SPALLATION PRODUCED RADIOISOTOPES FOR
NUCLEAR MEDICAL APPLICATION

G.J. Beyer 1), A.F. Novgorodov 2), F. Roesch 1),2) and H.L. Ravn 3)

and the ISOLDE Collaboration, CERN, Geneva, Switzerland
(IS01-22)

SUMMARY

Spallation reaction opens new additional possibilities for production of a number of medical useful isotopes. In some cases all the present world demand is produced through spallation. Because of the high transmission of target materials for medium or high energy protons lower cross-sections may be more than compensated by using massive targets. The unspecific nuclear reaction as well as the radiochemical processing of such massive targets lead to several difficulties. New ways for processing of large spallation targets are required. The possibilities of modern ISOL-techniques (ISOL = Isotope Separator On-line) for the production of medical useful radioisotopes will be discussed in some detail. Corresponding cross-section data are reviewed and discussed in relation to physico-chemical data requirements. In detail the following radioisotopes will be discussed:

\[ ^{81}\text{Rb}, \hspace{1cm} ^{113}\text{Sr}, \hspace{1cm} ^{125}\text{I}, \hspace{1cm} ^{169}\text{Tm} \text{ and } ^{211}\text{At} \]

---

Paper presented at the IAEA Consultants Meeting on "Data Requirement for Medical Radio-Isotope Production"
Tokyo, 20-24 April 1987

submitted to
ISOTOPENPRAXIS

1) Central Institute for Nuclear Research Rossendorf, POB 19,
Desden 8051, GDR
2) Joint Institute for Nuclear Research Dubna, HPO-Box 79, Moscow, USSR
3) CERN EP/ISOLDE, CH-1211 GENEVA 23
INTRODUCTION

It is well known, that spallation reaction is the most convinient way to produce very neutron-deficient nuclei far from the line of beta-stability /1-3/. The use of intense beams of high energy protons has also been recognized and exploited for some time for the production of neutron deficient radio-isotopes for practical application /4-11/. The main advantage of beams in the 0.5 to 1 GeV range lies at present in high product output through an ability to penetrate and induce nuclear reactions in target materials having thicknesses on the order of hundreds grams per cm$^2$. The large number of target atoms can more than compensate for the generally low reaction cross sections (order of $10^{-36}$ m$^2$ or 10 mb) compared to the cross sections often associated with lower energy reactions used in more conventional ways for isotope production.

In interactions of high energy protons with heavy target elements three main types of nuclear reactions occur: spallation, fission and fragmentation (also fig.1 taken from /16/). For cross-section or yield calculations for the spallation still analytical methods based on the work of RUDSTAM /12/ are used. RUDSTAM observed, that the cross-section for isodispheric nuclei grow with increasing mass-number or oposit decreases homogeneously with growing mass deficit. Consequently he proposed an empirical exponential equation, which was than modified for special applications /13-15/.

Cross-sections for spallation reaction products have been discussed at the IAEA Consultants Meeting in Vienne, 13-15 April 1981 /20/. In general all measurements of spallation cross-sections fall within a factor of approximately 2 of the value predicted by RUDSTAM's empirical systematics /12/ which seems to be sufficient for the moment. Optimization of target- and separation techniques are of similar importance. It is the aim of this paper to discuss the production of medical isotopes via spallation as a complex problem of the nuclear reaction and chemical or physical principles of separation techniques.

The long range of the high energy protons permits the simultaneous irradiation of stacked thick targets as well as the use of a single massive target. The advantage is that several radioisotopes are available in both cases simultaneously. But this advantage is also an disadvantage because of the formation of isotopic impurities. This problem must be handled through optimized choices of irradiation and decay periods as demonstrated in the case of 123-I via 123-Xe /17,18/. The plethora of waste and by-product radioelements to be dealt with are other complicating factors. Nevertheless practically all the present world supply of 32-Sr and 67-Cu and good fractions of 127-Xe, 109-Cd and 68-Ge are produced via spallation reaction /5,7,11, 19/. It is our suggestion that new separation techniques could solve some of the problems and open possibilities to produce valuable spallation radioisotopes in a more sufficient way.
To-day new rapid separation methods based on thermochemical and physical principles allow radioactive nuclei of almost all elements to be continuously transferred from an accelerator irradiated target into an ion beam. These techniques often referred to as target ion-source system have in the last 20 years turned on-line mass separators into the most efficient tool for production and study not only of nuclei far from stability but radioactive nuclei in general /23/. The principle of such an ISOL-system is shown in fig.2. For more general information see /1-3/.

The production, transport and separation processes in such an integrated ISOL-system can be divided into the following main steps:

i. Formation of the products in interaction of an intense proton beam of around 700 MeV
ii. Diffusion of the product nuclei from the interior to the target surface
iii. Desorption from the surface
iv. Transport of the product to an ion-source
v. Ionization of the product
vi. Mass-separation of the products.

For a complete description of the processes we need to know about the following data (other than nuclear data):

- Diffusion coefficients
- Adsorption enthalpies
- Ionization behaviour.

HIGH TEMPERATURE DIFFUSION

The solution of the second FICK law

\[
\frac{dc}{dt} = D \times \frac{d^2c}{dx^2}
\]

(1)

\[
F(\%) = 100 - \frac{800}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \exp \left[ -\frac{(2n+1)^2 \pi^2 D t}{d^2} \right]
\]

(2)

describes the relation of fractional release (F) of a given nuclear reaction product, the diffusion coefficient (D) and the target-foil thickness (d) /24/. This equation (2) is applicable for the special sample conditions: foils or plates where the foil-thickness d is small compared to the length and width (\(d >> a \approx b\)) and with homogeneous distribution of the
diffusing particles throughout the matrix. The experimental value $F$ can be transformed into diffusion coefficients using the tables of ZIMEN/25/. The activation energy $E_a$ for the diffusion process can be obtained from an ARRHENIUS plot according equ.(3).

$$D = D_0 \exp \frac{E_a}{RT}$$

(3)

where $R$ is the gas-constant.

Systematical studies have been performed in the following manner: target foils of refractory metals were labelled homogeneously with radio tracers by irradiating them with 660 MeV protons. Samples of the irradiated foils were annealed in high vacuum at high temperatures. The samples were analyzed before and after heating by means of gamma-spectroscopy for determination of the fractional release of spallation reaction products. The results are published for the following target elements: Ti/26, 33/; Zr/26, 27/; Nb/28/; Mo/29/; Hf/30/; Ta/31/; W/32/; Re/33/; Ir/33/; Th/33/. For illustration a few results are presented in figs.3-6.

The diffusion release studies may be summarized in the following way:

i. In a given host metal of the IV B, V B or VI B group of the periodic table the diffusion coefficients for trace elements grow in the following sequence:

$$D_{Sr} < D_{Sr} < D_{Sr}.$$ 

For example Y diffuses faster than Sr, which is faster than Rb (see fig.3). The reason for this sequence is the decreasing radius of the diffusing particles.

ii. The diffusion coefficient for a given trace element decreases for different host metals in the following sequence:

$$D_{Zr} > D_{Nb} > D_{Mo}.$$ 

For example Y diffuses fastest in Zr and in Nb faster than in Mo. Compare figs.3 and 5. The reason for this effect is the growing lattice density of the host metals.

iii. In a given host metal the elements of one group of the periodic table diffuses according to growing atomic masses: Sr diffuses faster than Ba in Ta (see fig.6).

iv. From the systematical study one can evaluate, that all rare earth elements diffuse in metal matrixes as $M^{n-}$ ions, the II A-elements as $M^{n+}$, the alkaline elements as $M^+$ and the noble gases as neutrals (see fig.6 and fig.3).
In general one can conclude that solid phase diffusion processes very often are fast in order to use refractory metals as high temperature targets. A large number of other refractory materials such as metal oxides, borides, carbides as well as molten metals and alloys has been investigated to develop suitable targetsystems for ISOLDE (review papers see /61,60,44/).

**SURFACE EFFECTS**

In our release studies we found that in Ta the diffusion of the rare earth elements is more rapid than of Ba followed by Cs. For the desorption from the surface the sequence is reverse with Cs being fastest followed by Ba, lanthanoids and Hf. Thus in a Ta-powder target the rare earth elements will be delayed compared to Cs and Ba due to the large total surface. Consequently from a Ta-foil target with optimized foil thickness the rare earth elements will be released more rapidly because the surface is diminished. The surface adsorption behavior or in other therms the adsorption enthalpies play an important role in the release of nuclear reaction products from a target as well as for the transport of the products in the gas phase.

Desorption studies for rare earth elements have been performed in a similar way as the release studies /34/. Fig. 7 illustrates the possibilities to use differences in the adsorption enthalpies for thermochromatographic separations.

A systematical study of the adsorption of trace metals at metallic surfaces has recently been published by ROESCH and EICHLER /35/. The wide variation of the surface material, the composition of the used carrier gases, variation of the gas pressure and temperature opens the wide range of separation techniques starting from gas chromatography over gas thermochromatography and thermochromatography to vacuum thermochromatography.

**IONIZATION**

A selective ionization is a modern radiochemical separation technique. For the production of radioisotopes via spallation the following ion-source principles are suitable to be operated in an integrated target ion-source system:

1. Positive surface ionization ion-source with Ta-ionizer kept at 1300 K for selective ionization of the alkaline elements K, Rb, Cs and Fr /36/. The ionization efficiency is of the order of 90%.

2. Positive surface ionization ion-source with W-ionizer (or Re) at high temperatures (2700–3000 K) for ionizing the lanthanoids, In, Ga, Sc, Al, Ca, Sr, Ba, Li, Na and Tl. The ionization efficiency varies from a few % up to 80% /36, 37, 38/.
iii. Negative surface ionization ion-source with LaB$_6$-ionizer for selective ionization of Cl, Br, I and At. Ionization efficiencies of up to 40% have been obtained /36,39/.

iv. The plasma discharge ion-source with cooled line at 300 K and ionization temperatures around 1300 K is used for selective ionization of noble gases. Efficiencies achieved for He, Ar, Kr, Xe and Rn are 0.5%, 2%, 5%, 15%, 30% and 40% respectively /36/. A similar source with a cooled line kept at 700 K is used to ionize the volatile elements of the group IIB Zn, Cd and Hg with efficiencies of 10 – 60% /36/.

v. A high temperature version of the plasma discharge ion-source (line at 2200 K) is intended to ionize the less volatile elements from group IB, III, IV and V. This ion-source can be used in conjunction with CF$_4$ to form volatile fluorides of the mentioned elements /36/.

**Chemical Selectivity**

As mentioned the product mixture of a massive target irradiated with protons with $E_p$ 0.5 GeV is rather complex. The difficulties to handle such targets and product mixtures can be compared with the fission product mixture in isotope production plants only. Nevertheless chemical selectivity can be obtained using the above mentioned techniques by one or several of the following means:

1. Selective release from the target (Sr from Zr /40/).

2. Selective adsorption of unwanted species at suitable surfaces (selective release of Yb from Ta-powder /33/) or selective transport of the required product (52-Fe from Ni /41/).

3. Selective ionization

ISOL-TECHNIQUE FOR PRODUCTION OF MEDICAL ISOTOPES VIA SPALLATION

In this chapter we like to illustrate the possibilities of the discussed techniques for the production of some of the most important medical radioisotopes via spallation route.

81 Rb

Because of the short half-life there is no much sense to produce 81-Rb via spallation, but the isotope separator opens the way to produce a new type of 81-Rb-81m-Kr-generator. 81-Rb is best produced at ISOLDE using a Nb-powder target with yields of 3.8 x 10^{10} atoms per second for 1 µA proton beam current (fig.9 /44/). This production rate corresponds to 1.6 MBq/µA (or 20 mCi in 7.7 minutes collection time for 1 µA proton beam current). By implanting the 81-Rb\textsuperscript{+}-ions into mylar foils (or other plastic material like polyethylene etc.) an implantation type of 81-Rb-81m-Kr-generator is obtained. The 81m-Kr can be eluted nearly quantitatively by blowing air over the implanted Rb-source as well as by elution with isotonic saline solution suitable for direct infusion /43/. No 81m-Kr-elution will be achieved by using metallic foils as implantation backing. The 81-Rb break through is as low as in conventional 81-Rb-81m-Kr-generator systems. The implantation type generator could be realised of extremely small size since for an implantation density of 10^{12} atoms/cm\textsuperscript{2} less than 0.5 cm\textsuperscript{2} foil area is required to make a 800 MBq (20 mCi) generator.

82 Sr

Recently the complete problems about 82-Sr-82-Rb-generators have been published /45/. The cross-section for the formation of 82-Sr in Mo irradiated with 800 MeV protons is \((2.3 \pm 0.1) \times 10^{-26} \text{ m}^{2}\) (23 mb) and for 85-Sr \((4.8 \pm 0.7) \times 10^{-26} \text{ m}^{2}\) (43 mb) /46/ (tab.1). The radiochemical procedure has been modified several times /47,45,48/. High dose rates of the irradiated targets \((10^{-2} \text{ R/h in 1 cm distance}) /48/\), large amounts of process solutions and unsatisfied purity of the final 82-Sr-preparation were the main problems in the wet radiochemical process /48,49/. The isotopic byproduct 85-Sr remains still a serious problem. At EOB an average isotopic ratio 82/85-Sr of only 1.0 to 1.2 is obtained depending on irradiation time. During the clinical use of the generator the 85-Sr grows up to an excess of a few 100 % compared to the 82-Sr activity. It was already proposed to solve this problem by using an isotope separator /48/.

We recommend to use additional ISOL-target technique. From a 50 g/cm\textsuperscript{2} Sr-foil target (foil-thickness up to 0.5 mm) the Sr is released rather selective at 1750 K (fig.3). A high temperature surface ionization ion-source could give an ionization...
yield of better then 50%. At the collector of an isotope sepa-
rat or pure 82-Sr and 85-Sr could be collected. The cross-conta-
mination for routine practical use is almost less than 0.1 % in
this mass region. Recent studies at CERN demonstrated, that a
Sr-foil target could withstand a well focused proton beam of
100 \(\mu\text{A}/50\%\). It is expected to obtain \(10^{17}\) atoms 82-Sr per
1 \(\mu\text{A}\) or \(10^{16}\) Bq/1000 \(\mu\text{Ah}\) (10h, 100 \(\mu\text{A}\)). The advantage of
this technology is first the high isotopic purity, secondly
practically no liquid waste is produced. The disadvantage is
that no other product as 77-Br or 88-Y are available simul-
taneously from the same target.

123

I

Special interest was directed to the production of radio-
 Xenon via spallation /18,20,51/. It has been demonstrated, that
by optimized choice of irradiation and decay periods rather pure
123-I could be obtained. Also important was the possibility to
produce 125-I and 127-Xe simultaneously. From a 175 g CsCl-
target after 4 hour irradiation and 4 hour grow in period for
123-I via 123-Xe decay 850 mCi 123-I with 0.4 % 125-I contami-
nation is obtained /52/. The 127-Xe produced via spallation at
TRIUMF from a 0.8 cm thick CsCl-pellet contains 15 % of 129m-Xe
and 12 % 131m-Xe /11/. Cross-section data are summerized in
tab.1.

The 125-I contamination in spallation produced 123-I
preparations presently is higher than those for the (p,5n)-
production route. One possibility to solve this problem is the
application of ISOL-technique. From a molten La-target kept at
1770 K Cs is released fast and transported to a surface ioniza-
tion ion source /57,36/. This combination is highly selective
for Cs. The total efficiency is of the order of 80 - 90 %. The
Cs-yield curve is shown in fig 10 /44/. The yield as well as
the activity of the corresponding products are as follows:

<table>
<thead>
<tr>
<th>Cs-isotope</th>
<th>yield (\text{atoms}/\mu\text{A})</th>
<th>product</th>
<th>yield (\text{Bq/s})</th>
<th>yield (\text{mCi/h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-Cs</td>
<td>(5.0 \times 10^{15})</td>
<td>123-I</td>
<td>(7.3 \times 10^{5})</td>
<td>71</td>
</tr>
<tr>
<td>125-Cs</td>
<td>(1.1 \times 10^{14})</td>
<td>125-I</td>
<td>(1.4 \times 10^{8})</td>
<td>1.5</td>
</tr>
<tr>
<td>127-Cs</td>
<td>(1.3 \times 10^{14})</td>
<td>127-Xe</td>
<td>(2.9 \times 10^{8})</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Note that these activities are obtained for 1 \(\mu\text{A}\) proton beam
intensity only. The molten La-target of the given design could
withstand a beam current of 50 \(\mu\text{A}/50\%\). From this figures one
can easy estimate: the system is able to produce multi-Ci quan-
tities of 123-I and almost Ci-quantities of 125-I and 127-Xe
simultaneously within a few hours. The isotopic impurities are
determined from the mass-resolution of the isotope separator.
The 125-I contamination in the final 123-I preparation will be
of the order of \(10^{-7}\)\%.
The isotope 167-Tm is suitable for scintigraphic in vivo studies /59/. The best way to produce 167-Tm is via spallation reaction /58,59/. The most elegant way would be the application of ISOL-technique. As already mentioned a Ta-powder target give highly selective Yb-isotopes /60/, the other rare earth elements are discriminated by surface effects. A Ta-foil target connected to the same ion-source produces isobars of the rare earth elements /33/ (fig.11). The production rate for 167-Yb is $1.1 \times 10^7$ atoms/s and $\mu$A proton beam intensity. This gives an practical production yield for 167-Tm of approximately 1 mCi/$\mu$Ah. The Ta-foil target of the given design could be irradiated with 100 $\mu$A proton beam current /50/.

In similarity to 123-I the medical important 211-At (radionuclide therapy) can be produced with satisfactorily isotopic purity via the 211-Rn /62/. The cross-sections for the formation of 211-Rn as well as for 211-At from uranium are significant smaller than for thorium as target /65/ (tab.1). ISOL-technique can be used to produce 211-At via the mother-nuclide in a very elegant way. ThO- or ThC- targets /61/ are connected to a plasma discharge ion source with cold line /35/. Practical yield of nearly $10^5$ 211-Rn atoms per second and $\mu$A proton beam intensity have been obtained /61,36/.

Conclusions

1. Spallation reaction is a very suitable route for production of some medical radioisotopes. Because of the limited number of corresponding accelerators as well as because of the priority of experiments at such facilities a regular supply of shortlived isotopes like 81-Rb or 123-I produced in this way seems to be unrealistical. For longlived isotopes however a few production runs per year will be sufficient to organize a regular supply.

2. Stable impurities in the targetmaterial, isotopic impurities due to the lack of reaction selectivity, waste problems and others are the main complicating factors in radiochemical processing of large spallation targets. ISOL-techniques open new ways in spallation radioisotope production and application. Isotope separation technique itself is also useful to be applied in "classical" RI-production to improve the isotopical purity.

3. Modern physico-chemical data are of same relevance as nuclear data in radioisotope production. By knowing data for release, surface adsorption and ionization ISOL-technique is a suitable tool to determine simultaneously cross-sections.
<table>
<thead>
<tr>
<th>RADIO-NUCLIDE</th>
<th>TARGET</th>
<th>E&lt;sub&gt;r&lt;/sub&gt; (MeV)</th>
<th>CROSS-SECTION (10&lt;sup&gt;-40&lt;/sup&gt; m&lt;sup&gt;-1&lt;/sup&gt; = mb)</th>
<th>REF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>82-Sr</td>
<td>Zr</td>
<td>590</td>
<td>19 ± 4</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Nb</td>
<td>590</td>
<td>22 ± 4</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Mo</td>
<td>590</td>
<td>15 ± 3</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Mo</td>
<td>800</td>
<td>24.5 ± 0.8</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Mo</td>
<td>800</td>
<td>23 ± 1</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>RbBr</td>
<td>800</td>
<td>2.1 ± 0.2</td>
<td>54</td>
</tr>
<tr>
<td>85-Sr</td>
<td>Mo</td>
<td>800</td>
<td>48 ± 0.7</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Mo</td>
<td>800</td>
<td>50 ± 2</td>
<td>56</td>
</tr>
<tr>
<td>123-Xe</td>
<td>La/Cu</td>
<td>590</td>
<td>36 ± 5</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>La/Cu</td>
<td>590</td>
<td>45 ± 6</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>660</td>
<td>3.8 ± 0.4</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Cs</td>
<td>660</td>
<td>29.3 ± 1.7</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Ba</td>
<td>660</td>
<td>26 ± 4</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>La</td>
<td>660</td>
<td>31.9 ± 1.6</td>
<td>18</td>
</tr>
<tr>
<td>125-Xe</td>
<td>La/Cu</td>
<td>590</td>
<td>57 ± 9</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>La/Cu</td>
<td>590</td>
<td>43 ± 9</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>660</td>
<td>6.6 ± 0.5</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Cs</td>
<td>660</td>
<td>45 ± 0.5</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Ba</td>
<td>660</td>
<td>38 ± 6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>La</td>
<td>660</td>
<td>47.7 ± 3.9</td>
<td>18</td>
</tr>
<tr>
<td>127-Xe</td>
<td>La/Cu</td>
<td>590</td>
<td>53 ± 11</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>La/Cu</td>
<td>800</td>
<td>51 ± 7</td>
<td>56</td>
</tr>
<tr>
<td>123-I</td>
<td>La/Cu</td>
<td>590</td>
<td>57 ± 6</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>La/Cu</td>
<td>590</td>
<td>57 ± 9</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>La</td>
<td>800</td>
<td>51 ± 3</td>
<td>56</td>
</tr>
<tr>
<td>167-Tm</td>
<td>Lu</td>
<td>590</td>
<td>56 ± 6</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Hf</td>
<td>590</td>
<td>51 ± 10</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td>590</td>
<td>49 ± 7</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>590</td>
<td>49 ± 7</td>
<td>58</td>
</tr>
<tr>
<td>168-Tm</td>
<td>Lu</td>
<td>590</td>
<td>6 ± 1</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Hf</td>
<td>590</td>
<td>6 ± 2</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Ta</td>
<td>590</td>
<td>0.3 ± 0.4</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>590</td>
<td>0.4 ± 0.2</td>
<td>58</td>
</tr>
<tr>
<td>211-Rn</td>
<td>Th</td>
<td>660</td>
<td>13 ± 6</td>
<td>63</td>
</tr>
<tr>
<td>211-At</td>
<td>Th</td>
<td>660</td>
<td>18.2 ± 2.2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>660</td>
<td>5.2 ± 1.4</td>
<td>64</td>
</tr>
</tbody>
</table>

**Table 1** Review of spallation reaction cross-section data for the radioisotopes discussed in this paper. The proton energy was limited to the 500 MeV region.
FIGURE CAPTIONS

Fig. 1  Mass distribution for reaction products formed in interaction of Ta with protons of different energies (taken from /16/)

Fig. 2  The principle of on-line mass separation

Fig. 3  Release of some spallation reaction products from 0.1 mm thick Zr-foils irradiated with 660 MeV protons (release time 10 minutes) /26/

Fig. 4  ARRENIUS-plot for the diffusion of Sr in polycrystalline Zr /26/

Fig. 5  Release of Y from Mo-foils of different thickness irradiated with 660 MeV protons (annealing time 5 minutes) /29/

Fig. 6  Diffusion coefficients of spallation reaction products in polycrystalline Ta (lower part) in comparison with the atomic and ionic radii of the diffusing particles (upper part). Ta-foils of 0.1 cm thickness were irradiated with 660 MeV protons. The diffusion coefficients were determined for the indicated elements simultaneously from release studies: the annealing temperature was 2750 K, annealing time 300 s. No significant differences in the diffusion behaviour of the rare earth elements has been observed, they all diffuse faster then Sr and Ba.

Fig. 7  Thermochromatographical separation of carrier free rare earth radioisotopes in vacuum. The rare earth radio nuclides are formed in spallation reaction by irradiating a Hf-target (1) with 660 MeV protons. The Hf-target was inserted into a Mo-crucible (1) equipped with a thermochromatographic Ta-tube (5). The crucible containing the target was heated to 2170 K by electron bombardment (2). All rare earth radioisotopes are released and adsorbed according their adsorption energies along the Ta-tube. Even age annealing time was 10 Minutes /30.34/.
Fig. 8  Scheme of target ion source system for the case of a surface ionization ion source. In addition the extraction electrode is shown fixed to the acceleration chamber. (taken from /44/)

Fig. 9  Yield curve for the production of Rb-isotopes at ISOLDE from a 50 g/cm$^2$ Nb-powder target taken from /44/.

Fig. 10  Yield curve for the production of Cs-isotopes from a 140 g/cm$^2$ molten La target and a 1.0 uA 660 MeV proton beam in 1 second (taken from /44/).

Fig. 11  Production yields of lanthanoid isotopes from a 122 g/cm$^2$ Ta-foil target connected to a positive surface ionizer. Individual measurement points are not indicated. (taken from /33/)
Fig. 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Rubidium (37-1)

Date : 14.6.85
Target material : Niobium powder
Ion source : Ta-surface ionization
Target thickness: 50 g/cm²
Projectile : 600 MeV protons
Caesium (55-1)

Date : 16.10.78
Target material : Molten lanthanum
Ion source : Ta-surface ionization
Target thickness: 140 g/cm²
Projectile : 600 MeV protons

Fig. 10
Fig. 11

Production yield (at/s)

Mass number

Rare earths from Ta-foil
REFERENCES

1. HANSEN P.G., O.B.NIELSEN (eds.)
   Proc. 4th Int. Conf. on Nuclei far from Stability,

2. RAVN H.L., E.KUGLER, S.SUNDELL (eds.)
   Proc. 10th Intern. Conf. on Electromagnetic Isotope
   Separators and Techniques Related to their Application
   (special issue)

3. CRAWFORD J., J.M.D'AURIA (eds.)
   Proc. TRIUMF-ISOL Workshop, Mont Gabriel (Quebec) 1984

4. O'BRIEN H.A. "Status of the Los Alamos Physics Facility
   For Radionuclide Production" Sci. Sem. of Nucl.Med.,
   DHEW Publication 74-8012 (FDA) 14-19, U.S.Gov.Printing
   Office 1973

5. BRADBURY J.N. "Biomedical application of medium energy
   particle beams at LAMPF", LA-UR 78-2755,

6. O'BRIEN H.A., A.E.OGARD, P.M.GRANT "Radioisotopes from
   a medium energy accelerator: The Clinton P.Anderson
   Meson Physics Radioisotope Programe" LA-Report 74-1263

7. RICHARDS P. "Status of the BLIP Facility for Radionuclide
   Production" Sci. Sem. of Nucl. Med.,
   DHEW Publication 74-8012 (FDA) 22-26, U.S. Gov. Printing
   Office, 1973

8. PATE, B.D. "Medical Radioisotope Production at TRIUMF"
   Proc. 27th Conf. on Remote System Tech.,
   Am.Nucl.Soc. (1979) 283-284

9. STRANG L.G. "The Brookhaven Linac Isotope Pducers"
   Progr.Nucl.Med. 4(1978) 34

10. BURGERJON J.J., B.D.PATE, R.E.BBAY, E.G.PAGE, J.LENZ,
    B.T.TREVETTI, A.D.WILSON "The TRIUMF 500 MeV, 100 \mu\AA
    Isotope Production Facility" Proc.27th Conf. on Remote

11. ROBERTSON R., D.GRAHAM, I.C.TRAVENA "Radioisotope
    Production via 500 MeV Proton-induced Reactions"
    Third Int.Smp. on Radiopharmaceutical Chemistry,
    Juelich (FRG) 1982

12. RUDSTAM G. "Systematics of spallation yield"
    Z.Naturforschung 21a(1966) 1027
13. Lavrukhina A.K., R.I. Kuznetsova 
JINR 6-4756 Dubna 1969, pp.125 (in Russian)

14. Rupp E., T. Fenés "Cross-sections for the formation of 
spallation products using 660 MeV protons" (in Russian) 
JINR 6-4998, Dubna 1970

15. Schilacci M.E. LASL Report MPD70/ME5-1, 1970

16. Trabitzsch U., K. Baechmann "Die Wechselwirkung von 
hochenergetischen Protonen mit Ta-Kernen" 
Radiochimica Acta 16(1971)15

17. Huzar I., E. Loepfe "Production of Cyclotron Isotopes 
for Medical Purpose at SIN/EIR" 
Physics Report No.3, p.139 (1981), Swiss Inst. for 
Nucl. Res. Villigen, Switzerland

Kuznetsova, Ju.V. Norceev, V.I. Pominykh, N.G. Zaitseva 
"123-I production from radio-xenon formed in spallation 
reaction by 660 MeV protons for medical research" 

19. Hoffman C.D. 
"Isotope and Nuclear Chemical Division, Annual Report 
H.A. Lindberg LA-10130 PR Progress Report UC-4 May 1984

20. O'Brien Jr. H.A. "Tables of spallation cross-sections" 
Paper presented to the IAEA Consultants Meeting on 
Nuclear Data for Medical Radioisotope Production held 
in Vienna, 13-15 April 1981


23. Ravn H.L. "Radioactive Ion-beams available at on-line 
Mass Separators" 
Proc. 11th Int. Conference on Electromagnetic Isotope 
Separators and Techniques related to Their Application 
Los Alamos, N.M. 18-22 August 1986

24. Berrer R.M. "Diffusion in and through solids" 
Cambridge 1941

25. Zimen K.E. "Tabellen zur Auswertung der Messungen der 
Diffusion radioaktiver Gase" HMI-B 16 (1962)

Spallations-Produkte in polykristallinem B-Zr und B-Ti" 
ZfK-320 Rossendorf 1977
27. NOVGORODOV A.F., BEYER G.J., A.S.KOVALEV
"Trace-diffusion of spallation products in poly-
cristalline β-Zirconium" (in Russian)
JINR 6-12113 Dubna 1979

28. BEYER G.J., A.F.NOVGORODOV "Tracer Diffusion einiger
Kernreaktionsprodukte in polykristallinem Niobium"
ZfK-311 Rossendorf 1976
Radiochem.Radioanal.Leters 27(1976)341-352

29. BEYER G.J., A.F.NOVGORODOV "Tracer Diffusion einiger
Spallationsnukleide in polykristallinem Molybdaen"
ZfK-317 Rossendorf 1976

30. BEYER G.J., A.F.NOVGORODOV "Tracer Diffusion einiger
Kernreaktionsprodukte in Hafnium-Metal"
ZfK-303 Rossendorf 1976

31. BEYER G.J., W.D.FROMM, A.F.NOVGORODOV "Trace diffusion
of different nuclear reaction products in poly-
cristalline Tantalum"
ZfK-309 Rossendorf 1976
Nucl.Instrum.Methods 146(1977)419-430

32. BEYER G.J., A.F.NOVGORODOV "Tracer Diffusion einiger
Kernreaktionsprodukte in Wolfram"
ZfK-310 Rossendorf 1976

33. BJORNSTAD T., E.HAGEBO, P.HOFF, O.C.JONSSON, E.KUGLER,
H.L.RAVN, S.SUNDELL, B.VOSICKI
"Recent developments of high temperature metal targets
for ISOLDE"
CERN-EP/86-130 sept.1986
Proc.11th Int.Conference on Electromagnetic Isotope
Separators and Techniques related to Their Application
Los Alamos, N.M. 18-22 August 1986

34. BEYER G.J., A.F.NOVGORODOV "Thermische Desorption
traegerfreier Radionuclide der Seltenen von poly-
cristallinen Ta-Oberflaechen"
ZfK-305 Rossendorf 1976
JINR P6-9917 Dubna 1976 (in Russian)

35. ROESCH F., B.EICHLER "Adsorption von Metallen auf
metallischen Oberflaechen und Moglichkeiten ihrer
Nutzung in der Kernchemie"
ZfK-606 Rossendorf 1986 (ISSN 0138-2950)

36. BJORNSTAD T., E.HAGEBO, P.HOFF, O.C.JONSSON, E.KUGLER,
H.L.RAVN, S.SUNDELL, B.VOSICKI "Methods for production of intense beams of unstable nuclei: New developments
at ISOLDE"
37. BEYER G.J., E.HERRMANN, A.PIOTROVSKI, V.I.RAIKO, 
   H.TYRROFF "A new method for rare earth isotope separa-

38. KIRCHNER R., O.KLEPPER, D.SCHARDT, T.SEKINE
   "Ion source development for the GSI on-line isotope separa-
   tor" GSI-86-30 Preprint Aug.1986
   KIRCHNER R. "An ion-source with bunched beam release"
   GSI-86-28 PREPRINT Aug.1986

39. VOSICKI B., T.BJØRNSTAD, L.C.CARRAS, J.HEINEMEIER,

40. BEYER G.J., O.KNOTEK, J.JUSCHKEVICH, M.JACHIM,
    A.F.NOVGORODOV "Selektive Gewinnung kurzlebiger neu-
    tronendetektierter Nuklide des Y, Sr und Rb bei Verwen-
    dung von Mo bzw. Zr als on-line Festkoerper target" 
    ZfK-332 Rossendorf 1977

41. NOVGORODOV A.F., A.KOLOCHKOISKI, NGUEN KONG TCHANG,
    A.ZELINSKI, M.KASKEVICH "High temperature release of 
    some spallation products from Ni" 
    JINR P6-85-41 Dubna 1985

42. BEYER G.J., A.F.NOVGORODOV, A.KOVALEV, F.PRAZAK,
    V.A.KHALKIN, Yu.V.YUSHKEVICH "Fast isobaric separations
    at the collector of ISOL-facilities" 

43. BEYER G.J., H.L.RAVN, Y.HUANG "A new type of 81-Rb-
    81m-Kr-generator for medical use" 

44. KLUGE H.J. (ed.)
    "CERN USERS GUIDE"
    CERN 86-05 Juli 1986. to be published as CERN-report

45. WATERS S.L., B.M.COURSEY (eds.)
    "The Strontium-82-Rubidium-82 Generator"

46. GRANT P.M., B.R.ERDAL, H.A.O'BRIEN Jr.
    "Medium energy spallation cross section 
    2Mo-irradiation with 800 MeV Protons"

47. GRANT P.M., H.A.O'BRIEN, M.KAHN
    J.Inorg.Nucl.Chem. 37 (1975) 413

48. HARLOCK F.L., J.C.CLARK, I.W.GOODIER, J.W.BARNES,
    G.E.BENTLEY, P.M.GRANT, H.A.O'BRIEN
    "The preparation of a rubidium-82-radionuclide 
    generator" J. Radioanal.Chem. 64 (1981) 257-265


60. RAVN H.L. "Experiments with secondary beams of radioactive ions" Phys.Rev. **54**(1979)201


62. LAMBRECHT R.M. "Radionuclide Generators" Radiochimica Acta **34**(1983)9

63. Yu.V.NORSEEV, S.SUCZ, V.A.KHALKIN, F.ROESCH to be published

64. KHALKIN V.A., E.HERRMANN. Yu.V.NORSEEV, R.DREYER Chemikerzeitung **101**(1977)470