Investigation of Proton Induced Radiation Effects in 0.15 µm Antifuse FPGA

Vlad-Mihai PLACINTA¹,², Lucian Nicolae COJOCARIU¹, Florin MACIUC¹

1. Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering
2. University POLITEHNICA of Bucharest
Outline

- Introduction
- Radiation environment
- Device Under Test
- Setup
- Irradiation Results
- Summary & Conclusions
Introduction - LHCb Upgrade

- During the second LHC long shutdown (2019-2020) the entire LHCb detector will be upgraded to operate at higher luminosity;

- The LHCb RICH sub-detectors will be upgraded with a 40 times increased readout rate;

- For the Digital Boards an SRAM based FPGA from Kintex-7 family has been proposed as a main solution;

- An antifuse FPGA from Microsemi’s Axcelerator family has been proposed as a back-up solution;

- Device under test: AX250-FG484.

Radiation Environment

- FLUKA simulation --> Total Ionizing Dose (TID) and neutron equivalent for 50 fb^{-1};

- Worse case scenario values are expected in RICH 1 sub-detector, because of its position with respect to primary collision point;

- FPGA exposed to a maximum of 200 krad (2 kGy) over the Upgrade Phase I.

<table>
<thead>
<tr>
<th>Region</th>
<th>TID [krad]</th>
<th>Hadrons: >20 MeV [cm^{-2}]</th>
<th>Neutrons: 1 MeV n_{eq} [cm^{-2}]</th>
<th>Dose rate [rad/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICH 1</td>
<td>200</td>
<td>1.2×10^{12}</td>
<td>3×10^{12}</td>
<td>0.008**</td>
</tr>
</tbody>
</table>

** => assuming 7000 h of LHC operation over the entire Phase I.
Device Under Test

- **AX250-FG484:**
 - not a flip-chip device;
 - manufactured in 0.15 µm CMOS antifuse process technology;
 - 1408 R-Cells => dedicated Flip-Flops;
 - 2816 C-Cells => combinational cells;
 - 55.296 kb of embedded SRAM;
 - 248 user I/O pins organized in 8 I/O banks;
 - 4 hardwired clocks and 4 routed clocks;

- **Antifuse process:**
 - non-volatile => immune to configuration SEUs;
 - one time programmable;

- **Immune to SEL:**
 - no SEL up to LET = 120 MeV cm2/mg;
Setup

AX250 Test Board Features:
❖ Designed on 8 layers with 180 x 120 mm;
 ❑ Mostly because of the VHDCI connectors;

❖ 128 I/O pins corresponding to 2 MaPMTs are used for testing the I/O blocks with simulated trigger signals;
 ❑ The signals are hardware generated by pulling up or down each I/O pin using a passive switch;

❖ 2 types of clock network resources are routed out and only one was tested;
 ❑ HCLK=> hardwired clocks;

❖ Data is shifted in/out serialized;

❖ Optionally, the JTAG TAP controller and the device’s checksum number can be monitored.
Setup

Plugins: to simulate MaPMT triggers (passive)

Remote Voltage Feedback for Power Supplies

AX250-FG484 Test Board and its modules

Communication Plugin Module

Power Supply Connector (7 voltage rails)

JTAG & Checksum Monitor
Setup

- A custom DAQ system, FPGA based, has been designed to power, control and monitor the FPGA and its firmware activity over 5 meters of screened cables;

- 7 voltage rails were used to power up the FPGA;
 - Remote feedback was added on the each voltage rail;

- Two PT1000 sensors were used for DUT’s dice and environmental temperature monitoring;

- The DAQ system can be connected either via UART or TCP/IP Ethernet to a PC where a LabVIEW GUI controls and reads the DAQ;
 - Data is saved in ASCII files (40 Hz rate).
Setup

- The AX250 user logic has been running at 40 MHz, provided from the DAQ;
 - Hardwired clock was used;
- Hardware Flip-Flips (R-Cells) configured as a TMR architecture;
 - Optionally, a minority voter has been embedded to monitor and to detect single lane changes;
- “LHCb RICH like” firmware:
 - 128 inputs were read, packed and sent to the DAQ;
- Embedded SRAM readout firmware:
 - 38.76 kb of SRAM were read, packed and sent to the DAQ.

<table>
<thead>
<tr>
<th>Firmware</th>
<th>R-Cells</th>
<th>C-Cells</th>
<th>Embed. RAM</th>
<th>Clocks</th>
<th>IOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMR</td>
<td>846 (60 %)</td>
<td>2</td>
<td>0</td>
<td>HCLK (40 MHz)</td>
<td>5</td>
</tr>
<tr>
<td>LHCb RICH-like</td>
<td>326 (23 %)</td>
<td>124 (4 %)</td>
<td>0</td>
<td>HCLK (40 MHz)</td>
<td>135</td>
</tr>
<tr>
<td>SRAM</td>
<td>418 (30 %)</td>
<td>846 (30 %)</td>
<td>38.76 kb (70 %)</td>
<td>HCLK (40 MHz)</td>
<td>7</td>
</tr>
</tbody>
</table>
Setup

For SIRAD facility from Legnaro National Laboratories (Italy)
Irradiation Results

➢ We used 24 MeV protons from the SIRAD facility at INFN - Legnaro, Italy; (May, 2018)

➢ Average fluence per FPGA’s active layers: \(10^{13}\) to \(2.5 \times 10^{13}\) protons/cm\(^2\);

➢ Flux values between \(0.5 \times 10^8\) and \(5 \times 10^9\) protons/cm\(^2\)/s:

➢ TID delivered:
 ❖ 3.2 Mrad (Si) for 3 samples;
 ❖ 8 Mrad (Si) for one sample;
 ❖ 1.6 Mrad (Si) for one sample.

➢ 5 samples were irradiated in 2 days;
 ❖ 2 samples during 1\(^{st}\) day;
 ❖ 3 samples during 2\(^{nd}\) day;
 ❖ Annealing for 6 days + 1;

➢ Proton runs dose rate:
 ➢ between 130 rads/s and 360 rads/s;
 ➢ one run with 1 krad/s for one sample.
Irradiation Results

- No SEUs or SETs have been seen in the TMR logic;
 - 3 samples were tested for a fluence of 10^{13} particles/cm2;
 - the TMR architecture had 100% efficiency;

- 1 SEU and 2 SET events in the “LHCb RICH – like” firmware due to high dose rate (~ 1 krad/s) and high TID 8 Mrad (Si):
 - one sample was tested for a fluence of 2.5×10^{13} protons/cm2;
 - upper limit for SETs: 0.18×10^{-9} cm2/device;

- The embedded SRAM prove to be sensible to proton induced SEUs:
 - one sample was tested for a fluence of 5×10^{12} protons/cm2;
 - 3.6×10^{-14} cm2/bit (26% error);
 - 1.39×10^{-9} cm2/device (26% error);
 - Compared with the Kintex-7: ~ 0.7×10^{-14} cm2/bit (40% error);
 - Caveat, for antifuse we can apply TMR with 100% efficiency, if we use non-volatile resources;
Irradiation Results

➢ Up to 320 (±80) krad (Si) with an average dose rate of 154 rad/s we didn’t see any major current increase in the DUT’s power rails;

➢ However, when we moved to higher TID with or without higher dose rate, the current increasing starts to appear in all 7 power rails of the DUT:
 - the TID effects are more persistent in the main core power rail;
 - around 300 krad (Si) TID seems to be the threshold for the current increasing.

Core current increasing for 363 rad/s dose rate up to 3.2 Mrad (Si) TID

Core current vs TID for 363 rad/s dose rate up to 3.2 Mrad (Si) TID

Annealing of the core voltage after 3.2 Mrad (Si) TID
Irradiation Results

➢ The other power rails were also affected by the same TID effects:
 ❑ VCCDA => voltage rail for JTAG, I/O differential amplifiers and probes;
 ❑ VCCB01 => voltage rail for I/O Bank 0 & 1;
 ❑ VCCB23 => voltage rail for I/O Bank 2 & 3;

➢ While the dissipated power increased due to TID effects, the DUT’s DICE temperature increased with almost 12 degrees. (363 rad/s)

Current increasings in multiple power rails for 363 rad/s dose rate up to 3.2 Mrad (Si) TID
Irradiation Results

- One sample was irradiated with 1 krad/s up to 8 Mrad (Si) TID;
- We saw one SEU which froze the entire logic;
 - recovered with a power cycle;
- The current variations are correlated with the beam fluctuations;
- Very strong room-temperature annealing.
Irradiation Results

- Based on the measurements done with protons we are trying to parametrize the annealing curve of the device;
- After 10^{13} protons/cm2 at more than 20 MeV energy we have in 7-8 weeks complete annealing of the TID component;
- These fits are preliminary and still ongoing.
Irradiation Results

- We used 10 - 40 keV X-Rays from SIRAD X-Ray facility:
 - 2 samples were irradiated;
 - one with 13 runs of 30 minutes each at 100 rads/s => 180 krad/run;
 - TID => 2.3 Mrad (Si);
 - The TID proton induced effects were confirmed by the X-Ray runs;
Summary & Conclusions

- 7 boards with different firmware architectures were tested with protons and X-Rays;
 - 3 with TMR firmware, 1 with “LHCb RICH-like” firmware, and 1 with SRAM readout firmware with protons;
 - 1 with TMR firmware and 1 with “LHCb RICH-like” firmware with X-Rays;

- 1 board was tested up to 8 Mrad TID with protons:
 - For HL-LHC extrapolations, Upgrade Phase II (2 Mrad TID);

- The FPGA proved to be resilient to high dose rates and high TID up to 8 Mrad (Si);
 - Caveat, provided we show with our fit model that in realistic conditions the threshold is never reached;

- Very low error rates:
 - Except for 1 SEU, most of the logic SEUs were masked by the TMR architecture;

- High leakage current was seen in the DUT’s core power rail at high TID with very high dose rate, over 0.3 Mrad (Si);
Summary & Conclusions

❖ The current variations are correlated with the high dose rate and other environmental parameters;
 ❑ most fast changes are due to beam fluctuations and annealing;

❖ Annealing tests have been carried out after TID tests;
 ❑ very strong room-temperature annealing of the device;

❖ Due to small dose rate expected in LHCb sub-detectors, we expect this effect to be removed or to be orders of magnitude smaller;

❖ We will parametrize the rise and annealing curves and propagate/extrapolate the results to LHCb-RICH environment;

❖ Draw-backs:
 ❑ Small number of resources compared with SRAM-based FPGAs;
 ❑ Not a reconfigurable device => one time programming device.