NUCLEAR SHAPE STAGGERING IN VERY NEUTRON DEFICIENT Hg ISOTOPES DETECTED BY LASER SPECTROSCOPY

Institut für Physik, Universität Mainz, Germany
and
The ISOLDE Collaboration
CERN, Geneva, Switzerland

ABSTRACT
The isotope shift of $^{188}$Hg, $^{186}$Hg, and $^{184}$Hg in the 2537 Å line has been measured by use of a tunable dye laser at the on-line mass separator ISOLDE at CERN. The results are: $\text{IS}(^{188}\text{Hg} - ^{208}\text{Hg}) = 35.8(2) \text{ GHz}; \quad \text{IS}(^{186}\text{Hg} - ^{208}\text{Hg}) = 39.4(2) \text{ GHz}; \quad \text{and IS}(^{184}\text{Hg} - ^{208}\text{Hg}) = 43.1(2) \text{ GHz}$. These data combined with those obtained by β-RADOP on the odd Hg isotopes yield a huge odd-even staggering for $^{185}$Hg of $\gamma = 13(1)$ which has to be interpreted as nuclear shape staggering.

Geneva - 9 March 1977
(Submitted to Phys. Rev. Letters)

*) This publication comprises part of the thesis of T. Kühl.

**) On sabbatical leave from the Grinnell College, Grinnell, Iowa, USA.
A sharp onset of nuclear deformation of $\delta(g^2)_{^{185}/^{187}} = 0.054(5)$ has been discovered between $^{187}$Hg and $^{185}$Hg by measurements of the isotope shift (IS) with the $\beta$-RADOP technique ($\beta$ Radiation Detected Optical Pumping)\(^1\text{-}^3\). Hartree-Fock\(^4\) and Strutinski calculations\(^5\text{-}^7\) have interpreted this finding as transition from a slightly deformed oblate shape ($A \geq 187$) to a strongly deformed prolate shape ($A \leq 186$). Gamma spectroscopy of $^{188}$Hg\(^8,^9\), $^{186}$Hg\(^10\text{-}^12\), and $^{184}$Hg\(^13,^14\) has yielded evidence for a coexistence and crossing of two bands in these nuclei, one built on an almost spherical shape and one on a strongly deformed shape. The ground states have been found to belong to the vibrational band. Thus a strong odd-even staggering of the nuclear shape occurs in the light Hg isotopes. Recently, this staggering could be explained theoretically\(^15\text{-}^16\). However, a quantitative interpretation of the shape transition and of the shape staggering calls for a model-independent measurement of these effects by one and the same observable, e.g. by the change of the nuclear charge radius $\delta(r^2)$ as determined by IS experiments. Since RADOP fails in the case of $I = 0$ isotopes, purely optical techniques have to be used. Recently, an experiment on $^{190}$Hg was reported which made use of a tunable dye laser in order to measure the IS in the $6s^2 1S_0 - 6s6p 3P_1$, $\lambda = 2537$ Å transition\(^17\). The same technique has now been extended to the lighter even-even isotopes $^{188}$Hg, $^{186}$Hg, and $^{184}$Hg.

The experimental set-up will be recalled very briefly (for details see Ref. 17). The dye laser is pumped by a 400 kW pulsed nitrogen laser. Laser light in the ultraviolet is generated by frequency doubling in an ADP crystal. The laser beam passes a resonance cell, which is periodically filled with the isotope under investigation. Isotopically pure samples are obtained by the ISOLDE II facility\(^18\), which is an isotope separator on-line with the 600 MeV synchrocyclotron at CERN. The intensities of the mass-separated ion beam, as obtained in the actual experiment, are given in Table 1.

The IS of the spectral line $\lambda = 2537$ Å of the radioactive atoms in the resonance cell is measured by tuning the frequency of the laser over the Doppler-broadened absorption profile, and by observing the intensity of the fluorescence
light by means of a photomultiplier. Typical scanning patterns for $^{186}$Hg and $^{184}$Hg are shown in the upper parts of Figs. 1 and 2. In both cases the measurement took roughly 10 minutes, and about 10 sweeps of the frequency of the laser over the absorption line of the isotope under investigation were summed up. To obtain a calibration of the channel numbers in frequency units, the laser beam is sent through a second resonance cell containing stable even-even Hg isotopes and placed in the pole gaps of a magnet. Thus it is possible to shift the Zeeman components into the region of the signal of the unstable isotopes (lower parts of Figs. 1 and 2), and the IS is determined from the magnetic field values with the help of the known Landé factor.

The results are tabulated in column 4 of Table 1, which also includes the data on $^{190}$Hg (17). After correction for the mass shift $\delta\nu^AA'$, the remaining field shift between the isotopes with mass numbers $A$ and $A'$ can be expressed by a power series in the change of radial moments (3):

$$ IS^{AA'} - \delta\nu^AA' = \sum_k c_k^{AA'} \delta\langle r^2 \rangle^{AA'} $$

$$ = c_1^{AA'} \left\{ \delta\langle r^2 \rangle + \sum_{k=2}^{\infty} \frac{c_k^{AA'}}{c_1^{AA'}} \delta\langle r^{2k} \rangle \right\} = c_1^{AA'} \lambda^{AA'}, $$

where the radial moments higher than $\delta\langle r^2 \rangle$ contribute about -7% of $\delta\langle r^2 \rangle$ for the case of Hg (assuming spherical shape). The parameters $c_k/c_1$ have been computed by Seltzer (19). The parameter $c_1$ can be deduced from optical data, and for the pair $^{204}$Hg - $^{202}$Hg it is given by $c_1^{204}/2^{102} = -44.9(5.0)$ GHz/μm² (Ref. 3), where the slight dependence of $c_1$ on the mass number involved can be calculated by

$$ c_1^{AA'} = \left( (A + A')/(A'' + A''') \right)^{-0.125} c_1^{A''A'''} $$

The resulting values of $\lambda^{AA'}$ are given in column 5 of Table 1, and are plotted (see Fig. 3) versus mass number together with the data obtained earlier by classical optical spectroscopy and RADOP (20). Disregarding small irregularities, the even-even Hg isotopes and the odd ones with $A \geq 187$ follow an almost straight line from the nearly double magic nucleus $^{208}$Hg down to $^{184}$Hg, whereas the odd
isotopes $^{185}\text{Hg} - ^{181}\text{Hg}$ show an increase of $\langle r^2 \rangle$ of about 0.5 fm$^2$ in comparison with the neighbouring even isotopes. This is a very peculiar behaviour, unknown in other mass regions. The calculation of the staggering parameter yields

$$\gamma^{185} = \left(2 \cdot IS^{185/184}\right)/IS^{186/184} = 13(1), \tag{3}$$

which is an order of magnitude larger than normally observed, as, for example, in the case of the heavier Hg nuclei. There, the effect is explained as being associated with the zero point motion of quadrupole vibrations, which produce a mean square deformation $\beta^2$ greater for even than for odd isotopes$^{21}$. In the case of the Hg nuclei around $^{185}\text{Hg}$, the large odd-even staggering is caused by the coexistence of two different nuclear shapes which are energetically almost degenerated. Thus, small changes of the potential energy surface, by some few hundred keV, force the nucleus to stagger between the two minima. Energies of this magnitude are easily available because of the strong polarizing power of the $|521 \frac{1}{2}\rangle$ neutron. Indeed, the odd neutron in $^{181}\text{Hg}$, $^{183}\text{Hg}$, and $^{185}\text{Hg}$ belongs most probably to this state$^7$, as proved by the determination of the spin and the magnetic moment of these nuclei$^3$.

Changes in mean-square deformation from B(E2) measurements in the $6^+ \rightarrow 4^+$ and the $2^+ \rightarrow 0^+$ transition are listed in column 7 of Table 1$^{11,12}$. To compare these numbers with those of IS measurements, the dependence of $\langle r^2 \rangle$ on the deformation parameter has to be known. Using a simple two-parameter model as a first approximation$^3$, the change in deformation between the ground state of the even and that of the neighbouring, lighter, odd isotope can be calculated (column 6). Theoretical numbers are available only from the paper of Frauendorf and Pashkevich$^{15}$. However, they did not calculate the experimental quantity $\delta(r^2)$, but the less direct deformation parameter $\beta^2$ (column 8). All numbers are in good agreement.

Very recently, the band head of the deformed band of $^{184}\text{Hg}$ has been found$^{14}$. It decays by an electric monopole transition to the $0^+$ ground state with a decay energy $E_\gamma = 375$ keV and a lifetime of $\tau = 0.9(3)$ nsec. Since the E0 matrix element is (to a good approximation) an off-diagonal element of the $r^2$ operator, it represents the dynamic analogue to the field shift in atomic spectra. It is
remarkable that just in this exotic corner of the chart of nuclei, experimental
data from both sources are available and can hence be related for the first time
as shown below.

The transition probability is given by

\[ W(E0)_{i \rightarrow f} = \Omega_0^2 = \Omega(Z,E_f) \frac{(Z/R_0^2)}{(Z/R_0^2)} \left| \langle \phi_f | r^2 | \phi_i \rangle \right|^2 \]  

(4)

with \( R_0 = 1.2 \text{ A}^{1/3} \text{ fm} \) and \( \Omega(Z,E_f) \) tabulated in Ref. 23. As in Refs. 16 and 24, we
may write the two physical \( 0^+ \) wave functions as mixtures of the pure oblate and
prolate solutions

\[ \phi_i = a \psi_{\text{prol}} + b \psi_{\text{obl}} \quad \text{and} \quad \phi_f = b \psi_{\text{prol}} - a \psi_{\text{obl}}. \]  

(5)

From Eq. (5) follows immediately

\[ \langle r^2 \rangle_{fi} = (a^2 - b^2) \langle r^2 \rangle_{\text{obl,prol}} + ab \left( \langle r^2 \rangle_{\text{prol}} - \langle r^2 \rangle_{\text{obl}} \right). \]  

(6)

Neglecting terms in \( b^2 \), the difference \( \langle r^2 \rangle_{\text{prol}} - \langle r^2 \rangle_{\text{obl}} \) can be read from Fig. 3
as \( 0.5(\lambda_{204/185}^2 + \lambda_{204/185}^2) - \lambda_{204/184}^2 \). The non-diagonal matrix element \( \langle r^2 \rangle_{\text{obl,prol}} \)
is expected to be small because of the large difference in shape. This is just
the usual argument for shape isomerism. With \( \langle r^2 \rangle_{\text{obl,prol}} = 0 \) we obtain

\[ \rho = 0.9(1) \ b. \]  

(7)

The experimental value for \( \rho \) is \( 0.07^{+0.02}_{-0.01} \) (Ref. 14). Inserted into Eq. (7) it
yields

\[ b = 0.085(15), \]  

(8)

which is a quite accurate determination of such a small mixing parameter, provided
that the assumption of a negligible contribution of \( \langle r^2 \rangle_{\text{obl,prol}} \) to the E(0) tran-
sition is justified.

The extension of these measurements down to \(^{180}\text{Hg}\) might be made feasible by
improving experimental details. It could thus be determined whether the shape
staggering extends further, and where the nuclear shape becomes stabilized finally.
The authors are indebted to the members of the Nuclear Chemistry Group at CERN for their continuous support and hospitality. One of us (C.D.) was supported by a research grant from the North Atlantic Treaty Organization. This work was sponsored by the Bundesministerium für Forschung und Technologie and the Deutsche Forschungsgemeinschaft.
REFERENCES


2537 Å line of stable Hg isotopes was reported by R. Wallenstein and T.W. Hänsch in Opt. Commun. 4, 353 (1975).


20) For references, see Ref. 3.


22) E.L. Church and J. Weneser, Phys. Rev. 103, 1035 (1956).


Table 1
Data of neutron-deficient even-even Hg isotopes obtained by laser spectroscopy and B(E2) measurements, and comparison with theory

<table>
<thead>
<tr>
<th>$^\text{184}$Hg</th>
<th>$^\text{186}$Hg</th>
<th>$^\text{188}$Hg</th>
<th>$^\text{190}$Hg d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X$^\text{Hg}$</td>
<td>$T_{1/2}$ (sec)</td>
<td>Yield (ions/sec)</td>
<td>IS$^{204}$/X (GHz)</td>
</tr>
<tr>
<td>$^\text{184}$Hg</td>
<td>31 sec</td>
<td>$4 \times 10^7$</td>
<td>43.1(2)</td>
</tr>
<tr>
<td>$^\text{186}$Hg</td>
<td>1.4 min</td>
<td>$2 \times 10^8$</td>
<td>39.4(2)</td>
</tr>
<tr>
<td>$^\text{188}$Hg</td>
<td>3.3 min</td>
<td>$2 \times 10^8$</td>
<td>35.8(2)</td>
</tr>
<tr>
<td>$^\text{190}$Hg d)</td>
<td>20 min</td>
<td>$1 \times 10^9$</td>
<td>31.8(2)</td>
</tr>
</tbody>
</table>

a) Two different uncertainties are given. The first one includes only the error of the IS measurement (preceding column) and the uncertainty in the mass shift. The second one (quoted in wavy brackets) includes in addition the uncertainty of c$_1$.

b) Obtained by use of the relation $\delta(r^2) = (3/4\pi)R_0^2 \delta(\beta^2)$.

c) Frauendorf and Pashkevich, Ref. 15.

d) Duke et al., Ref. 17; by recent measurements the error could be reduced.
Figure captions

Fig. 1: Intensity of the fluorescent light in the $6s^2 \, ^1S_0 - 6s6p \, ^2P_1$, $\lambda = 2537 \, \AA$ line of $^{186}$Hg (upper part) and of the $\sigma^+$ Zeeman components of the even stable Hg isotopes in a magnetic field of 13.9 kG (lower part) versus the frequency of exciting laser light.

Fig. 2: Signal of $^{186}$Hg.

Fig. 3: Changes of charge radii of Hg isotopes relative to $^{204}$Hg, $\lambda = \delta(r^2) - 1.1 \times 10^{-3} \delta(r^4) + \ldots$. Full dots represent charge radii of ground states, and open circles indicate those of isomers. The statistical errors of $\lambda$ caused by the experimental uncertainty is given by the diameter of the symbols. An additional (scaling) error of 10% arises from the uncertainty of the electron density at the nucleus.
Fig. 2

184 Hg

INTENSITY / ARBITRARY UNITS

CHANNEL NUMBER

H = 15.0 KG

5 GHz

204

200

202

198