb{Z} \times \mathbb{Z}\) (up to some semi direct product by a finite group). This remarkable variety (4.7) also reads:

\[
D^*_2 = q^2 (q D_3 - D_1 D_2) = 0, \quad \text{or equivalently} \quad \Delta = q \quad (4.26)
\]

Finally for \(q = 3\), the vanishing condition of the self dual expression \(D_{2d}\) as well as condition \(D_0 = 0\) and its dual variety, also requires further studies.

Clearly one needs further Monte-Carlo simulations, with a particular emphasis on the euclidean case \(q = 3\). One will try to see if, besides the known variety \(D_1 = 0\), others of the above mentioned algebraic varieties are actually critical. As far as phase diagrams are concerned, the intersections of these algebraic varieties could play a special role (multicritical points ?...). Note that \(D_0 = 0\) and \(D_2 = 0\) do have intersection points in the ferromagnetic domain.

Let us recall that other remarkable varieties have been mentioned in section (1.3): the disorder varieties (4.8). The analysis of the action of the hyperbolic group on these varieties has also to be performed, in order to generalise the analysis already achieved in the \(x = 1\) limit \([36]\).

5 Conclusion

The symmetry group generated by inversion relations has been analysed for vertex triangular lattice models and for the standard scalar Potts model with two and three sites interactions on the triangular lattice. The group generated by three involution is seen to be generically a very large one, like a free group. Two situations for which the representations of this group degenerate into smaller ones, hopefully compatible with integrability, have been considered. The first reduction for the vertex triangular model corresponds to the situation where the vertex of the triangular model coincides with the left or right-hand sides of a Yang-Baxter relation. The representation of the model is isomorphic, up to a semi-direct product by a finite group, to \(\mathbb{Z} \times \mathbb{Z}\). The second reduction for \(q\)-state Potts models occurs for particular values of \(q\), the so-called Tutte-Barysh numbers \([18, 41]\). For these values of \(q\), some of the (generically infinite order) generators of are of finite order. However, even with such additional relations on the generators, one still gets groups an
with exponential growth, except for $q = 1$ or $q = 3$. Nevertheless such additional relations on the generators occur on particular algebraic varieties, yielding a degeneracy of the group into products of Z. We have seen in this paper that $x = 1$ and its dual variety (4.26) are such varieties. It would be interesting to seek systematically for these varieties.

As far as this Potts model is concerned, a set of algebraic varieties stable under hyperbolic Coxeter groups to emerge. In particular, one recovers the self-dual algebraic variety, known as critical in some ferromagnetic region. These new results strongly suggest further Monte-Carlo calculations to clarify the phase diagram of the model.

As a byproduct, this analysis provides nice birational representations of hyperbolic Coxeter groups and also algebraic varieties having such large groups of automorphisms.

This first analysis of algebraic symmetries for lattice models, including degeneracy subcases, should help to better understand the symmetries of three dimensional models and the occurrence of true three dimensional integrability.

Acknowledgement: We thank M.P. Bellon and C.M. Viallet, for many discussions and encouragements.

References

notes based on a course at Princeton: final parts of the notes written by B. Floyd
and S. Kerchoff.

et groupes discret, exposé de J.P. Serre.

[34] M. T. Jackel and J. M. Maillard, *Inversion relations and disorder solutions on Potts

[35] P. Le Doussal A. Georges, D. Hansel and J-M. Maillard, *Dimensional reduction on

(1984), pp. 139-222.

[40] J-M.Maillard, G. Rollet, and F.Y. Wu, *Inversion relations and symmetry groups for

52-65.

