Search for the lepton-flavour-violating decays $B^0_s \rightarrow \tau^\pm \mu^\mp$ and $B^0 \rightarrow \tau^\pm \mu^\mp$

LHCb collaboration

Abstract

A search for $B^0_s \rightarrow \tau^\pm \mu^\mp$ and $B^0 \rightarrow \tau^\pm \mu^\mp$ decays is performed using data corresponding to an integrated luminosity of 3 fb$^{-1}$ of proton-proton collisions, recorded with the LHCb detector in 2011 and 2012. For this search, the τ lepton is reconstructed in the $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$ channel. No significant signal is observed. Assuming no contribution from $B^0 \rightarrow \tau^\pm \mu^\mp$ decays, an upper limit is set on the $B^0_s \rightarrow \tau^\pm \mu^\mp$ branching fraction of $\mathcal{B} \left(B^0_s \rightarrow \tau^\pm \mu^\mp \right) < 4.2 \times 10^{-5}$ at 95% confidence level. If instead no contribution from $B^0_s \rightarrow \tau^\pm \mu^\mp$ decays is assumed, a limit of $\mathcal{B} \left(B^0 \rightarrow \tau^\pm \mu^\mp \right) < 1.4 \times 10^{-5}$ is obtained at 95% confidence level. These are the first limit on $\mathcal{B} \left(B^0_s \rightarrow \tau^\pm \mu^\mp \right)$ and the world’s best limit on $\mathcal{B} \left(B^0 \rightarrow \tau^\pm \mu^\mp \right)$.

© 2019 CERN for the benefit of the LHCb collaboration [CC-BY-4.0 licence]
Lepton-flavour-violating B decays, such as $B^{0}_{(s)} \rightarrow \tau^{\pm} \mu^{\mp}$ (the inclusion of charge-conjugate processes is implied throughout this Letter), may occur in the Standard Model (SM) via one-loop diagrams with neutrino oscillations, but are highly suppressed, with branching fractions, B, expected to be of the order of 10^{-54} \cite{1}. Hence they stand well beyond current and future experimental sensitivities. However, many models proposed to explain the recent experimental tensions mentioned below naturally allow for experimentally accessible rates for these processes. Among them, models containing a heavy neutral gauge boson (Z') could lead to a $B^{0}_{s} \rightarrow \tau^{\pm} \mu^{\mp}$ branching fraction of up to 10^{-8} \cite{2} or few 10^{-5} \cite{3}. In models with either scalar or vector leptoquarks, the largest predictions for the $B^{0}_{s} \rightarrow \tau^{\pm} \mu^{\mp}$ branching fraction range between 10^{-9} and 10^{-5}, depending on the assumed leptoquark mass \cite{4,5}. The three-site Pati–Salam gauge model favours values for this branching fraction in the range 10^{-4} to 10^{-6} \cite{6,7}.

The SM predicts universal electroweak couplings for the three lepton families. Experimental tests of Lepton Flavour Universality (LFU) performed in $b \rightarrow s \ell^{+}\ell^{-}$ and $b \rightarrow c \ell^{-}\bar{\nu}$ transitions show tensions with respect to the SM predictions in the observables $R_{K^{(*)}}$ \cite{8,9} and $R_{D^{(*)}} (D^{(*)})$ \cite{10}, reaching, in the latter case, a discrepancy greater than 3σ from the SM expectations. Possible deviations from LFU reinforce the importance of Lepton Flavour Violation (LFV) searches, as scenarios beyond the SM departing from LFU usually imply LFV as well \cite{11}.

An upper limit $B (B^{0} \rightarrow \tau^{\pm} \mu^{\mp}) < 2.2 \times 10^{-5}$ at 90% confidence level (CL) has been set by the BaBar collaboration \cite{12}. There are currently no experimental results for the $B^{0}_{s} \rightarrow \tau^{\pm} \mu^{\mp}$ mode.

The first search for the decay $B^{0}_{s} \rightarrow \tau^{\pm} \mu^{\mp}$ is reported in this Letter, along with a search for the $B^{0} \rightarrow \tau^{\pm} \mu^{\mp}$ decay. The analysis is performed on data corresponding to an integrated luminosity of 3 fb$^{-1}$ of proton-proton (pp) collisions, recorded with the LHCb detector during the years 2011 and 2012 at centre-of-mass energies of 7 and 8 TeV, respectively. The τ leptons are reconstructed through the decay $\tau^{-} \rightarrow \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$, which mainly proceeds via the production of two intermediate resonances, $a_{1}(1260)^{-} \rightarrow \pi^{+}\pi^{-}\pi^{-}$ and $\rho(770)^{0} \rightarrow \pi^{+}\pi^{-}$ \cite{13}, which help in the signal selection. In this mode, the τ decay vertex can be precisely reconstructed, facilitating a good reconstruction of the B invariant mass despite the undetected neutrino. To avoid experimenter bias, the B meson invariant-mass signal region was not examined until the selection and fit procedures were finalised. The signal yield is determined by performing an unbinned maximum-likelihood fit to the reconstructed B invariant mass and is converted into a branching fraction using the decay $B^{0} \rightarrow D^{-} (\rightarrow K^{+}\tau^{-}\nu_{\tau})\pi^{+}$ as a normalisation channel.

The LHCb detector \cite{14,15} is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of the momentum, p, of charged particles with a relative uncertainty varying from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $(15 + 29/p_{T}) \mu$m, where p_{T} is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons,
electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.

The online event selection is performed by a trigger \[16\] consisting of a hardware stage based on information from the calorimeter and muon systems, followed by a software stage, which performs a full event reconstruction. At the hardware trigger stage, signal candidates are required to have a muon with high p_T, while, for the normalisation sample, events are required to have a hadron with high transverse energy in the calorimeters. The software trigger requires a two-, three-, or four-track secondary vertex with a significant displacement from any primary pp interaction vertex. A multivariate algorithm \[17\] is used for the identification of secondary vertices consistent with the decay of a b hadron. At least one charged particle must have a minimum transverse momentum $p_T > 1.0\ (1.6)$ GeV/c for muons (hadrons), and be inconsistent with originating from a PV.

Simulation is used to optimise the selection, determine the signal model for the fit and obtain the selection efficiencies. In the simulation, pp collisions are generated using PYTHIA \[18\] with a specific LHCb configuration \[19\]. The τ decay is simulated using the TAUOLA decay library tuned with BaBar data \[20\], while the decays of all other unstable particles are described by EVTGEN \[21\]. Final-state radiation is accounted for using PHOTOS \[22\]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit \[23\], as described in Ref. \[24\].

Signal and normalisation candidates are built from tracks that are inconsistent with originating from any PV. Candidate $\tau^{-}\rightarrow \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$ and $D^{-}\rightarrow K^{+}\pi^{-}\pi^{-}$ decays are reconstructed from three tracks forming a good-quality vertex and with particle identification information corresponding to their assumed particle hypotheses. Candidate $B_{s}^{0}\rightarrow \tau^{\pm}\mu^{\mp}$ decays are formed by combining a reconstructed τ lepton and an oppositely charged track identified as a muon. A sample of same-sign candidates, which are formed by a τ lepton and a muon with identical charges, is also selected to serve as a proxy for the background. For the normalisation mode, $B_{s}^{0}\rightarrow D^{-}\pi^{+}$ candidates are made out of a reconstructed D meson and an oppositely charged track identified as a pion. The decay vertex of the signal or normalisation B candidate is determined through a fit to all reconstructed particles in the decay chain \[25\], that is required to be of good quality. The B-meson p_T is required to be greater than 5 GeV/c for both signal and normalisation modes.

While the neutrino from the τ decay escapes detection, its momentum vector can be constrained from the measured positions of the primary and τ decay vertices, the momenta of the muon and the three pions, and the trajectory of the muon. Imposing that the invariant mass of the three pions and missing neutrino corresponds to the true mass of the τ lepton, and requiring that the B decay vertex lies on the trajectories of the muon, of the τ lepton and of the B meson, the $B_{s}^{0}\rightarrow \tau^{\pm}\mu^{\mp}$ candidate invariant mass can be determined analytically with a two-fold ambiguity. The solution whose distribution shows the largest separation between signal and background is used as the reconstructed B invariant mass, M_{B}, in the analysis. Due to finite measurement resolutions, 32% of selected signal in the simulated sample and 48% of same-sign candidates in data have nonphysical solutions and are removed, thereby improving the signal-to-background ratio. The distribution of M_{B} for the remaining candidates is shown in Fig. \[1\]. To reduce the data to a manageable level and focus on the rejection of the most difficult backgrounds, the
Figure 1: Distribution of the reconstructed B invariant mass for $B^0_s \rightarrow \tau^+ (\rightarrow \pi^+ \pi^0 \pi^\pm \nu_{\tau}) \mu^\pm$ simulated decays and same-sign candidates in data after initial selection (see text).

low-mass region with $M_B < 4$ GeV/c2 is discarded. The signal loss due to this requirement is negligible.

To further reduce the background, additional requirements, optimised with same-sign candidates and simulated samples, are applied to the selected $B^0_s \rightarrow \tau^+ \mu^-$ decays. Taking advantage of the resonant structure of the $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$ decay, candidates with both combinations of oppositely charged pions with invariant-masses below 550 MeV/c2 are removed. Candidates with a three-pion invariant mass greater than 1.8 GeV/c2 are discarded to veto the background contribution due to $D^+ \rightarrow \pi^+ \pi^0 \pi^0 \pi^- \nu_{\tau}$ decays. A set of isolation variables is used to reduce background from decays with additional reconstructed particles. The first class of isolation variables exploits the presence of activity in the calorimeter to identify the contribution of neutral particles contained in a cone centred on the B or τ flight directions. The second class is based on the presence of additional tracks consistent with originating from the B or τ decay vertices, or uses a multivariate classifier, trained on simulated data, to discriminate against candidates whose decay products are compatible with forming good-quality vertices with other tracks in the event. These variables are combined using a Boosted Decision Tree (BDT) [26], trained on same-sign candidates and simulated $B^0_s \rightarrow \tau^+ \mu^-$ decays. Candidates with a BDT output compatible with that of background are discarded. A second BDT is used to reduce to a negligible level the contribution of combinatorial background, which extends over the whole mass range but dominates at higher masses. It uses variables related to vertex quality and reconstructed particle opening angles and is trained on samples of same-sign candidates with $M_B > 6.2$ GeV/c2 and simulated $B^0_s \rightarrow \tau^+ \mu^-$ decays. Specific background decays, such as $B^0_{(s)} \rightarrow D^-_{(s)} (\rightarrow \mu^- \nu_{\mu}) \pi^+ \pi^- \pi^0$, have M_B distributions peaking in the signal region. In these decays, the three pions come from the B decay vertex, and therefore the reconstructed B and τ decay vertices are very close. Discarding candidates with a reconstructed τ decay-time significance lower than 1.8 reduces this type of background to a negligible level while keeping \sim75% of signal, according to studies performed on simulation. All previously described selection criteria also reject \sim96% of a possible contribution from the $B^0 \rightarrow a_1(1260) \rightarrow \mu^- \nu_{\mu}$ mode. Its rate is currently unmeasured, but, given that the largest known $b \rightarrow u$ semileptonic decay branching fractions are of the order of 10^{-4}, its branching fraction is not expected to be much higher. Events from the decay $\tau^- \rightarrow \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$ passing the selection are also included as signal. After the selection
17 746 events are retained from the data sample. The selection efficiencies for the signal and
normalisation modes, $\epsilon_{B^+_s \rightarrow \tau \mu}$ and $\epsilon_{B \rightarrow D \pi}$, respectively, are estimated using simulation or,
whenever possible, data. The efficiency $\epsilon_{B^+_s \rightarrow \tau \mu}$ includes those for both $\tau^+ \rightarrow \pi^+ \pi^- \pi^- \nu_{\tau}$
and $\tau^- \rightarrow \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$ decays, where the latter is weighted by the ratio of the two
branching fractions. The tracking and particle identification efficiencies are determined
using data. The trigger efficiency for the normalisation channel is estimated using a
trigger-unbiased subsample made of events which have been triggered independently of the
normalisation candidate. For the signal, muons from $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+ \pi^+$ decays are
used to evaluate the muon trigger efficiency and corrections are applied to the simulated
signal samples. To account for differences between the control and the signal samples,
the efficiency is computed as a function of the muon p_T and IP. Simulation as well as
$B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$ decays are used to determine the software-trigger efficiency and
its systematic uncertainty.

The signal yield for the normalisation mode is obtained from a fit to the invariant-
mass distribution of the $B^0 \rightarrow D^- \pi^+$ candidates. In the fit the signal is modelled by
the sum of two Crystal Ball (CB) functions, with tails on opposite sides, having
common means and widths, but independent tail parameters. The tail parameters are
fixed to values determined from a fit to a sample of $B^0 \rightarrow D^- (\rightarrow K^+ \pi^- \pi^-) \pi^+$ simulated
decays, while all other parameters are left free. The small background contribution is
described by an exponential function. The measured yield of the $B^0 \rightarrow D^- \pi^+$ mode is
$N_{\text{norm}} = 22 588 \pm 176$ where the uncertainty is statistical only.

The $B^0_{(s)} \rightarrow \tau^\pm \mu^\mp$ branching fractions can be written as

$$B \left(B^0_{(s)} \rightarrow \tau^\pm \mu^\mp \right) = \alpha_{(s)}^{\text{norm}} \cdot N_{(s)}^{\text{sig}},$$

(1)

where $N_{(s)}^{\text{sig}}$ is the number of observed $B^0_{(s)} \rightarrow \tau^\pm \mu^\mp$ decays and $\alpha_{(s)}^{\text{norm}}$ a normalisation
factor. The latter is defined by

$$\alpha_{(s)}^{\text{norm}} = \frac{f_{B^0_{(s)}}}{f_{B^0_{(s)}}} \cdot \frac{B (B^0 \rightarrow D^- (\rightarrow K^+ \pi^- \pi^-) \pi^+)}{B (\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau})} \cdot \frac{\epsilon_{B \rightarrow D \pi}}{\epsilon_{B^0_{(s)} \rightarrow \tau \mu}} \cdot \frac{1}{N_{\text{norm}}},$$

(2)

using externally measured quantities: the ratio of b-quark hadronisation fractions to B^0
and B^0 mesons, $f_{B^0} / f_{B^0} = 0.259 \pm 0.015$, $B (B^0 \rightarrow D^- (\rightarrow K^+ \pi^- \pi^-) \pi^+) = (2.26 \pm
0.14) \times 10^{-4}$ and $B (\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}) = (9.02 \pm 0.05) \%$. The measured values of
$\alpha_{(s)}^{\text{norm}}$ for the B^0 and $B^0_{(s)}$ modes are, respectively,

$$\alpha_{s}^{\text{norm}} = (4.32 \pm 0.19 \pm 0.45 \pm 0.36) \times 10^{-7} \text{ and}$$

$$\alpha_{n}^{\text{norm}} = (1.25 \pm 0.06 \pm 0.13 \pm 0.08) \times 10^{-7},$$

where the three quoted uncertainties are the statistical uncertainty due to the sizes of
the signal and normalisation simulated and data samples, the systematic uncertainty on
the selection efficiencies (dominated by the trigger efficiency contribution, $\sim 11\%$) and the
total uncertainty on the externally measured quantities.

A final BDT is built to split the selected candidates into four samples with different
signal-to-background ratios. It combines 16 discriminating variables, which are not
 correlated with the B invariant mass. The most important ones are the invariant masses
of the three-pion system and of the two combinations of oppositely charged pions, the
Figure 2: Final BDT output binned distributions for data and simulated signal samples. The markers are displaced horizontally to improve visibility.

B-meson IP and flight distance significances, and the output of the BDT based on isolation variables. The output of the BDT is transformed to have a uniform distribution between 0 and 1 for $B^0_s \to \tau^\pm (\to \pi^\pm \pi^\mp \pi^\pm \nu_\tau)\mu^\mp$ simulated decays. As a consequence, its distribution for the background peaks at low BDT values. All samples are divided into four bins of equal width in BDT output. Their distributions are shown in Fig. 2.

The signal yield is evaluated by performing a simultaneous unbinned maximum-likelihood fit to the M_B distributions in the range $[4.6, 5.8]$ GeV/c^2 of the four samples corresponding to different BDT bins. In each bin, the data are described by the sum of a signal and a background component. The background shape is modelled by the upper tail of a reversed CB function, whose peak position and tail parameters are shared among BDT bins. For the determination of the systematic uncertainties, different sets of constrained parameters or alternative background models, such as the sum of two Gaussian functions, are considered. The signal shapes are described by double-sided Hypatia functions [32] whose parameters are initialized to the values obtained from a fit to the $B^0_s \to \tau^\pm \mu^\mp$ and $B^0 \to \tau^\pm \mu^\mp$ simulated samples and allowed to vary within Gaussian constraints accounting for possible discrepancies between data and simulation. As the separation between $B^0_s \to \tau^\pm \mu^\mp$ and $B^0 \to \tau^\pm \mu^\mp$ signal shapes is limited, two independent fits are performed assuming the contribution of either the B^0_s or the B^0 signal only. The signal fractional yields in each BDT bin are Gaussian constrained according to their expected values and uncertainties. The fit result corresponding to the hypothesis of B^0_s signal only is shown in Fig. 3. The fit procedure is validated by performing fits to a set of pseudoexperiments where the mass distributions are randomly generated according to the background model observed in the data. The pulls of all fitted parameters are normally distributed except those of the signal yields N^sig, which exhibit a very small bias of -3 ± 1 (2 ± 2) events for the B^0_s (B^0) mode. This effect is accounted for by adding the bias to N^sig in the simultaneous fit. The obtained signal yields are

$$N^\text{sig}_{B^0_s \to \tau^\pm \mu^\mp} = -16 \pm 38 \text{ and } N^\text{sig}_{B^0 \to \tau^\pm \mu^\mp} = -65 \pm 58,$$

showing no evidence for any signal excess.

Using α^norm_s and Eq. 1, the signal yield obtained from the likelihood fit is translated to an
upper limit on the branching fraction with the CLs method \cite{33,34}. The total uncertainty on the normalisation factor is accounted for as an additional Gaussian constraint in the simultaneous fit. The expected and observed CLs values as a function of the branching fraction are shown in the Supplemental Material \cite{35}. The corresponding limits on the B_s^0 and B^0 branching fractions at 90% and 95% CL are given in Table 1, assuming negligible contribution from the $B^0 \to a_1(1260)^- \mu^+ \nu_\mu$ mode. A possible residual contribution of this background would lower the expected limits by \(\sim 16\% \times (B(B^0 \to a_1(1260)^- \mu^+ \nu_\mu)) / 10^{-4} \).

The impact of systematic uncertainties on the final limits is about 35%, dominated by the uncertainty on the background model.

These results represent the best upper limits to date. They constitute a factor \(\sim 2 \) improvement with respect to the BaBar result for the B^0 mode \cite{12} and the first measurement for the B_s^0 mode. The allowed range on the $B_s^0 \to \tau^\pm \mu^\mp$ branching fraction preferred by the three-site Pati–Salam model \cite{6,7} is significantly reduced by the results.
Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA).

We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom).

References

[35] See Supplemental Material at [URL will be inserted by publisher].
Figures 4 and 5 show the expected and observed CLs values as a function of the $B^0_s \to \tau^\pm \mu^\mp$ and $B^0 \to \tau^\pm \mu^\mp$ branching fractions.

Figure 4: The expected and observed p-values derived with the CLs method as a function of the $B^0_s \to \tau^\pm \mu^\mp$ branching fraction.

Figure 5: The expected and observed p-values derived with the CLs method as a function of the $B^0 \to \tau^\pm \mu^\mp$ branching fraction.
Institute Of High Energy Physics (ihep), Beijing, China
6 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
7 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
8 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
9 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
10 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
11 I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
12 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
13 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
14 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
15 School of Physics, University College Dublin, Dublin, Ireland
16 INFN Sezione di Bari, Bari, Italy
17 INFN Sezione di Bologna, Bologna, Italy
18 INFN Sezione di Ferrara, Ferrara, Italy
19 INFN Sezione di Firenze, Firenze, Italy
20 INFN Laboratori Nazionali di Frascati, Frascati, Italy
21 INFN Sezione di Genova, Genova, Italy
22 INFN Sezione di Milano-Bicocca, Milano, Italy
23 INFN Sezione di Milano, Milano, Italy
24 INFN Sezione di Cagliari, Monserrato, Italy
25 INFN Sezione di Padova, Padova, Italy
26 INFN Sezione di Pisa, Pisa, Italy
27 INFN Sezione di Roma Tor Vergata, Roma, Italy
28 INFN Sezione di Roma La Sapienza, Roma, Italy
29 Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
30 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
31 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
32 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
33 National Center for Nuclear Research (NCBJ), Warsaw, Poland
34 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
35 Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
36 Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia
37 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
38 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
39 Yandex School of Data Analysis, Moscow, Russia
40 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
41 Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
42 ICCUB, Universitat de Barcelona, Barcelona, Spain
43 Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
44 European Organization for Nuclear Research (CERN), Geneva, Switzerland
45 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
46 Physik-Institut, Universität Zürich, Zürich, Switzerland
47 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
48 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
49 University of Birmingham, Birmingham, United Kingdom
50 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
51 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
52 Department of Physics, University of Warwick, Coventry, United Kingdom
53 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
54 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
55 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, MA, United States
University of Cincinnati, Cincinnati, OH, United States
University of Maryland, College Park, MD, United States
Los Alamos National Laboratory (LANL), Los Alamos, United States
Syracuse University, Syracuse, NY, United States
Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria, associated to
Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
South China Normal University, Guangzhou, China, associated to
School of Physics and Technology, Wuhan University, Wuhan, Hubei, China, associated to
Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia, associated to
Institut für Physik, Universität Rostock, Rostock, Germany, associated to
Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to
National Research Centre Kurchatov Institute, Moscow, Russia, associated to
National University of Science and Technology “MISIS”, Moscow, Russia, associated to
National Research University Higher School of Economics, Moscow, Russia, associated to
National Research Tomsk Polytechnic University, Tomsk, Russia, associated to
Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, associated to
University of Michigan, Ann Arbor, United States, associated to
Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Laboratoire Leprince-Ringuet, Palaiseau, France
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Vietnam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Università degli Studi di Milano, Milano, Italy
Università di Urbino, Urbino, Italy
Università della Basilicata, Potenza, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Modena e Reggio Emilia, Modena, Italy
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
Novosibirsk State University, Novosibirsk, Russia
Sezione INFN di Trieste, Trieste, Italy
School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China
Physics and Micro Electronic College, Hunan University, Changsha City, China
Lanzhou University, Lanzhou, China
† Deceased