Measurement of the Ω_c^0 baryon lifetime

LHCb collaboration†

Abstract

We report a measurement of the lifetime of the Ω_c^0 baryon using proton-proton collision data at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment. The sample consists of about 1000 $\Omega_b^-\rightarrow \Omega_c^0 \mu^-\bar{\nu}_\mu X$ signal decays, where the Ω_c^0 baryon is detected in the $pK^-K^-\pi^+$ final state and X represents possible additional undetected particles in the decay. The Ω_c^0 lifetime is measured to be $\tau_{\Omega_c^0} = 268 \pm 24 \pm 10 \pm 2$ fs, where the uncertainties are statistical, systematic, and from the uncertainty in the D^+ lifetime, respectively. This value is nearly four times larger than, and inconsistent with, the current world-average value.

© 2018 CERN for the benefit of the LHCb collaboration, CC-BY-4.0 license.

†Authors are listed at the end of this paper.
Measurements of the lifetimes of hadrons containing heavy \((b\text{ or }c)\) quarks play an important role in testing theoretical approaches that are used to predict Standard Model parameters. The validation of such tools is important, as they can then be used to search for deviations from Standard Model expectations in other processes. One of the most predictive tools in quark flavor physics is the heavy quark expansion (HQE) [1–8], which describes the decay widths of hadrons containing heavy quarks, \(Q\), through an expansion in powers of \(1/m_Q\), where \(m_Q\) is the heavy quark mass. While predictions for absolute lifetimes carry relatively large uncertainties, ratios of lifetimes have smaller theoretical uncertainties [9]. Higher-order terms in the HQE are related to non-perturbative corrections, and to effects due to the presence of the other light quark(s) (spectator) in the heavy hadron. For beauty hadrons with a single heavy quark, these corrections are typically at the few percent level or less, due to the large mass of the \(b\) quark [9]. For charm hadrons, since \(m_c\) is significantly smaller than \(m_b\), these higher-order corrections can be sizable. Therefore measurements of charm-hadron lifetimes provide a sensitive probe of their contributions [10–12].

While charm-meson lifetimes have been measured precisely and provide useful information on these higher-order terms, the knowledge of charm-baryon lifetimes is much less accurate. The lifetimes of the \(D^0\), \(D^+\) and \(D_s^+\) mesons are known to about 1% precision, whereas the corresponding uncertainties for the \(\Lambda_c^+, \Xi_c^+, \Xi_c^0\) and \(\Omega_c^0\) baryons are 3%, 6%, 10% and 17%, respectively [13]. Improved measurements of the charm-baryon lifetimes provide complementary information to what can be gleaned from charm mesons. For example, contributions from \(W\)-exchange and constructive Pauli interference effects are present in charm-baryon decays, but are small or absent in charm-meson decays [11]. Moreover, for charm baryons, the spectator system may have spin 0 (\(\Lambda_c^+, \Xi_c^+, \Xi_c^0\)) or spin 1 (\(\Omega_c^0\)), whereas for charm mesons, the light quark spin is always equal to 1/2.

It has been argued that the expected lifetime hierarchy, due to the higher order contributions discussed above, should be [10–12,14–16]

\[
\tau_{\Xi_c^0} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^+} > \tau_{\Omega_c^0}.
\]

The quark content of the \(\Omega_c^0\) baryon is \(css\), and the qualitative argument that the \(\Omega_c^0\) lifetime should be the shortest is predicated on large constructive interference between the \(s\) quark in the dominant \(c \to sW^+\) transition and the spectator \(s\) quarks. However, it is also conceivable that the \(\Omega_c^0\) lifetime could be the largest, depending on the treatment of higher-order terms in the HQE expansion [12].

Current measurements [13] are consistent with this hierarchy. The least well measured lifetime is that of the \(\Omega_c^0\) baryon, with a value of \(\tau_{\Omega_c^0} = 69 \pm 12\) fs, obtained by fixed-target experiments using a small number of signal decays [17–19].

In this Letter reports a new measurement of the \(\Omega_c^0\) baryon lifetime using a sample of semileptonic (SL) \(\Omega_b^- \to \Omega_c^0 \mu^- \bar{\nu}_\mu X\) decays, where the \(\Omega_c^0\) baryons are detected in the \(pK^-K^-\pi^+\) final state and \(X\) represents any additional undetected particles. Semileptonic \(b\)-meson decays were used previously by LHCb to make precise measurements of the \(D_s^+\) and \(B_s^0\) lifetimes [20]. Throughout the text, charge-conjugate processes are implicitly included.

To reduce the uncertainties associated with systematic effects, the lifetime ratio

\[
r_{\Omega_c^0} \equiv \frac{\tau_{\Omega_c^0}}{\tau_{D_s^+}}
\]
is measured, where the D^+ meson is detected in $B \rightarrow D^+ \mu^- \bar{\nu}_\mu X$ decays, with $D^+ \rightarrow K^- \pi^+ \pi^+$. In the following, the symbols H_b and H_c are used to refer to the b or c-hadron in either of the two modes indicated above.

The measurement uses proton-proton (pp) collision data samples, collected by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb$^{-1}$, of which 1.0 fb$^{-1}$ was recorded at a center-of-mass energy of 7 TeV and 2.0 fb$^{-1}$ at 8 TeV. The LHCb detector [21][22] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The tracking system provides a measurement of momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $(15 + 29/p_T)$ μm, where p_T is the component of the momentum transverse to the beam, in GeV/c. Charged hadrons are identified using information from two ring-imaging Cherenkov (RICH) detectors [23]. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [24]. The online event selection is performed by a trigger [25], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

Simulation is required to model the effects of the detector acceptance and the imposed selection requirements. Proton-proton collisions are simulated using PYTHIA [26] with a specific LHCb configuration [27]. Decays of hadronic particles are described by EvtGen [28], in which final-state radiation is generated using PHOTOS [29]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [30] as described in Ref. [31].

Signal Ω_c^- candidates are formed by combining an $\Omega_c^0 \rightarrow pK^-K^0\pi^+$ candidate with a μ^- candidate. Each final-state particle in the decay is required to be detached from all PVs in the event, and is associated to the one with the smallest χ^2_{IP}. Here, χ^2_{IP} is defined as the difference in χ^2 of the particle’s associated PV reconstructed with and without the considered track. The muon is required to have $p_T > 1$ GeV/c, $p > 6$ GeV/c and have particle identification (PID) information consistent with being a muon. The Ω_c^0 candidate’s decay products must have PID information consistent with their assumed particle hypotheses, and have $p_T > 0.25$ GeV/c and $p > 2$ GeV/c, except for the proton, which is required to have $p > 8$ GeV/c. To remove the contribution from promptly produced Ω_c^0 baryons, each Ω_c^0 candidate’s reconstructed trajectory must not point back to any PV in the event. Only Ω_c^0 candidates that have an invariant mass within 60 MeV/c2 of the known Ω_c^0 mass are retained.

The $\Omega_c^0\mu^-$ combinations are required to form a good quality vertex and satisfy the invariant mass requirement, $m(\Omega_c^0\mu^-) < 8.0$ GeV/c2. Random combinations of Ω_c^0 and μ^- are suppressed by requiring the fitted z coordinates of the Ω_c^0 and Ω_b^- decay vertices to satisfy $z(\Omega_c^0) - z(\Omega_b^-) > -0.05$ mm, where the z axis is parallel to the beam direction.

To ensure precise modeling of the decay-time acceptance from simulation, the candidates must satisfy a well-defined set of hardware and software trigger requirements. At the hardware level, candidates are required to pass the single-muon trigger, and, at the software level, to pass specific triggers designed to select multi-body final states containing a muon [25].

To improve the signal-to-background ratio in the $\Omega_c^0\mu^-$ sample, a boosted decision tree (BDT) discriminant [32][33] is built from 18 variables, which include the χ^2 for the Ω_b^-
and Ω_c^0 decay-vertex fits, and χ^2_{IP}, p, p_T, and a PID response variable for each final-state hadron. The BDT is trained using simulated $\Omega_c^0 \rightarrow \Omega_c^0 \mu^- \nu_\mu X$ decays for the signal, while background is taken from the Ω_c^0 mass sidebands, $30 < |m(pK^-\pi^+) - m_{\Omega_c^0}| < 50$ MeV/c^2, where $m_{\Omega_c^0}$ is the known Ω_c^0 mass [13]. The requirement on the BDT response is determined by optimizing the figure of merit $S/\sqrt{S+B}$, where S and B are the expected signal and background yields within a ± 15 MeV/c^2 mass region centered on the mass peak, respectively. The optimal BDT requirement provides a signal (background) efficiency of 78% (16%).

The $D^+\mu^-$ candidates, used for normalization, are formed by combining $D^+ \rightarrow K^-\pi^+\pi^+$ and μ^- candidates. The selections are identical to those discussed above, except the mass window is centered on the known D^+ mass and the BDT requirement is eliminated. Only 10% of the $D^+\mu^-$ data, selected at random, are used in the analysis, since the full sample is much larger than needed for this measurement.

The invariant-mass distributions for the selected Ω_c^0 and D^+ candidates in the two $H_c\mu^-$ final states are shown in Fig. 1. Both distributions are fitted using the sum of a signal component, defined as the sum of two Gaussian functions with a common mean, and an exponential shape to represent the combinatorial background. From a binned maximum-likelihood fit, the fitted $\Omega_c^0 \mu^-$ and $D^+\mu^-$ yields are 978 ± 60 and $(809 \pm 1) \times 10^3$, respectively. The number of Ω_c^0 signal decays is at least an order of magnitude larger than any previous sample used for an Ω_c^0 lifetime measurement.

The decay time of each H_c candidate is determined from the positions of the H_c and H_c decay vertices, and the measured H_c momentum. The background-subtracted decay-time spectra are obtained using the sPlot technique [34], where the measured H_c mass is used as the discriminating variable. The uncertainties in the bin-by-bin signal yields reflect both the finite signal yield and the statistical uncertainty due to the background subtraction.

Potential backgrounds from (i) random $H_c\mu^-$ combinations, (ii) $H_b \rightarrow H_c \tau^-\nu_\tau$, $\tau^- \rightarrow \mu^-\nu_\mu\bar{\nu}_\mu$ decays, and (iii) $H_b \rightarrow H_c \bar{D}$, $\bar{D} \rightarrow \mu^- X$, where \bar{D} represents a D_s^-,
Given the precise knowledge of the D^+ meson lifetime (1040 ± 7 fs) \cite{13}, the $D^+\mu^-$ sample is used to calibrate $\beta(t_{rec})$ and validate the fit. The signal template is obtained from simulated $B \to D^+\mu^-\bar{\nu}_\mu X$ decays, where contributions from $B \to D^+\tau^-\bar{\nu}_\tau X$ decays are included. The function $\beta(t_{rec})$ is obtained by taking the ratio between the D^+ decay-time spectrum in data (obtained via the sPlot technique) and that obtained from simulation. The ratio shows a linear dependence, and a fit to the function $\beta(t_{rec}) = 1 + \beta_0 t_{rec}$ yields $\beta_0 = (-0.89 \pm 0.32) \times 10^{-2}$ ps$^{-1}$. If the $\beta(t_{rec})$ function is excluded from the fit, τ^D_{fit} is 10 fs.
below the world average. The result of the binned χ^2 fit after this correction is applied is shown in Fig. 2 (left), where the fitted lifetime is found to be $\tau_{\text{fit}}^{D^+} = 1042.0 \pm 1.7$ (stat) fs.

The Ω^0_c lifetime is determined from a simultaneous fit to the Ω^0_c and D^+ decay-time spectra, for which the free parameters in the fit are $r_{\Omega^0_c}$ (see Eq. 2) and $\tau_{\text{fit}}^{D^+}$. By fitting for the ratio $r_{\Omega^0_c}$, correlated systematic uncertainties partially cancel. In the Ω^0_c decay-time fit, β_0 is scaled by 4/3 since the effect is expected to scale with the number of charged final state particles in the H_c decay [35]. The simulation includes contributions from $\Omega^0_c \rightarrow \tau^- \nu \pi^0 X$ final states. The results of the fit to the Ω^0_c decay-time distribution are shown in Fig. 2 (right), where the value $r_{\Omega^0_c} = 0.258 \pm 0.023$ (stat) is obtained. Multiplying this value by $\tau^{D^+} = 1040$ fs [13], the Ω^0_c lifetime is measured to be 268 ± 24 fs. This is about four times larger than, and incompatible with, the current world average value of 69 ± 12 fs [13].

Several cross-checks have been performed to ensure the robustness of this result. To confirm that the signal events are from SL Ω^-_c decays, a number of distributions, such as the $\Omega^0_c \mu^-$ mass spectrum, p_T and decay time have been compared between data (using sPlot) and the $\Omega^-_c \rightarrow \Omega^0_c \mu^- \tau^- X$ simulation. In all cases, good agreement is found. The lifetime measurement has also been performed using a simple subtraction of the Ω^0_c mass sidebands, and we find good agreement with the value obtained by the sPlot technique. The Ω^0_c decay-time distribution obtained from an independent and comparably sized data sample of semileptonic decays collected at 13 TeV center-of-mass energy has been examined, and the distribution is consistent with the one observed here. The procedure has also been checked using a sample of about 88,000 $B^- \rightarrow D^0(\rightarrow K^+K^0\pi^+\pi^-)\mu^-X$ decays to measure the D^0 meson lifetime. The obtained lifetime is consistent with the expected value within about one standard deviation. The analysis has also been carried out with either tighter PID or tighter BDT requirements, and the fitted Ω^0_c lifetime in each case is consistent with the value from the default fit.

A number of sources of systematic uncertainty on the measured ratio $r_{\Omega^0_c}$ have been investigated, and are summarized in Table 1. The decay time acceptance correction, $\beta(t_{\text{rec}})$, leads to an uncertainty of 0.5% on $r_{\Omega^0_c}$, which includes a contribution from the finite sample sizes and the choice of fit function.

Studies of the D^+ calibration mode show a small dependence of the β_0 parameter on the p_T and η of the H_c hadron. In the case that the p_T and η spectra in data and simulation differ, it could cause a shift in the average β_0. The uncertainty on $r_{\Omega^0_c}$ is obtained by taking into account the variation of β_0 in different p_T and η ranges, and the extent to which the p_T and η spectra may differ between data and simulation.

The world-average value of the Ω^-_c lifetime is $1.64^{+0.18}_{-0.17}$ ps [13], whereas the simulation uses 1.60 ps. To assess the potential impact on the Ω^0_c lifetime, we weight $f(t_{\text{rec}})$ to replicate an Ω^-_c lifetime of either 1.50 ps or 1.70 ps. The changes in $r_{\Omega^0_c}$ are assigned as a systematic uncertainty.

The decay-time resolution has been checked by comparing the D^0 decay-time spectra in $B^- \rightarrow D^0\pi^-$ decays, where no explicit requirement on the flight distance of the D^0 is applied. Negative decay times are entirely due to the decay-time resolution, and simulation is found to agree well with data. To assess a potential impact of a small difference in decay-time resolution between simulation and data, new Ω^-_c and D^+ signal templates are formed where the reconstructed decay time is smeared by an additional 15%, beyond what is produced by the full simulation. The fit is redone, and the difference in $r_{\Omega^0_c}$ from the nominal value is assigned as a systematic uncertainty.
Table 1: Summary of systematic uncertainties on the lifetime ratio, r_{Ω^0}, in units of 10^{-4}.

<table>
<thead>
<tr>
<th>Source</th>
<th>$r_{\Omega^0} \times 10^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decay-time acceptance</td>
<td>13</td>
</tr>
<tr>
<td>Ω_b^- prod. spectrum</td>
<td>3</td>
</tr>
<tr>
<td>Ω_b^- lifetime</td>
<td>4</td>
</tr>
<tr>
<td>Decay-time resolution</td>
<td>3</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>18</td>
</tr>
<tr>
<td>$H_c(\tau^-, D)$, random μ^-</td>
<td>8</td>
</tr>
<tr>
<td>Simulated sample size</td>
<td>98</td>
</tr>
<tr>
<td>Total systematic</td>
<td>101</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>230</td>
</tr>
</tbody>
</table>

The method for background subtraction uses the sPlot technique, which has some dependence on the choice of signal and background functions. To assess a potential systematic effect, the decay-time spectra are obtained using a sideband subtraction of the H_c mass spectra for both the signal and the normalization modes. The sideband-subtracted decay-time spectra are then fitted using the decay-time fit described above. The difference between this result and the nominal one is assigned as a systematic uncertainty.

The decay-time spectra in both $\Omega^0_c\mu^-$ and $D^+\mu^-$ samples, have small contributions from random combinations of H_c and μ^- candidates [(0.8 ± 0.2)% of the signal], as well as physics backgrounds where the μ^- comes from either a τ^- [(1.8 ± 0.3)%] or a SL D decay [(0.5 ± 0.2)%]. From simulation and data control samples, we find that the effective lifetimes of these backgrounds are within 10% of the true signal lifetime; this is due to the requirement that the muon candidate must form a good vertex with the H_c candidate. The impact on the Ω^0_c lifetime is evaluated using pseudoexperiments, where mixtures of these backgrounds (with different decay-time spectra) and signal decays are formed and fitted assuming a single lifetime for the sample. The difference in the mean value of r_{Ω^0} between the nominal fit, and that with the backgrounds added is assigned as the systematic uncertainty.

The systematic uncertainty due to the finite size of the simulated samples is assessed by repeating the fit to the data many times, where in each fit the simulated-template bin contents are fluctuated within their uncertainties. The standard deviation of the distribution of the fitted r_{Ω^0} values is assigned as a systematic uncertainty.

In summary, we use pp collision data samples at 7 TeV and 8 TeV center of mass energies, corresponding to 3.0 fb$^{-1}$ of integrated luminosity, to measure the lifetime of the Ω^0_c baryon. The measured ratio of lifetimes and absolute Ω^0_c lifetime are

$$\frac{\tau_{\Omega^0}}{\tau_{D^+}} = 0.258 \pm 0.023 \pm 0.010$$

$$\tau_{\Omega^0} = 268 \pm 24 \pm 10 \pm 2 \text{ fs},$$

where the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty in the D^+ lifetime [13]. The measured Ω^0_c lifetime is about four times larger than, and inconsistent with, the world average value of 69 ± 12 fs [13].
With this measurement, the lifetime hierarchy places the Ω_c^0 baryon as having the second largest lifetime after the Ξ_c^+ baryon,

$$\tau_{\Xi_c^+} > \tau_{\Omega_c^0} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0}.$$

The result presented here may suggest that the constructive Pauli interference is smaller than expected, that the spin of the ss system plays a larger role, or that additional or higher order contributions in the heavy quark expansion need to be considered.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); Herchel Smith Fund, the Royal Society, the English-Speaking Union and the Leverhulme Trust (United Kingdom); Laboratory Directed Research and Development program of LANL (USA).
References

Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
University of Chinese Academy of Sciences, Beijing, China, associated to
School of Physics and Technology, Wuhan University, Wuhan, China, associated to
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to
Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to
Institut für Physik, Universität Rostock, Rostock, Germany, associated to
INFN Sezione di Bologna, Bologna, Italy, Bologna, Italy
Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to
National Research Centre Kurchatov Institute, Moscow, Russia, associated to
National University of Science and Technology "MISIS", Moscow, Russia, associated to
National Research Tomsk Polytechnic University, Tomsk, Russia, associated to
Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, associated to
University of Michigan, Ann Arbor, United States, associated to
Los Alamos National Laboratory (LANL), Los Alamos, United States, associated to

Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Laboratoire Leprince-Ringuet, Palaiseau, France
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAEELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Vietnam
INFN Sezione di Bologna, Bologna, Italy
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Università degli Studi di Milano, Milano, Italy
Università di Urbino, Urbino, Italy
Università della Basilicata, Potenza, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Modena e Reggio Emilia, Modena, Italy
MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
Novosibirsk State University, Novosibirsk, Russia
National Research University Higher School of Economics, Moscow, Russia
Sezione INFN di Trieste, Trieste, Italy
Escuela Agrícola Panamericana, San Antonio de Oriente, Honduras
School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China
Physics and Micro Electronic College, Hunan University, Changsha City, China

Deceased