Evidence for the production of three massive vector bosons with the ATLAS detector

The ATLAS Collaboration

A search for the production of three massive vector bosons in proton–proton collisions is performed using data at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in the years 2015–2017, corresponding to an integrated luminosity of 79.8 fb$^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW \rightarrow \ell\nu\ell\nu q\bar{q}g$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW \rightarrow \ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ \rightarrow \ell\nu\ell\ell$. Finally, events with four leptons are analysed to search for $WWZ \rightarrow \ell\nu\ell\ell$ and $WZZ \rightarrow q\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.

© 2019 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
1 Introduction

The joint production of three vector bosons is a rare process in the Standard Model (SM). Studies of triboson production can test the non-Abelian gauge structure of the SM theory and any deviations from the SM prediction would provide hints of new physics at higher energy scales [1–4]. Triboson production has been studied at the Large Hadron Collider (LHC) using proton–proton (pp) collision data taken at $\sqrt{s} = 8$ TeV for processes such as $\gamma\gamma\gamma$ [5], $W\gamma\gamma$ [6, 7], $Z\gamma\gamma$ [7, 8], $WW\gamma$ and $WZ\gamma$ [9, 10], and $WWW$ [11].

This letter presents the first evidence for the joint production of three massive vector bosons in pp collisions using the dataset collected with the ATLAS detector between 2015 and 2017 at $\sqrt{s} = 13$ TeV. At leading order (LO) in quantum chromodynamics (QCD), the production of three massive vector bosons ($VVV$, with $V = W, Z$) can proceed via the radiation of each vector boson from a fermion, from an associated boson production with an intermediate boson ($W, Z/\gamma^* \text{ or } H$) decaying into two vector bosons, or from a quartic gauge coupling vertex. Representative Feynman diagrams are shown in Figure 1.

![Feynman Diagrams](image_url)

Figure 1: Representative Feynman diagrams at LO for the production of three massive vector bosons, including diagrams sensitive to triple and quartic gauge couplings.

Two dedicated searches are performed, one for the $W^+W^-W^\mp$ (denoted as WWW) process and one for the $W^+W^-Z$ (denoted as WWZ) and $W^+ZZ$ (denoted as WZZ) processes. To search for the WWW process, events with two same-sign leptons with at least two jets resulting from $WWW \rightarrow \ell\nu\nu q\bar{q}$ ($\ell = e, \mu$, including $\tau \rightarrow \ell\nu\nu$) or three leptons resulting from $WWW \rightarrow \ell\nu\nu\nu q\bar{q}$ are considered and are hereafter referred to as the $\ell\nu\nu q\bar{q}$ and $\ell\nu\nu\nu q\bar{q}$ channels, respectively. To search for the WWZ and WZZ (denoted as WVZ) processes, events with three or four leptons resulting from $WVZ \rightarrow \ell\nu q\bar{q}\ell\ell$, $WWZ \rightarrow \ell\nu\nu\nu q\bar{q}\ell\ell$, and $WZZ \rightarrow q\bar{q}ll\ell\ell$ are used. Selection criteria are chosen in order to ensure there is no overlap between different channels. A discriminant that maximises the sensitivity to the VVV signal is defined in each channel. The discriminants are combined using a binned maximum-likelihood fit, which allows the signal yield and the background normalisations to be extracted. The combined observable is the signal strength parameter $\mu$ defined as the ratio of the measured $VVV$ cross section to its SM expectation.

2 The ATLAS detector, data and simulation samples

The ATLAS detector [12–14] is a multi-purpose particle detector comprised of an inner detector (ID) surrounded by a 2T superconducting solenoid, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS) with one barrel and two endcap air-core toroids. The ID consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker, and covers $|\eta| < 2.5$ in pseudorapidity. The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. The MS provides muon

---

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the $z$-axis along the beam pipe. The $x$-axis points from the IP to the centre of the LHC ring, and the $y$-axis points...
triggering capability for $|\eta| < 2.4$ and muon identification and measurement for $|\eta| < 2.7$. A two-level trigger system [15], using custom hardware followed by a software-based trigger level, is used to reduce the event rate to an average of around 1 kHz for offline storage.

The data used were collected between 2015 and 2017 in $pp$ collisions at $\sqrt{s} = 13$ TeV. Only events recorded with a fully operational detector and stable beams are included. Candidate events are selected by single isolated-lepton ($e$ or $\mu$) triggers with transverse momentum thresholds varying from $p_T = 20$ GeV to 26 GeV (depending on the lepton flavour and run period) or single-lepton triggers with thresholds of $p_T = 50$ GeV for muons and $p_T = 60$ GeV for electrons. The resulting total integrated luminosity is 79.8 fb$^{-1}$.

Signal and background processes were simulated with several Monte Carlo (MC) event generators, while the ATLAS detector response was modelled [16] with GEANT4 [17]. The effect of multiple $pp$ interactions in the same and neighbouring bunch crossings (pile-up) was included by overlaying minimum-bias events simulated with PYTHIA 8.186 [18] interfaced to EVTGEN 1.2.0 [19], referred to as PYTHIA 8.1 in the following, and using the A3 [20] set of tuned MC parameters, on each generated event in all samples. Triboson signal events were generated using SHERPA 2.2.2 [21–23] with the NNPDF3.0NNLO [24] parton distribution function (PDF) set, where all three bosons are on-mass-shell, using a factorised approach [25]. Events with off-mass-shell bosons through $WH \rightarrow WVV^*$ and $ZH \rightarrow ZVV^*$ were generated using POWHEG-BOX 2 [26–31] interfaced to PYTHIA 8.1 for the WWW analysis, while for the WVZ analysis only PYTHIA 8.1 was used. The generator was interfaced to the CT10 [32] (NNPDF2.3LO [33]) PDF and the AZNLO [34] (A14 [35]) set of tuned MC parameters for the WWW (WVZ) analysis. Both on-mass-shell and off-mass-shell processes were generated at next-to-leading order (NLO) QCD accuracy [36–39] and are included in the signal definition. The expected cross sections for WWW and WVZ production are 0.50 pb and 0.29 pb, respectively, with an uncertainty of $\sim 10\%$, evaluated by varying parameters in the simulation related to the factorisation and renormalisation scales, parton shower and PDF sets.

Diboson ($WW$, $WZ$, $ZZ$) [25] and single boson ($W/Z$+jets) [40] production, as well as electroweak production of $W^\pm W^\mp + 2$ jets, $WZ + 2$ jets, and $ZZ + 2$ jets, were modelled using SHERPA 2.2.2 with the NNPDF3.0NNLO PDF set. In order to improve the agreement between the simulated and observed jet multiplicity distributions for the $WZ \rightarrow t\ell\ell$ and $ZZ \rightarrow \ell\ell\ell\ell$ events, a jet-multiplicity based reweighting was applied to the simulated $WZ$ and $ZZ$ samples. Top-quark pair events ($tt$) were generated using POWHEG-BOX 2 [41] interfaced to PYTHIA 8.230 [42] interfaced to EVTGEN 1.6.0. The NNPDF3.0NNLO PDF set was used for the matrix-element calculation, while the NNPDF2.3LO PDF set was used for the showering with the A14 set of tuned parameters. Other background processes containing top quarks ($t\bar{t}Z$, $t\bar{t}W$, $t\bar{t}W$, $t\bar{t}W$, $t\bar{t}H$, $t\bar{t}t\bar{t}$, $t\bar{t}WW$, and $t\bar{t}WH$) were generated with MADGRAPH5_aMC@NLO [43] interfaced to PYTHIA 8.

3 Object definitions and selection criteria

Selected events are required to contain at least one reconstructed primary vertex. If more than one vertex is found, the vertex with the largest $p_T^2$ sum of associated ID tracks is selected as the primary vertex.
Electrons are reconstructed as energy clusters in the EM calorimeter that are matched to tracks found in the ID. Muons are reconstructed by combining tracks reconstructed in the ID with tracks or track segments found in the MS. Leptons need to satisfy \( p_T > 15 \text{ GeV} \) and have \( |\eta| < 2.47 \) for electrons (electrons within the transition region between the barrel and endcap calorimeters, \( 1.37 < |\eta| < 1.52 \), are excluded) and \( |\eta| < 2.5 \) for muons. Leptons are required to be consistent with originating from the primary vertex by imposing requirements on the transverse impact parameter, \( d_0 \), its uncertainty, \( \sigma_{d_0} \), the longitudinal impact parameter, \( z_0 \), and the polar angle \( \theta \). These requirements are \( |d_0|/\sigma_{d_0} < 5 \) and \( |z_0 \times \sin \theta| < 0.5 \text{ mm} \) for electrons, and \( |d_0|/\sigma_{d_0} < 3 \) and \( |z_0 \times \sin \theta| < 0.5 \text{ mm} \) for muons. Leptons are required to pass certain identification quality requirements and to be isolated from other particles in both the calorimeters and the ID. Electrons have to satisfy the likelihood-based “Tight” quality definition and pass the “Fix (Loose)” isolation requirement [44]. For the WWW (WVZ) analysis, Muons are required to pass the “Medium” (“Loose”) identification criteria and the “Gradient” (“FixedCutLoose”) isolation requirement [45]. These requirements are more restrictive in the WWW analysis because a larger contamination from jets misidentified as leptons or leptons from hadron decays (including \( b \)- and \( c \)-hadron decays), referred to as “non-prompt” leptons in the following, is expected.

In order to reject leptons likely to be originating from heavy-flavour decays, leptons also have to pass a requirement on a dedicated boosted decision tree (BDT), termed “non-prompt lepton BDT” [46]. In addition, electrons have to pass the “charge misidentification suppression BDT” [44] to reject electrons likely to have the electric charge wrongly measured.

The non-prompt lepton BDT uses isolation and \( b \)-tagging information derived from energy deposits and tracks in a cone around the lepton direction. The charge misidentification suppression BDT uses the electron track impact parameter, the track curvature significance, the cluster width and the quality of the matching between the cluster and its associated track. Leptons passing all requirements listed above are referred to as “nominal” leptons.

Jets are reconstructed from calibrated topological clusters built from energy deposits in the calorimeter [47] using the anti-\( k_T \) algorithm with a radius parameter of 0.4 [48, 49] and calibrated using the techniques described in Ref. [50]. Jet candidates are required to have \( p_T > 20 \text{ GeV} \) and \( |\eta| < 2.5 \). To reject jets likely to be arising from pile-up collisions, an additional criterion using the jet vertex tagger [51] discriminant is applied for jets with \( p_T < 60 \text{ GeV} \) and \( |\eta| < 2.4 \). Jets containing \( b \)-hadrons (\( b \)-jets) are identified by a multivariate discriminant combining information from algorithms using secondary vertices reconstructed within the jet and track impact parameters [52, 53], with an efficiency of 85% (70%) for the WWW (WVZ) analysis.

The missing transverse momentum, whose magnitude is denoted \( E_T^{\text{miss}} \), is defined as the negative vector sum of the \( p_T \) of all reconstructed and calibrated objects in the event. This sum includes a term to account for the energy from low-momentum particles that are not associated with any of the selected objects, and is calculated from ID tracks matched to the reconstructed primary vertex in the event [54]. The sum also includes jets with \( |\eta| > 2.5 \) and \( p_T > 30 \text{ GeV} \).

The object reconstruction and identification algorithms do not always result in unambiguous identifications. An overlap removal algorithm is therefore applied. Electrons sharing a track with any muons are removed. Any jet within \( \Delta R < 0.2 \) of an electron is removed and electrons within \( \Delta R < 0.4 \) of any remaining jets are removed. Jets with less than three associated tracks and within \( \Delta R < 0.2 \) of a muon are removed, and muons within \( \Delta R < 0.4 \) of any of the remaining jets are removed.

At least one reconstructed “trigger” lepton with a minimum \( p_T \) is required to match within \( \Delta R < 0.15 \) a lepton with the same flavour reconstructed by the trigger algorithm. The thresholds for the trigger (other)
leptons are 27 GeV (20 GeV) for the WWW analysis, and from 21 GeV to 27 GeV (15 GeV), depending on the run period and lepton flavour, for the WVZ analysis.

4 Analysis targeting WWW

The experimental signature of the $\ell\ell vqq$ process is the presence of two same-sign leptons, $E_T^{\text{miss}}$, and two jets. The signature of the $\ell\ell\ell v$ process is the presence of three leptons and $E_T^{\text{miss}}$. To reduce the background contributions from processes that have more than two (three) leptons in the $\ell\ell vqq$ ($\ell\ell\ell v$) channel a “veto lepton” definition is introduced. Compared with the nominal lepton selection criteria described in Section 3, the veto lepton $p_T$ threshold is lowered to 7 GeV, and the isolation, non-prompt lepton BDT, charge misidentification suppression BDT, and impact parameter requirements are removed. For veto electrons, the likelihood-based Loose identification definition [44] is used. For veto muons, the Loose identification definition [45] is used, and the pseudorapidity range is extended to $|\eta| < 2.7$.

To select $\ell\ell vqq$ candidates, events are required to have exactly two nominal leptons with $p_T > 20$ GeV and the same electric charge, at least two jets, and no identified $b$-jets. Four regions are considered, based on the lepton flavour, namely $e\mu$, $e\mu$, $\mu\mu$, and $\mu\mu$, where $e\mu$ denotes the highest-$p_T$ (leading) lepton being an electron, while $\mu\mu$ denotes the leading lepton being a muon. Events with an additional veto lepton are removed. The invariant mass of the dilepton system is required to be in the range $40 < m_{\ell\ell} < 400$ GeV.

The upper mass limit reduces the contribution from the $WZ+\text{jets}$ process. The leading (sub-leading) jet must have $p_T > 30$ (20) GeV and $|\eta| < 2.5$. The dijet system is required to have $m_{jj} < 300$ GeV and $|\Delta\eta_{jj}| < 1.5$, where $m_{jj}$ is the dijet invariant mass and $\Delta\eta_{jj}$ is the pseudorapidity separation between the two jets. The cuts applied on the dijet system mainly reduce the contributions from the same-sign WW vector boson scattering process. Additionally, in the $ee$ final state, $E_T^{\text{miss}}$ is required to be above 55 GeV and $m_{e\ell}$ must satisfy $|m_{e\ell} - 90\text{ GeV}| > 10$ GeV, to reduce contamination from $Z \rightarrow ee$ where the charge of one electron is misidentified. The $m_{e\ell}$ cut is not applied in the $e\mu$ final state, since the muon charge misidentification rate is found to be negligible, nor is it applied in the $e\mu$ and $\mu\mu$ final states, where the contamination from $Z$ events is small.

To select $\ell\ell\ell v$ candidates, events are required to have exactly three nominal leptons with $p_T > 20$ GeV and no identified $b$-jets. Events with an additional veto lepton are removed. To reduce the contribution from the $WW \rightarrow \ell\ell\ell v$ process, events are required to have no same-flavour opposite-sign (SFOS) lepton pairs, and thus only $\mu^+ e^- e^-$ and $e^+ \mu^- \mu^-$ events are selected.

A major background originates from the $WZ+\text{jets} \rightarrow \ell\ell\ell+\text{jets}$ process, contributing to the $\ell\ell vqq$ channel when one lepton is not reconstructed or identified, or to the $\ell\ell\ell v$ channel, when a $Z$ boson decays into a pair of $\tau$ leptons both of which decay to an electron or muon.

Simulation is used to estimate this background. The $WZ+\text{jets}$ modelling is tested in a $WZ$-dominated validation region defined by selecting events with exactly three nominal leptons with one SFOS lepton pair. In addition, events are required to have no $b$-jets reconstructed, $E_T^{\text{miss}} > 55$ GeV and the trilepton invariant mass $m_{\ell\ell\ell} > 110$ GeV. Data and simulation agree in this validation region, as shown in Figure 2(a) for the leading lepton $p_T$ distribution.

Contributions from SM processes that produce at least one non-prompt lepton are estimated using a data-driven method as described in Ref. [55] by introducing “fake” leptons. The definitions of nominal and fake leptons are mutually exclusive. Fake electrons have to satisfy the likelihood-based Medium [44] but fail the Tight identification, and the isolation, non-prompt lepton BDT and charge misidentification
suppression BDT requirements are removed. Fake muons have the impact parameter requirements loosened to $|d_0|/\sigma_{d_0} < 10$, and both isolation and non-prompt lepton BDT requirements are removed. Additionally, they have to fail the nominal muon definition. Simulation shows that the $t\bar{t}$ process is the dominant contributor of events with fake leptons, with more than 90% in the $\ell\nu\ell\nu qq$ channel and more than 95% in the $\ell\nu\ell\nu$ channel originating from this process. Events containing one (two) nominal lepton(s) and one fake lepton with $p_T > 20$ GeV are scaled by a “fake factor” to predict the non-prompt lepton background contribution in the $\ell\nu\nu qq$ ($\ell\nu\nu\ell\nu$) channel. The fake factor is the ratio of the number of non-prompt leptons passing the nominal lepton criteria over the number passing the fake lepton criteria. Its value is derived from two $t\bar{t}$-enriched regions selected with two or three leptons (no SFOS lepton pairs) and exactly one $b$-jet. One of the same-sign leptons passes either nominal or fake lepton criteria, while the other lepton(s) must pass the nominal lepton criteria.

Events resulting from the $V\gamma jj$ production can pass the $ee$, $e\mu$ and $\mu e$ signal selection criteria if the photon is misreconstructed as an electron. This contribution (referred to as “$\gamma$ conv.”) is evaluated using a data-driven method similar to the non-prompt lepton background evaluation by introducing “photon-like” electrons. A photon-like electron is an object reconstructed like a nominal electron except that the track has no hit in the innermost layer of the pixel detector and the non-prompt lepton BDT and charge misidentification suppression BDT requirements are not applied. The photon fake factor is determined in two regions selected with two nominal muons, no $b$-jets, and one nominal or photon-like electron. The trilepton invariant mass is required to satisfy $|m_{e\mu\mu} - 90$ GeV$| < 10$ GeV. Most of these events contain a $Z \rightarrow \mu\mu$ decay, where one muon radiates a photon, which is misreconstructed as an electron.
The charge misidentification background originates from processes that produce oppositely-charged prompt leptons where one lepton’s charge is misidentified and results in final states with two same-sign leptons. The background is estimated using a data-driven technique as described in Ref. [11].

All $\ell vlvqg$ candidates with $|m_{jj} - 85 \text{ GeV}| > 20 \text{ GeV}$ (denoted as the “W sideband” region) are used to validate the modelling of different backgrounds described above. Data and prediction agree, as shown in Figure 2(b) for the leading jet $p_T$ distribution.

5 Analysis targeting WWZ and WZZ

The experimental signature of the $WVZ \rightarrow \ell vqq\ell\ell$, $WWZ \rightarrow \ell vlv\ell\ell$, and $WZZ \rightarrow qql\ell\ell\ell$ processes is the presence of three or four charged leptons. In order to increase the signal acceptance, “loose” leptons are defined in addition to nominal leptons, the latter being a subset of the former. Loose leptons have both the isolation and non-prompt lepton BDT requirements removed. In addition, loose electrons are required to pass the likelihood-based Loose identification definition and the charge misidentification suppression BDT requirement is removed.

Six regions are defined with either three or four loose leptons, sensitive to triboson final states containing $Z$ bosons. Among all possible SFOS lepton pairs, the one with $m_{\ell\ell}$ closest to $m_Z$ is defined as the $Z$ candidate. In all regions, the presence of such a $Z$ candidate with $|m_{\ell\ell} - m_Z| < 10 \text{ GeV}$, is required. Furthermore, any SFOS lepton pair combination is required to have a minimum invariant mass of $m_{\ell\ell} > 12 \text{ GeV}$. Events with $b$-tagged jets are vetoed.

For the three-lepton channel, the lepton which is not part of the $Z$ candidate is required to be a nominal lepton. The scalar sum of the transverse momenta of all leptons and jets ($H_T$) is required to be larger than 200 GeV. This significantly reduces the contribution of the $Z \rightarrow \ell\ell$ processes with one additional non-prompt lepton. Three regions are defined according to the number of jets in the event: one jet (3$\ell$-1j), two jets (3$\ell$-2j), and at least three jets (3$\ell$-3j).

For the four-lepton channel, the third and fourth leading leptons are required to be nominal leptons. The two leptons which are not part of the $Z$ candidate definition are required to have opposite charges. They are used to define three regions, depending on whether they are different-flavour (4$\ell$-DF), or same-flavour and their mass lies within a window of 10 GeV around the $Z$ boson mass (4$\ell$-SF-Z) or their mass is outside this window (4$\ell$-SF-noZ).

In each of the six regions the distribution of a dedicated boosted-decision-tree discriminant, separating the $WVZ$ signal from the dominating diboson background, is fed as input to the binned maximum-likelihood fit to extract the signal. For the three-lepton channels, 13, 15, and 12 input variables are used for the 3$\ell$-1j, 3$\ell$-2j, and 3$\ell$-3j final states, respectively. The variables are chosen from a list of discriminating variables, like the trilepton invariant mass, the invariant mass of different lepton or jet pairs, the leptons’ and jets’ $p_T$, the number of reconstructed jets, the scalar sum of all leptons’ or jets’ $p_T$, $E_T^\text{miss}$, $H_T$ and the invariant mass of all leptons, jets and $E_T^\text{miss}$. For the four-lepton channels, six input variables are used for each of the 4$\ell$-DF, 4$\ell$-SF-Z and 4$\ell$-SF-noZ final states. These variables are chosen from the following list: $E_T^\text{miss}$, $H_T$, the scalar sum of all leptons’ $p_T$, the invariant masses of lepton pairs, the four-lepton invariant mass, the number of reconstructed jets, and the scalar sum of all jets’ $p_T$.

Due to the required presence of nominal leptons in the three- and four-lepton channels, backgrounds with a $Z$ boson and non-prompt leptons are reduced. The remaining backgrounds are dominated by processes...
with prompt leptons and thus all backgrounds are estimated using simulation. The $WZ$+jets and $Z$+jets backgrounds are validated in a region defined in the same way as the $3\ell$-1j region, with the exception that no requirement on $H_T$ is applied, the third-highest-$p_T$ lepton is required to have a small transverse momentum ($10\text{ GeV} < p_T < 15\text{ GeV}$), and the invariant mass of the three leptons has to be smaller than 150 GeV. Data and expectation agree in the $3\ell$-1j validation region, as shown in Figure 3(a) for the transverse momentum distribution of the third-highest-$p_T$ lepton.

The $t\bar{t}Z$ background is determined in a region defined like the $3\ell$-3j region with the exception that no requirement on $H_T$ is applied, and at least four jets are required, of which at least two are $b$-tagged. This region is included as a single-bin control region (CR) in the fit model, outlined in Section 6. Data and expectation agree, as shown in Figure 3(b) for the $t\bar{t}Z$ control region.

Figure 3: Data compared with expectations for (a) the transverse momentum of the third-highest-$p_T$ lepton in the $3\ell$-1j region with the additional requirement $m_{\ell\ell\ell} < 150\text{ GeV}$, no requirement on $H_T$, and including the $10\text{ GeV} < p_T < 15\text{ GeV}$ validation region and (b) the number of jets in the $t\bar{t}Z$ control region. The contributions denoted "Other" are dominated by (a) the $tZ$ and VH processes, where the Higgs boson does not decay to two massive bosons, and (b) the $tZ$ process. Predictions from simulation are scaled to the integrated luminosity of the data using the theoretical cross sections of each sample. The hatched area represents the statistical uncertainty in the prediction due to the limited number of simulated events. The last bin contains the overflow. The bottom panel displays the ratio of data to the total prediction.

6 Signal extraction and combination

The WWW, WWZ and WZZ regions are combined using the profile likelihood method described in Ref. [56] based on a simultaneous fit to distributions in the signal regions and the background control regions. A total of eleven signal regions are considered: four regions ($ee$, $e\mu$, $\mu e$, and $\mu\mu$) for the $\ell\nu\ell\nu q\bar{q}$ channel, one region ($\mu e e$ and $e\mu\mu$ combined) for the $\ell\nu\ell\nu\nu$ channel, three regions ($3\ell$-1j, $3\ell$-2j, and $3\ell$-3j) for the $WVZ$ three-lepton channel, and three regions ($4\ell$-DF, $4\ell$-SF-Z, and $4\ell$-SF-noZ) for the $WVZ$
four-lepton channel. One control region is considered: the $t\bar{t}Z$ control region described in Section 5. The distributions used in the fit are the $m_{jj}$ distributions for the $\ell\nu\ell\nu qq$ channel and the BDT distributions for the $WVZ$ three-lepton and four-lepton channels. The number of selected events in the $\ell\nu\ell\nu$ channel and the $t\bar{t}Z$ control region are each included as a single bin in the fit. In total, 186 bins are used in the combined fit.

A binned likelihood function $L(\mu, \theta)$ is constructed as a product of Poisson probability terms over all bins considered. This likelihood function depends on the signal-strength parameter $\mu$, a multiplicative factor that scales the number of expected signal events, and $\theta$, a set of nuisance parameters that encode the effect of systematic uncertainties of the signal and background expectations. The nuisance parameters are implemented in the likelihood function as Gaussian, log-normal or Poisson constraints. The same value for $\mu$ is assumed for the on- and off-mass-shell $WWW$, $WWZ$ and $WZZ$ processes. Correlations of systematic uncertainties arising from common sources are maintained across processes and channels.

Experimental uncertainties are related to the lepton trigger, reconstruction and identification efficiencies [44, 45], lepton isolation criteria [57], lepton energy (momentum) scale and resolution [45, 58], jet energy scale and resolution [50], jet vertex tagging [51, 59], $b$-tagging [53], modelling of pile-up and missing transverse momentum [54], and integrated luminosity [60, 61]. Nuisance parameters related to these uncertainties are treated as correlated between all channels.

For each of the background processes evaluated using simulation, a nuisance parameter representing its normalisation uncertainty is included. The following prior uncertainties in the normalisations are assumed: 20% for $WZ$ and $ZZ$; 40% for $Z$+jets, 10% [62] for $WtZ$, 30% [63, 64] for $tZ$, 11% [65] for $t\bar{t}Z$, and 30% for $VH$ not producing three massive bosons. For dominant backgrounds from the $WZ$ and $ZZ$ processes, the simultaneous fit model has the power to constrain their normalisations at the $\sim 5\%$ level, independently of the assumed prior. In addition, shape-only variations for backgrounds from the $WZ$ and $ZZ$ processes are derived from alternative samples, generated using POWHEG [66] with PYTHIA 8 for the parton shower to account for differences in the modelling of diboson production and showering. Shape variations due to renormalisation and factorisation scales are also considered for these two processes. The prior uncertainties assumed for $Z$+jets and $VH$ cover the observed data/simulation agreement in validation regions, and the calculations in Ref. [65], respectively. The impact of these uncertainties on the measurement is small.

Uncertainties in data-driven background evaluations mainly come from statistical and systematic uncertainties in the charge misidentification rate, lepton fake factor, and photon-like electron scale factor. Additional uncertainties come from the statistical uncertainties of the subsamples used to extrapolate the background evaluations to the signal region. Nuisance parameters are treated as correlated for backgrounds evaluated using the same method and from the same systematic sources.

Shape-only variations of the signal distributions due to QCD factorisation and renormalisation scales, PDF, and parton-shower matching scales are considered in the simultaneous fit. The corresponding nuisance parameters are treated as correlated between the $\ell\nu\nu qq$ and $\ell\nu\nu$ channels in the $WWW$ analysis and between three-lepton and four-lepton channels in the $WVZ$ analysis. These parameters are treated as uncorrelated between the $WWW$ and $WVZ$ analyses.

Tables 1 and 2 show the post-fit background, signal and observed yields for the signal regions and the background control region for the $WWW$ and $WVZ$ analysis, respectively. Contributions from SM processes producing the same detector signature as events in these signal regions (or the $t\bar{t}Z$ control region) besides those listed are combined into “Other”. The uncertainties shown include both statistical and systematic uncertainties. Data and predictions agree in all channels.
Table 1: Post-fit background, signal and observed yields for the $\ell\nu\ell\nu$ channels. Uncertainties of the predictions include both statistical and systematic uncertainties added in quadrature; correlations among systematic uncertainties are taken into account in the calculation of the total.

<table>
<thead>
<tr>
<th></th>
<th>ee</th>
<th>e\mu</th>
<th>\mu e</th>
<th>\mu\mu</th>
<th>$\text{ee}+\text{e}\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>10.7±2.9</td>
<td>28±8</td>
<td>25±7</td>
<td>33±9</td>
<td>16±4</td>
</tr>
<tr>
<td>WZ</td>
<td>35.4±2.2</td>
<td>116±6</td>
<td>91±5</td>
<td>114±6</td>
<td>8.2±0.9</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.46±0.08</td>
<td>5.11±0.26</td>
<td>3.44±0.19</td>
<td>4.18±0.26</td>
<td>0.69±0.07</td>
</tr>
<tr>
<td>Non-prompt</td>
<td>6.4±2.8</td>
<td>36±5</td>
<td>20±10</td>
<td>41±9</td>
<td>10.1±1.7</td>
</tr>
<tr>
<td>$\gamma$ conv.</td>
<td>21.3±3.1</td>
<td>36±5</td>
<td>78±8</td>
<td>–</td>
<td>1.1±0.6</td>
</tr>
<tr>
<td>Other</td>
<td>11.5±0.9</td>
<td>22.5±1.5</td>
<td>17.3±1.2</td>
<td>21.5±1.4</td>
<td>3.6±0.4</td>
</tr>
<tr>
<td>Total</td>
<td>86±5</td>
<td>243±9</td>
<td>236±12</td>
<td>212±9</td>
<td>40±4</td>
</tr>
<tr>
<td>Data</td>
<td>87</td>
<td>239</td>
<td>235</td>
<td>237</td>
<td>27</td>
</tr>
</tbody>
</table>

Table 2: Post-fit background, signal and observed yields for the three-lepton and four-lepton channels as well as the $t\bar{t}Z$ control region in the WVZ analysis. Uncertainties of the predictions include both statistical and systematic uncertainties added in quadrature; correlations among systematic uncertainties are taken into account in the calculation of the total.

<table>
<thead>
<tr>
<th></th>
<th>4\ell-DF</th>
<th>4\ell-SF-Z</th>
<th>4\ell-SF-noZ</th>
<th>3\ell-1j</th>
<th>3\ell-2j</th>
<th>3\ell-3j</th>
<th>$t\bar{t}Z$ CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>WVZ</td>
<td>7.8±2.3</td>
<td>4.1±1.1</td>
<td>8.6±2.5</td>
<td>51±14</td>
<td>69±19</td>
<td>69±19</td>
<td>–</td>
</tr>
<tr>
<td>WZ</td>
<td>1.17±0.14</td>
<td>–</td>
<td>1.09±0.15</td>
<td>2600±70</td>
<td>1870±50</td>
<td>1140±40</td>
<td>5.6±0.4</td>
</tr>
<tr>
<td>ZZ</td>
<td>6.5±0.4</td>
<td>935±27</td>
<td>311±9</td>
<td>342±12</td>
<td>181±12</td>
<td>98±11</td>
<td>0.57±0.06</td>
</tr>
<tr>
<td>$t\bar{t}Z$</td>
<td>5.1±0.5</td>
<td>0.55±0.08</td>
<td>4.5±0.4</td>
<td>7.9±0.9</td>
<td>22.9±2.2</td>
<td>81±8</td>
<td>122±9</td>
</tr>
<tr>
<td>$tWZ$</td>
<td>1.9±0.4</td>
<td>0.23±0.10</td>
<td>1.60±0.35</td>
<td>4.3±0.9</td>
<td>11.3±2.2</td>
<td>20±4</td>
<td>10.2±0.8</td>
</tr>
<tr>
<td>Non-prompt</td>
<td>–</td>
<td>–</td>
<td>0.18±0.12</td>
<td>120±50</td>
<td>73±27</td>
<td>52±22</td>
<td>0.50±0.18</td>
</tr>
<tr>
<td>$\gamma$ conv.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>42±8</td>
<td>32±7</td>
<td>9.2±3.4</td>
<td>0.4±0.6</td>
</tr>
<tr>
<td>Other</td>
<td>0.4±0.4</td>
<td>1.7±1.1</td>
<td>1.0±0.7</td>
<td>198±15</td>
<td>179±15</td>
<td>120±9</td>
<td>23.9±2.5</td>
</tr>
<tr>
<td>Total</td>
<td>22.9±2.4</td>
<td>942±27</td>
<td>328±10</td>
<td>3360±60</td>
<td>2440±40</td>
<td>1592±34</td>
<td>163±10</td>
</tr>
<tr>
<td>Data</td>
<td>28</td>
<td>912</td>
<td>360</td>
<td>3351</td>
<td>2438</td>
<td>1572</td>
<td>170</td>
</tr>
</tbody>
</table>

Figure 4 shows the comparison between data and post-fit prediction of the combined $m_{ll}$ distribution for the $\ell\ell\nu q q$ channel, the number of selected events for the $\ell\ell\nu \ell\nu$ channel, and the BDT output distributions in the 3$\ell$-2j and 4$\ell$-DF regions for the WVZ analysis. The 3$\ell$-2j and 4$\ell$-DF regions are chosen since they have the best sensitivity among the three-lepton and four-lepton channels. Data and predictions agree in all distributions.

Figure 5(a) and Table 3 show the observed best-fit value of the signal strength and the observed and expected significances with respect to the background-only hypothesis, respectively. Results are shown for the WWW and WVZ channels separately, fixing the other signal to its SM expectation, and combined. For the fits of the WWW channels, the WZ control region defined in Section 4 is also used in the fit. The inclusion of the WZ control region helps constraining the overall normalisation of the WZ+jets background. However, when combined with the WVZ channels, the three WZ three-lepton signal regions provide a similar constraint on the WZ+jets background normalisation and thus the WZ control region is not included in the simultaneous fit. The combined best-fit signal strength for the VVV process, obtained by the fit to the eleven signal regions and one control region is 1.38$^{+0.39}_{-0.37}$ with respect to the SM prediction (Section 2). The compatibility of the individual signal strengths is 0.06, evaluated by repeating the fit, assuming individual
Figure 4: Post-fit distribution of (a) $m_{jj}$, for the WWW $\rightarrow \ell\nu\ell\nu qq$ analysis ($ee$, $e\mu$, $\mu e$, $\mu\mu$ combined), (b) number of events for the WWW $\rightarrow \ell\nu\ell\nu$ analysis, and the BDT response in the (c) 3$\ell$-2j and (d) 4$\ell$-DF channels for the WVZ analysis. The contributions denoted “Other” are dominated by the (a) $W^\pm W^\mp +2$jets, (b) $t\bar{t}W$ and (c) $tZ$ process, respectively. The uncertainty band includes both statistical and systematic uncertainties as obtained by the fit.
Table 3: Observed and expected significances with respect to the SM background-only hypothesis for the four $VVV$ channels entering the fit. The observed significance is not quoted if the best-fit value of $\mu$ is negative.

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>Significance</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW combined</td>
<td>3.3$\sigma$</td>
<td>2.4$\sigma$</td>
<td></td>
</tr>
<tr>
<td>WWW $\rightarrow \ell\nu\ell\nu$</td>
<td>4.3$\sigma$</td>
<td>1.7$\sigma$</td>
<td></td>
</tr>
<tr>
<td>WWW $\rightarrow \ell\nu\ell\nu$</td>
<td>1.0$\sigma$</td>
<td>2.0$\sigma$</td>
<td></td>
</tr>
<tr>
<td>WVZ combined</td>
<td>2.9$\sigma$</td>
<td>2.0$\sigma$</td>
<td></td>
</tr>
<tr>
<td>WVZ $\rightarrow \ell\nu\ell\ell$</td>
<td>–</td>
<td>1.0$\sigma$</td>
<td></td>
</tr>
<tr>
<td>WVZ $\rightarrow \ell\nu\ell\ell/qq\ell\ell$</td>
<td>3.5$\sigma$</td>
<td>1.8$\sigma$</td>
<td></td>
</tr>
<tr>
<td>VVV combined</td>
<td>4.0$\sigma$</td>
<td>3.1$\sigma$</td>
<td></td>
</tr>
</tbody>
</table>

signal strengths. The statistical uncertainty is $^{+0.25}_{-0.24}$ and the systematic uncertainty is $^{+0.30}_{-0.27}$. The largest systematic uncertainties come from uncertainties related to data-driven background evaluations affecting the WWW channels ($^{+0.14}_{-0.15}$) and from theoretical uncertainties related to renormalisation and factorisation scale variations, mostly in the diboson background, evaluated using simulations ($^{+0.15}_{-0.13}$, when adding signal and background uncertainties). The third largest systematic uncertainty ($^{+0.11}_{-0.09}$) comes from experimental uncertainties in the signal and background evaluations. Smaller contributions are the statistical uncertainty of simulated events ($\pm0.05$) and the modelling uncertainty by comparing different event generators ($^{+0.04}_{-0.03}$). The observed (expected) significance for WWW production is 3.3$\sigma$ (2.4$\sigma$), and 2.9$\sigma$ (2.0$\sigma$) for WVZ production. The overall observed (expected) significance for VVV production is 4.0$\sigma$ (3.1$\sigma$), constituting evidence for the production of three massive vector bosons.

The measured signal strengths from the fits reported in Figure 5(a) and their uncertainties are converted to inclusive cross-section measurements using the signal samples described in Section 2 and the central values of the theoretical predictions. All uncertainties determined in the fit are included in the conversion, except for the normalisation uncertainty in the signal prediction. The results are: $\sigma_{WWW} = 0.68^{+0.16}_{-0.15}$ (stat.)$^{+0.16}_{-0.15}$ (syst.) pb and $\sigma_{WZZ} = 0.49 \pm 0.14$ (stat.)$^{+0.14}_{-0.13}$ (syst.) pb. For the $\sigma_{WZZ}$ extraction, the WZZ normalisation is fixed to the SM expectation. The cross section of the latter is not reported, since there is not enough sensitivity to this channel to quote a separate cross-section value.

Figure 5(b) shows the data, background and signal yields, where the final-discriminant bins in all signal regions are combined into bins of $\log_{10}(S/B)$. $S$ being the expected signal yield and $B$ the background yield. The background and signal yields are shown after the global signal-plus-background fit to the data.
\[
\begin{align*}
\text{Combined} & = 2.24 \pm 0.62 \pm 0.57 \pm 0.39 \pm 0.38 = 0.47 \pm 0.54 \\
\text{WWW 2\ell} & = -0.10 \pm 0.96 \pm 0.49 \pm 0.47 = -0.10 \pm 0.96 \\
\text{WWW 3\ell} & = 2.44 \pm 0.92 \pm 0.83 \pm 0.75 = 2.44 \pm 0.92 \\
\text{WVZ 3\ell} & = 1.38 \pm 0.39 \pm 0.25 \pm 0.24 = 1.38 \pm 0.39 \\
\text{WVZ 4\ell} & = 2.5 - 2 - 1.5 - 1 - 0.5 - 0 \\
\end{align*}
\]

Figure 5: (a) Extracted signal strengths \(\mu\) for the four analysis regions and for the combination. (b) Event yields as a function of \(\log_{10}(S/B)\) for data, background B and the signal S. Events in all eleven signal regions are included. The background and signal yields are shown after the global signal-plus-background fit. The hatched band corresponds to the systematic uncertainties, and the statistical uncertainties are represented by the error bars on the data points. The lower panel shows the ratio of the data to the expected background estimated from the fit, compared to the expected distribution including the signal (red line).

7 Conclusion

In conclusion, a search for the joint production of three massive vector bosons (W or Z) in proton–proton collisions using 79.8 fb\(^{-1}\) of data at \(\sqrt{s} = 13\) TeV collected by the ATLAS detector at the LHC, is presented. Events with two, three or four reconstructed electrons and muons are analysed. Evidence for the production of three massive vector bosons is observed with a combined significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations. The measured production cross sections are \(\sigma_{WWW} = 0.68^{+0.23}_{-0.21}\) pb, and \(\sigma_{WZ} = 0.49^{+0.20}_{-0.18}\) pb, in agreement with the Standard Model predictions.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA,
Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’ Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [67].
References


3Department of Physics, University of Alberta, Edmonton AB; Canada.
4(a)Department of Physics, Ankara University, Ankara; (b)Istanbul Aydin University, Istanbul; (c)Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey.
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
6High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7Department of Physics, University of Arizona, Tucson AZ; United States of America.
8Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
9Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
10Physics Department, National Technical University of Athens, Zografou; Greece.
11Department of Physics, University of Texas at Austin, Austin TX; United States of America.
12(a)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul; (b)Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (c)Department of Physics, Bogazici University, Istanbul; (d)Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
13Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
14Institut de Fisica d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain.
15(a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Physics Department, Tsinghua University, Beijing; (c)Department of Physics, Nanjing University, Nanjing; (d)University of Chinese Academy of Science (UCAS), Beijing; China.
16Institute of Physics, University of Belgrade, Belgrade; Serbia.
17Department for Physics and Technology, University of Bergen, Bergen; Norway.
18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America.
19Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
21School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogota; Colombia.
23(a)INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica; (b)INFN Sezione di Bologna; Italy.
24Physikalisches Institut, Universität Bonn, Bonn; Germany.
25Department of Physics, Boston University, Boston MA; United States of America.
26Department of Physics, Brandeis University, Waltham MA; United States of America.
27(a)Transilvania University of Brasov, Brasov; (b)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (e)University Politehnica Bucharest, Bucharest; (f)West University in Timisoara, Timisoara; Romania.
28(a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31California State University, CA; United States of America.
32Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
33(a)Department of Physics, University of Cape Town, Cape Town; (b)Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (c)School of Physics, University of the Witwatersrand, Johannesburg; South Africa.
INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, Milano; Italy.
INFN Sezione di Napoli; Dipartimento di Fisica, Università di Napoli, Napoli; Italy.
INFN Sezione di Pavia; Dipartimento di Fisica, Università di Pavia, Pavia; Italy.
INFN Sezione di Pisa; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.
INFN Sezione di Roma; Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.
INFN Sezione di Roma Tor Vergata; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.
INFN Sezione di Roma Tre; Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.
INFN-TIFPA; Università degli Studi di Trento, Trento; Italy.
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.
Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.
Joint Institute for Nuclear Research, Dubna; Russia.
Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; Universidade Federal de São João del Rei (UFSJ), São João del Rei; Instituto de Física, Universidade de São Paulo, São Paulo; Brazil.
KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.
Graduate School of Science, Kobe University, Kobe; Japan.
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.
Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.
Faculty of Science, Kyoto University, Kyoto; Japan.
Kyoto University of Education, Kyoto; Japan.
Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.
Physics Department, Lancaster University, Lancaster; United Kingdom.
Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.
Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.
School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.
Department of Physics, Royal Holloway University of London, Egham; United Kingdom.
Department of Physics and Astronomy, University College London, London; United Kingdom.
Louisiana Tech University, Ruston LA; United States of America.
Fysiska institutionen, Lunds universitet, Lund; Sweden.
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne; France.
Department of Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.
Institut für Physik, Universität Mainz, Mainz; Germany.
School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
Department of Physics, University of Massachusetts, Amherst MA; United States of America.
Department of Physics, McGill University, Montreal QC; Canada.
School of Physics, University of Melbourne, Victoria; Australia.
Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
America.

107 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.

108 Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.

109 Group of Particle Physics, University of Montreal, Montreal QC; Canada.

110 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.

111 Institute for Theoretical and Experimental Physics of the National Research Centre Kurchatov Institute, Moscow; Russia.

112 National Research Nuclear University MEPhI, Moscow; Russia.

113 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.

114 Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.

115 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.

116 Nagasaki Institute of Applied Science, Nagasaki; Japan.

117 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.

118 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.

119 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.

120 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.

121 Department of Physics, Northern Illinois University, DeKalb IL; United States of America.

122 (a) Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk; (b) Novosibirsk State University Novosibirsk; Russia.

123 Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia.

124 Department of Physics, New York University, New York NY; United States of America.

125 Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.

126 Ohio State University, Columbus OH; United States of America.

127 Faculty of Science, Okayama University, Okayama; Japan.

128 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.

129 Department of Physics, Oklahoma State University, Stillwater OK; United States of America.

130 Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic.

131 Center for High Energy Physics, University of Oregon, Eugene OR; United States of America.

132 LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.

133 Graduate School of Science, Osaka University, Osaka; Japan.

134 Department of Physics, University of Oslo, Oslo; Norway.

135 Department of Physics, Oxford University, Oxford; United Kingdom.

136 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France.

137 Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.

138 Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia.

139 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.

140 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP; (b) Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Departamento de Física, Universidade de Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Universidad de Granada, Granada (Spain); (g) Dep Física and
CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica; Portugal.
141 Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.
142 Czech Technical University in Prague, Prague; Czech Republic.
143 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.
144 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.
145 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.
146 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.
147 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
148 Department of Physics, University of Washington, Seattle WA; United States of America.
149 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
150 Department of Physics, Shinshu University, Nagano; Japan.
151 Department Physik, Universität Siegen, Siegen; Germany.
152 Department of Physics, Simon Fraser University, Burnaby BC; Canada.
153 SLAC National Accelerator Laboratory, Stanford CA; United States of America.
154 Physics Department, Royal Institute of Technology, Stockholm; Sweden.
155 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.
156 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
157 School of Physics, University of Sydney, Sydney; Australia.
158 Institute of Physics, Academia Sinica, Taipei; Taiwan.
159 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.
160 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
161 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
162 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.
163 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.
164 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.
165 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.
166 Tomsk State University, Tomsk; Russia.
167 Department of Physics, University of Toronto, Toronto ON; Canada.
168 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON; Canada.
169 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.
170 Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
171 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.
172 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
173 Department of Physics, University of Illinois, Urbana IL; United States of America.
174 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.
175 Department of Physics, University of British Columbia, Vancouver BC; Canada.
176 Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
177 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.
178 Department of Physics, University of Warwick, Coventry; United Kingdom.
Waseda University, Tokyo; Japan.

Department of Particle Physics, Weizmann Institute of Science, Rehovot; Israel.

Department of Physics, University of Wisconsin, Madison WI; United States of America.

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.

Department of Physics, Yale University, New Haven CT; United States of America.

Yerevan Physics Institute, Yerevan; Armenia.

Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.

Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town; South Africa.

Also at CERN, Geneva; Switzerland.

Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

Also at Department of Física de la Universitat Autònoma de Barcelona, Barcelona; Spain.

Also at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.

Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah; United Arab Emirates.

Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.

Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.

Also at Department of Physics, California State University, East Bay; United States of America.

Also at Department of Physics, California State University, Fresno; United States of America.

Also at Department of Physics, California State University, Sacramento; United States of America.

Also at Department of Physics, King’s College London, London; United Kingdom.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.

Also at Department of Physics, Stanford University, Stanford CA; United States of America.

Also at Department of Physics, University of Adelaide, Adelaide; Australia.

Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.

Also at Department of Physics, University of Michigan, Ann Arbor MI; United States of America.

Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.

Also at Giresun University, Faculty of Engineering, Giresun; Turkey.

Also at Graduate School of Science, Osaka University, Osaka; Japan.

Also at Hellenic Open University, Patras; Greece.

Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.

Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.

Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; China.

Also at Institute of Particle Physics (IPP); Canada.

Also at Institute of Physics, Academia Sinica, Taipei; Taiwan.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.
also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.
Also at Istanbul University, Dept. of Physics, Istanbul; Turkey.
Also at Joint Institute for Nuclear Research, Dubna; Russia.
Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.
Also at Istanbul University, Dept. of Physics, Istanbul; Turkey.
Also at Joint Institute for Nuclear Research, Dubna; Russia.
Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.
Also at Louisiana Tech University, Ruston LA; United States of America.
Also at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France.
Also at Manhattan College, New York NY; United States of America.
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
Also at National Research Nuclear University MEPhI, Moscow; Russia.
Also at Physics Dept, University of South Africa, Pretoria; South Africa.
Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
Also at School of Physics, Sun Yat-sen University, Guangzhou; China.
Also at The City College of New York, New York NY; United States of America.
Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.
Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
Also at TRIUMF, Vancouver BC; Canada.
Also at Universita di Napoli Parthenope, Napoli; Italy.
* Deceased