Input Mezzanine Board for the Fast Tracker (FTK) at ATLAS

Takashi Mitani* on behalf of the ATLAS Collaboration
Waseda University,
3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan
E-mail: mitani.takashi@cern.ch

At LHC Run 2, which started operation in June 2015 at a center-of-mass energy of 13 TeV, the peak luminosity has exceeded $2 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$ and the LHC produce an average of 60 simultaneous collisions. The higher luminosity demands a more sophisticated trigger system with increased use of tracking information.

The Fast Tracker (FTK) is an integral part of trigger upgrade program for the ATLAS experiment. The FTK is a massively parallel hardware system using ASICs and FPGAs. It operates at the full Level-1 accepted rate of up to 100 kHz and provides full event track reconstruction for all tracks with $p_T > 1 \text{GeV}$ with an average latency below 100 μs. The FTK Input Mezzanine Board is the input interface of the FTK system which performs full reconstruction of all clusters in the ATLAS Inner Detector. This proceedings reports details of the functionality of the FTK Input Mezzanine Board and its status of the installation and commissioning.

Topical Workshop on Electronics for Particle Physics (TWEPP2018)
17-21 September 2018
Antwerp, Belgium

*Speaker.
1. Introduction

In the Large Hadron Collider (LHC) experiments, it is important to control trigger rate while keeping interesting physics events. ATLAS experiment [1] uses two-level trigger system, which consists of a hardware based Level-1 (L1) trigger and a CPU-based High Level Trigger (HLT). So far, the ATLAS trigger system has worked well and it has brought a lot of fruitful results such as the recent observation of $H \rightarrow b \bar{b}$ and $t \bar{t}H$ [2, 3]. To improve physics sensitivity, the luminosity of the LHC will become higher. It could accumulate more data, although it could cause multiple proton-proton interactions per bunch crossing, so called pile-up. As a result of the pile-up, signal and background separation becomes harder. Fine resolution tracking information is essential to identify signal and pile-up vertices. However, full event track reconstruction is prohibitively expensive in terms of processing resources.

The Fast Tracker (FTK) [4] is a newly installed hardware based tracking system with massively parallel processing. It is implemented between L1 and HLT as illustrated in Figure 1a. The FTK receives all hit information from the insertable b-layer (IBL [5]), the Pixel and the SemiConductor Tracker (SCT) with L1 accepted rate of up to 100 kHz, and provides all track information with $p_T > 1$ GeV at the beginning of HLT processing within $\sim 100 \mu$s. An architecture of the FTK system is shown in Figure 1b. This proceedings focuses on the FTK Input Mezzanine Board (IM) which are the input interface and the first processing stage of the FTK system.

![Figure 1: (a) An overview of the ATLAS trigger system. (b) An architecture of the FTK system [4].](image)

2. Functionality of the FTK Input Mezzanine Board

IMs receive the IBL, Pixel and SCT data from the ATLAS silicon read-out drivers (RODs) with around 100 million channel. Figure 2a shows the cross-section view of the ATLAS Inner Detector system. In total 128 IMs are required to manage all data from the RODs. Figure 2b shows the overview of the components and lines of IM. The IM functions are implemented in a mezzanine card of 12 layers with a size of $149 \text{mm} \times 74 \text{mm}$ which connects the Data Formatter (DF) motherboard with a High Pin Count FPGA Mezzanine Card (FMC) connector. The IM receives the ROD data with the rate of up to 2.0 Gbps by four SLINK optical fibers through four SFP+ connectors. To implement the IM functionality, two FPGAs are mounted on each IM. Each FPGA handles two input lines; the one from the IBL/ Pixel, the other from the SCT ROD. Each line processes the data
independently. Each FPGA is equipped with a 18 Mb external SRAM and a 32 Mb flash memory. Each FPGA is connected with DF by four fast GTP lines (3.1 Gbps) and 16 LVDS lines. For transmitting the output to DF, the FPGA uses LVDS lines with 200 MHz Double Data Rate (DDR). The IM slow control and monitoring system are built by the Inter Integrated Circuit (I2C) bus from DF. Power line with regulator and JTAG lines are connected with FMC connectors.

In the FPGA, a custom clustering algorithm [6] is implemented. The cluster finding logic starts with the first received hit. It defines the window (21 × 8 pixel size) with respect to the first hit position. On each clock, all the hits adjoining to the first hit are selected. Then all the selected hits are clustered and its size and center information are passed to DF. It reduces the size of input data and improves the accuracy of the hit position.

![Image](image1.png)

Figure 2: (a) The \(r-\phi\) cross-section view of the barrel region of the ATLAS Inner Detector. (b) An overview of the components and the lines of IM.

Figure 3 shows the photographs of the two types of IM, whose designs are the same except their FPGAs. The left one has Spartan-6 (XC6SLX150T) and the right one has Artix-7 (XC7A200T) FPGA. Because Artix-7 has more FPGA resources than Spartan-6, the IM with Artix-7 could be used for both the IBL and Pixel hit processing and the one with Spartan-6 could be used for the Pixel hit processing.

![Image](image2.png)

Figure 3: The photographs of IM. (a) Two Spartan-6 (XC6SLX150T) FPGAs are implemented. (b) Two Artix-7 (XC7A200T) FPGAs are implemented.

3. Status of Installation and Commissioning

The IM mass production and quality control tests are completed. The contents of the tests are visual checks, electrical checks, and bit-error-rate (BER) measurements. All produced IMs passed
the tests satisfying the ATLAS requirements of BER of 10^{-15}. Figure 4 shows the photograph after mass production of the IMs with Spartan-6.

Commissioning of the FTK system started from 2015. All IMs are mounted on DFs and they are installed in the ATLAS DAQ. The cabling with the IBL, Pixel and SCT ROD are completed. Figure 4 shows the photograph of IMs and DFs in the ATLAS DAQ. Real data taking of IM with the IBL, Pixel and SCT was established with input rate up to 100 kHz. Online configuration and monitoring tools for IM are implemented and used for commissioning. Dataflow tests with a slice of the FTK system are ongoing. In August 2018, it was succeeded to build dataflow throughout a slice of the FTK system and to send the 12-layer track information to the ATLAS Readout System. The next goal is to establish the dataflow stability of the entire system with high parallelization.

![IMs and DF boards](image1.png)

Figure 4: (a) Photograph after mass production of the IMs. (b) All IM and DF boards are installed in the ATLAS DAQ.

4. Further Improvements of the FTK Input Mezzanine Board

IM firmware was almost established after extensive dataflow tests with real data. To utilize the FPGA resources efficiently, the IM firmware was refactored keeping its functionality. Unnecessary functions were removed, which were only used for debugging during the firmware development, and the clock signals were carefully treated. All the firmware codes were reviewed by the SLAC engineers. In Figure 5, maps shows the FPGA resource utilization before and after firmware refactoring. The right map is colored depending on the IM functionality. Resources in the light blue and dark blue area are used by Pixel and SCT clustering, respectively. The ones in yellow area are used by the other functionality such as online configuration and monitoring. All functions are localized. Firmware refactoring improves readability and timing constraints and saves FPGA resources.

The remaining challenge is improvements of the clustering algorithm. Very occasionally, there are long sequential hits on both IBL and Pixel, which is due to beam-halo and delta ray by radiation damage. It takes long time to process clustering for these hits and dataflow could be stuck. Therefore such hits should be removed before clustering. To achieve this goal, the buffers are defined in the firmware which count the number of hits in each column and row of IBL and Pixel. If the number of hits in a column or a row exceeds the certain threshold, all hits in the column or row are...
removed. The processing time is reduced by this method and its effects to tracking performance are under investigation. In addition, the Time over Threshold information (ToT) in IBL and Pixel could be used for the clustering algorithm. Because ToT depends on particle energy deposition, it could distinguish the particle hit position from electric noises and improve the accuracy of the hit position.

5. Conclusion

In this proceedings the functionality and current development status of IM are described. IM is the input interface of the entire FTK system. The IM mass production and installation were completed. Dataflow tests with the entire FTK system are ongoing. Further improvements of IM are discussed. Dataflow with 25% of the entire system will be established in 2018 and will be upgraded during LHC shutdown from 2019 to 2020.

References

