Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton–proton collisions with the ATLAS detector

The ATLAS Collaboration

A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb$^{-1}$ of 13 TeV pp collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell–Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 GeV to 4000 GeV. The search improves by approximately a factor of five the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range $20 \leq |z| \leq 60$ and extends the charge range to $60 < |z| \leq 100$.

© 2020 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
The symmetry between electric and magnetic charge in Maxwell’s Equations and the explanation for electric charge quantization resulting from Dirac’s quantum description of the magnetic monopole [1, 2] are compelling arguments for its existence. Neither the spin nor the mass of a Dirac monopole is theoretically constrained. While monopoles appearing in grand unification theories [3, 4] typically have masses of the order of the unification scale ($m \sim 10^{16}$ GeV), some extensions of the Standard Model predict electroweak monopoles with masses as low as 4 TeV [5–9]. TeV-mass monopoles can be produced in the early Universe thermally or via the Kibble mechanism [10, 11] in cosmological scenarios with a low reheat temperature after inflation [12].

Dirac’s argument predicts the fundamental magnetic charge to be $q_m = N g_D e c$, 1 where $g_D = 1/(2 \alpha) = 68.5$ is the Dirac charge, α is the fine structure constant, N is an integer number, e is the unsigned electron charge and c is the speed of light in vacuum. This implies that a high-velocity Dirac monopole of magnetic charge $|g| = g_D$ would interact with matter in a manner similar to that of an ion of electric charge $|z| = 68.5$, where z is in units of e. Since the energy loss is proportional to the square of the charge, a monopole with $|g| = g_D$ would deposit 4700 times more energy by ionization than a proton. The high stopping power also results in the production of a large number of δ-rays. These two features result in a high-ionization signature that is also expected in the case of exotic stable high-electric-charge objects (HECOs), which may include, for example, aggregates of ud- [13] or s-quark matter [14], Q-balls [15, 16], and micro black-hole remnants [17].

This Letter presents a search for magnetic monopoles and HECOs, collectively referred to as highly ionizing particles, or HIPs, using 34.4 fb$^{-1}$ of 13 TeV proton–proton (pp) collision data collected by the ATLAS detector at the CERN Large Hadron Collider (LHC) during 2015 and 2016. Events containing at least one high-ionization object are selected. The results are interpreted in models of spin-0 and spin-1/2 Drell–Yan pair production of stable particles carrying one or two Dirac magnetic charges or an electric charge in the range $20 \leq |z| \leq 100$ with masses ranging from 200 GeV to 4000 GeV.

Should monopoles exist in the mass range accessible to a particle accelerator, they could be copiously produced at the LHC. If they were detected, the measured mass and coupling would severely restrict cosmological scenarios. Since the numerous searches for monopoles of cosmological origin in cosmic rays and in matter [18, 19] have limited sensitivity to TeV-mass HIPs, the cross-section limits for low-mass HIPs from searches at colliders [20–34] are 6–9 orders of magnitude more stringent. The first LHC searches for HECOs and monopoles were made by the ATLAS Collaboration in 8 TeV pp collisions [24, 25] by exploiting the high-ionization signature. The higher collision energy, the five times larger dataset and improvements in the trigger extend the sensitivity of the present search. While the previous search studied $|g| \leq 1.5g_D$, the present search considers monopoles up to $|g| = 2g_D$, which are motivated by Schwinger, who showed that N must be even for particles possessing both electric and magnetic charge [35–37]. The ATLAS monopole searches [25, 27] are complementary to those performed using the dedicated MoEDAL experiment [28–31], which uses an induction technique to detect the magnetic flux of monopoles trapped in matter. While MoEDAL is sensitive to magnetic charges up to $5g_D$, the present ATLAS search is able to set significantly better cross-section constraints for $1g_D$ and $2g_D$, the charge range in which it has a good acceptance [38].

Unlike searches using the induction technique, the present search is sensitive to high-charge HECOs in addition to monopoles. It is complementary to the low-charge HECO searches performed by ATLAS ($2 \leq |z| \leq 7$ [26, 32, 34]) and CMS ($2 \leq |z| \leq 8$ [33]), all of which used muon triggers. A muon trigger is not appropriate for high-charge HECOs, which typically stop in the electromagnetic calorimeter, due to the

1 In this definition, q_m is in SI units and g_D is a dimensionless quantity.
charge-square dependence of \(dE/dx \). In LHC Run 1, ATLAS probed electric charges up to \(|z| = 60 \) \cite{24, 27} via the high-ionization signature. The present analysis is able to probe HECOs up to \(|z| = 100 \), thereby reaching the previously unexplored charge range predicted for \(ud \)-quark matter \cite{13}.

The present search exploits the very characteristic high-ionization signature of HIPs in the ATLAS detector \cite{39}. The ATLAS transition radiation tracker (TRT), which is the outermost tracker of the inner detector, consists of a barrel (\(|\eta| < 1.0\) and radius \(0.563\text{ m} < r < 1.066\text{ m}\)) \cite{2} with 4-mm-diameter straws oriented parallel to the beam-line, and two endcaps (\(0.77 < |\eta| < 2.0\)) with straws oriented radially. In LHC Run 2, 56\% of the straws were filled with xenon gas while the others were filled with argon gas. Energy deposits in a TRT straw greater than 200 eV, called low-threshold (LT) hits, are used for tracking. The high-threshold (HT) hits, which result from energy deposits exceeding 6 keV in Xe (2 keV in Ar) are typically used for electron identification, but can also indicate the presence of a highly ionizing particle. A 2 T superconducting solenoid surrounds the TRT. The lead/liquid-Ar (LAr) barrel electromagnetic (EM) calorimeter lies outside the solenoid in the \(|\eta| < 1.475\) region. It is divided into three shower-depth layers: EM1, EM2 and EM3, with accordion-shape electrodes and lead absorbers. The EM2 layer has the largest sampling depth (16 to 20\(X_0\)); its cell granularity is \(\Delta\eta \times \Delta\phi = 0.025 \times 0.025\). In the \(|\eta| < 1.8\) region, an additional presampler layer is used to measure the energy lost in front of the calorimeter. As a HIP traverses the TRT, a localized region of high ionization density with many HT hits from both the HIP and the \(\delta\)-rays is produced in its wake. HIPs slow down (and usually stop) in the EM calorimeter, where they leave a pencil-shape energy deposit since they do not induce a shower, being much heavier than the electron.

Signal efficiency estimates rely heavily on simulations, which use the Geant4 framework \cite{40, 41} to model the HIP propagation and behavior in ATLAS. The detector simulation includes the full ATLAS geometry, descriptions of monopole acceleration in the solenoidal magnetic field, ionization energy losses in matter \cite{42–45}, \(\delta\)-electron production along the HIP trajectory, and a model accounting for electron–ion recombination in the LAr EM calorimeter \cite{46}. For monopoles, the trajectory in the solenoidal magnetic field is straight in the \(r-\phi\) plane and bends in the \(r-z\) plane and the Bethe–Bloch formula is modified \cite{42, 43} to account for the velocity-dependent Lorentz force. The interaction of HIPs with matter is independent of HIP spin.

The Drell–Yan (DY) pair-production process is used to estimate the kinematic distributions and cross sections of spin-0 and spin-1/2 HIPs in the relevant ranges of charge and mass. The MadGraph5_aMC@NLO \cite{47} event generator was used to model leading-order HIP DY pair production from the initial \(pp\) state via quark–antiquark annihilation into a virtual photon. The charge-squared dependence of the HIP coupling to the photon implies divergences in the perturbative expansion beyond leading order \cite{48}. Pythia version 8.212 \cite{49, 50} was employed for the hadronization and the underlying-event generation, using the NNPDF2.3 \cite{51} parton distribution functions of the proton with the A14 \cite{52} set of tuned parameters (`tune`). The A2 \cite{53} tune was used for the ‘pileup’, which are additional simulated \(pp\) collisions overlaid on each event according to the distribution of the number of \(pp\) interactions per bunch crossing, \(\mu\), in the data. Fully simulated HIP Monte Carlo (MC) samples are computationally intensive due to the high ionization. To minimize the number of such MC samples, model-independent efficiency maps, finely binned in kinetic energy and \(|\eta|\), are produced from fully simulated single-particle samples of a given mass and charge. The spin-0 DY HIP four-vectors from the generator are used to sample the maps in order to derive the spin-0 DY HIP selection efficiencies. The DY spin-1/2 selection efficiencies are derived from

\footnote{ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the \(z\)-axis coinciding with the axis of the beam pipe. The \(x\)-axis points from the IP to the center of the LHC ring, and the \(y\)-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln \tan(\theta/2)\).}
fully simulated DY samples, which are also used to validate the results obtained by sampling the efficiency maps and to assign a modeling uncertainty. The selection efficiencies for spin-0 DY HIPs are higher than for spin-1/2 because they have more central η and harder kinetic energy distributions.

Incomplete knowledge of the simulation parameters translates into systematic uncertainties in the signal efficiencies. These uncertainties are estimated by varying the parameters within a range corresponding to an uncertainty of one standard deviation, as described in more detail in Ref. [27]. The dominant uncertainties are those due to the descriptions of the detector material and of electron–ion recombination in the EM calorimeter, each with an average relative uncertainty of 7%. Other relevant parameters include the dependence of the multiplicity of TRT LT hits on pileup μ, the HIP energy-loss calculation as well as the yield and range of δ-electrons, and the fraction of energy cross-talk between adjacent EM calorimeter cells. Additional uncertainties unrelated to detector effects include the uncertainty from MC statistics and the systematic uncertainty due to imprecise modeling or deriving DY efficiencies from the single-particle maps.

ATLAS uses a two-level trigger system [54]. Level 1 is a hardware-based trigger that defines calorimeter ‘regions of interest’ (RoI). A dedicated software-based high-level trigger (HLT), which imposes requirements on the number and fraction of TRT HT hits in a narrow region around the RoI, started collecting data in October 2015. The level-1 seed requires transverse energy $E_T > 22$ GeV in the electromagnetic calorimeter. RoI candidates with $E_T < 50$ GeV in conjunction with an E_T-dependent minimum of 1 to 2 GeV of energy in the hadronic calorimeter are vetoed. This unavoidable hadronic veto requirement, which improves rejection of hadrons in analyses using electrons and photons, limits the sensitivity to low-charge HIPs, which often penetrate to the hadronic calorimeter. In contrast to the 8 TeV search [27], this veto on an energy deposit in the hadronic calorimeter is not applied to RoI candidates with $E_T > 50$ GeV, thereby increasing the acceptance for the HIPs that do not stop in the EM calorimeter. Following the level-1 trigger, the HLT is used to select HIP candidates with HT hits in the TRT. The counting is done in an r–ϕ wedge of size 10 mrad, where two trigger variables, $N_{\text{HT, trig}}$ and $f_{\text{HT, trig}}$, are used to define the number and fraction of TRT HT hits, respectively. The HLT selection criteria are defined as $N_{\text{HT, trig}} > 30$ and $f_{\text{HT, trig}} > 0.5$ to control the rate while maintaining high signal efficiency for high-charge HIPs. In addition, a pseudorapidity requirement of $|\eta| < 1.7$ is applied to avoid the forward regions, which contain more backgrounds due to multijet events producing a higher rate of level-1 trigger seeds.

In this search, the HIP signal sensitivity is governed by the DY kinematic distributions and the dependence of the stopping power on two variables: the square of the charge and the velocity relative to the speed-of-light β. For HECOs, dE/dx is proportional to $1/\beta^2$ whereas it varies as $\ln \beta^2$ for monopoles [42, 43]. The main source of signal loss is due to HIPs failing to produce a level-1 trigger RoI, because they either stop before the EM calorimeter (e.g., high-charge HIPs), deposit too little energy in the calorimeter or penetrate to the hadronic calorimeter and invoke the veto (e.g., low-charge HIPs). The probability for a HIP from DY pair production to induce a level-1 trigger signal is around 60% for HECOs with $|z| = 20$ and 55% for monopoles with $|g| = g_D$ and decreases to 18% for $|z| = 60$ and 10% for $|g| = 2g_D$. For HIPs with $|\eta| < 1.375$ that pass the level-1 trigger, the efficiency to satisfy the HLT and the remaining offline selection, described below, is generally 25% to 60%.

Any data that fail the electron–photon data quality requirements are discarded as are events flagged as containing noise in the LAr calorimeter. The event selection then starts by identifying events containing at least one candidate featuring a topological cluster of EM calorimeter cells [55] with $E_T > 18$ GeV in the $|\eta| < 1.375$ region. The remaining selection is based on two powerful background-discriminating variables, denoted f_{HT} and w. The selected EM cluster candidates are used to seed the f_{HT} variable, which is similar to the trigger variable $f_{\text{HT, trig}}$ except that an 8-mm-wide rectangular road is used instead of
Table 1: Lower limits on the mass of magnetic monopoles and HECOs (in GeV) at 95% confidence level in models of spin-0 and spin-1/2 leading-order DY HIP pair production.

| g = | g | | z | = 20 | z | = 40 | z | = 60 | z | = 80 | z | = 100 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Spin-0 | 1850 | 1725 | 1355 | 1615 | 1625 | 1495 | 1390 |
| Spin-1/2 | 2370 | 2125 | 1830 | 2050 | 2000 | 1860 | 1650 |

a 10-mrad wedge, to better confine the hit counting to the region closest to the HIP trajectory. The \(w \) variable gives a measure of the lateral energy dispersion of the EM cluster candidate. For each EM cluster candidate, the associated energy contained in the presampler, EM1 layer and EM2 layer is denoted by \(E_0 \), \(E_1 \) and \(E_2 \), respectively. Three \(w_i \) variables (\(i = 0, 1, 2 \)) are defined as the fraction of EM cluster energy \(E_i \) contained in the two most energetic cells in the presampler, the four most energetic cells in EM1, and the five most energetic cells in EM2, respectively. If the cluster energy in layer \(E_i \) is confined to a single cell, then \(w_i = 1 \), consistent with the narrow shower expected for HIPs. In each layer, the number of cells is chosen to optimize the signal efficiency and the discrimination power between HIPs and electron or jet backgrounds. The combined lateral energy dispersion \(w \) is thus defined as the average of all \(w_i \) (\(i = 0, 1, 2 \)) for which \(E_i \) exceeds 10 GeV (relaxed to 5 GeV for \(i = 2 \)). The latter requirement ensures that only layers with energy deposits significantly above the cluster-level noise, which depends on both the cell-level noise and the cell granularity, contribute to the \(w \) computation. In addition, at least one of the \(E_0 \) and \(E_1 \) requirements must be satisfied. The final selection requirements are \(f_{HT} \geq 0.7 \) and \(w \geq 0.96 \), a choice which maximizes the signal-to-background ratio for the majority of the signal samples.

Backgrounds are random combinations of rare processes and need to be estimated directly from the collected data. Examples of background processes that could yield high \(f_{HT} \) values include overlapping charged particles and noise in TRT straws. Processes that could yield high \(w \) values include high-energy electrons and noise in EM calorimeter cells. The background estimation method relies on the fact that, in the background near the signal region, \(f_{HT} \) and \(w \) are largely uncorrelated. Control regions B, C and D are defined as sidebands in \(f_{HT} \) and \(w \) near the signal region A, as shown in Figure 1. Region A contains 90% or more of the signal for masses below 4000 GeV for all simulated charges except \(|z| = 20 \), where the fraction is 70%. The numbers of events observed in the control regions are \(N_B = 1528 \), \(N_C = 4 \) and \(N_D = 30375 \), and the expected background is calculated as \(N_{A}^{\text{exp}} = N_{B} N_{C}/N_{D} = 0.20 \pm 0.11 \) (stat) \(\pm 0.40 \) (sys). The latter uncertainty accounts for the fact that \(f_{HT} \) and \(w \) each depend on \(\eta \) but in different ways, resulting in a Pearson correlation coefficient of 10%. This uncertainty was obtained by binning the \(f_{HT} - w \) plane into 0.025-unit regions in \(\eta \) and determining the maximum variation of the ratio of the numbers of events in the B and D regions. Simultaneous fits taking possible signal yields into account confirm that signal leakage into the B and C control regions cannot significantly affect the background estimate. As an additional cross-check, the B, C and D regions are divided into various subregions, within which the background estimation is again performed. The estimated and observed event yields are consistent in all cases.
Figure 1: Two-dimensional distribution of the two discriminating variables f_{HT} versus w in data (color scale) and a typical HIP signal (green squares). The regions for defining the signal (A) and for the background estimate and background validation (B, D and C) are indicated.
Figure 2: Observed 95% confidence-level upper limits on the cross section for Drell–Yan spin-0 (top) and spin-1/2 (bottom) monopole (left) and HECO (right) production as a function of mass (dashed lines with markers). The limits for spin-0 HIPs are more stringent than for spin-1/2 due to the higher selection efficiencies of the former. The theoretical leading-order cross sections are overlaid (solid lines).
No event was observed in the signal region A in 34.4 fb$^{-1}$ of 13 TeV pp collision data, consistent with the background expectation. Thus, 95% confidence-level (CL) upper limits can be set on production cross sections for various signal hypotheses, using estimates of efficiencies and their corresponding uncertainties for each HIP charge, mass and spin, as well as the uncertainty in the integrated luminosity (2.2%, estimated following the methods discussed in Ref. [56]). A CLs [57] frequentist framework implemented in RooStats [58] is used for hypothesis testing and to calculate confidence intervals. The resulting limits are shown as a function of HIP mass in Figure 2 for monopoles and HECOs in the charge ranges where the search is sensitive for DY production with different spins. The mass dependence of the cross-section limits arises from a variation of the efficiencies with the HIP kinetic energy. The cross-section limits are relatively insensitive to the systematic uncertainties, which introduce variations no larger than 12% across all mass–charge–spin points. Model cross-section predictions are shown in Figure 2 as solid lines. The corresponding mass limits are shown in Table I. Given the uncertainty in the predicted cross sections, these mass limits primarily serve as benchmarks for comparison with other experiments. The MoEDAL experiment [31] is able to set slightly stronger monopole mass limits because they consider photon-fusion pair production in addition to the Drell–Yan mechanism. For most masses, the present cross-section limits obtained for magnetic charge $|g| = 2g_D$ surpass by one to two orders of magnitude the best previous constraints, also set by MoEDAL [31]. The cross-section limits obtained for HECOs and for monopoles with $|g| = g_D$ surpass by approximately a factor of five the best constraints, set by the previous ATLAS analysis [27], and access the range $60 < |z| < 100$ for the first time.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; FWF, BMWFW, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, FAPESP, Brazil; NSERC, CFI, NRC, Canada; CERN, CERN; CONICYT, Chile; CAS, NSFC, MOST, China; COLCIENCIAS, Colombia; VSC CR, MSMT CR, MPO CR, Czech Republic; DNSRC, DNRF, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; MPG, HGF, BMBF, Germany; GSRT, Greece; RGC, Hong Kong SAR, Hong Kong China; Benoziyo Center, ISF, Israel; INFN, Italy; JSPS, MEXT, Japan; JINR, JINR; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MInSW, NCN, Poland; FCT, Portugal; MNE/IFA, Romania; NRC Ki, MES of Russia, Russia Federation; MESTD, Serbia; MSSR, Slovakia; ARRS, MIZ', Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Wallenberg Foundation, Sweden; Cantons of Bern and Geneva, SNSF, SERI, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, NSF, United states of America. In addition, individual groups and members have received support from CRC, Compute Canada, Canarie, BCKDF, Canada; Marie Skłodowska-Curie, COST, ERDF, ERC, Horizon 2020, European Union; ANR, Investissements d’Avenir Labex and Idex, France; AvH, DFG, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF, GIF, Israel; PROMETEO Programme Generalitat Valenciana, CERCA Generalitat de Catalunya, Spain; Leverhulme Trust, The Royal Society, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [59].
References

3Department of Physics, University of Alberta, Edmonton AB; Canada.
4\(^{(a)}\)Department of Physics, Ankara University, Ankara;\(^{(b)}\)Istanbul Aydin University, Istanbul;\(^{(c)}\)Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey.
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
6High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7Department of Physics, University of Arizona, Tucson AZ; United States of America.
8Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
9Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
10Physics Department, National Technical University of Athens, Zografou; Greece.
11Department of Physics, University of Texas at Austin, Austin TX; United States of America.
12\(^{(a)}\)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul;\(^{(b)}\)Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul;\(^{(c)}\)Department of Physics, Bogazici University, Istanbul;\(^{(d)}\)Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
13Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
14Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain.
15\(^{(a)}\)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;\(^{(b)}\)Physics Department, Tsinghua University, Beijing;\(^{(c)}\)Department of Physics, Nanjing University, Nanjing;\(^{(d)}\)University of Chinese Academy of Science (UCAS), Beijing; China.
16Institute of Physics, University of Belgrade, Belgrade; Serbia.
17Department for Physics and Technology, University of Bergen, Bergen; Norway.
18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America.
19Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
21School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogota; Colombia.
23\(^{(a)}\)INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica;\(^{(b)}\)INFN Sezione di Bologna; Italy.
24Physikalisches Institut, Universität Bonn, Bonn; Germany.
25Department of Physics, Boston University, Boston MA; United States of America.
26Department of Physics, Brandeis University, Waltham MA; United States of America.
27\(^{(a)}\)Transilvania University of Brasov, Brasov;\(^{(b)}\)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest;\(^{(c)}\)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi;\(^{(d)}\)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca;\(^{(e)}\)University Politehnica Bucharest, Bucharest;\(^{(f)}\)West University in Timisoara, Timisoara; Romania.
28\(^{(a)}\)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava;\(^{(b)}\)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31California State University, CA; United States of America.
32Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
33\(^{(a)}\)Department of Physics, University of Cape Town, Cape Town;\(^{(b)}\)Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg;\(^{(c)}\)Pretoria;\(^{(d)}\)School of Physics, University of the Witwatersrand, Johannesburg; South Africa.
Department of Physics, Carleton University, Ottawa ON; Canada.

(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca;
(b) Faculté des Sciences, Université Ibn-Tofail, Kénitra;
(c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech;
(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda;
(e) Faculté des sciences, Université Mohammed V, Rabat; Morocco.

CERN, Geneva; Switzerland.

Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.

LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.

Nevis Laboratory, Columbia University, Irvington NY; United States of America.

Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.

(a) Dipartimento di Fisica, Università della Calabria, Rende;
(b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.

Physics Department, Southern Methodist University, Dallas TX; United States of America.

Physics Department, University of Texas at Dallas, Richardson TX; United States of America.

National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.

(a) Department of Physics, Stockholm University;
(b) Oskar Klein Centre, Stockholm; Sweden.

Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.

Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany.

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.

Department of Physics, Duke University, Durham NC; United States of America.

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.

INFN e Laboratori Nazionali di Frascati, Frascati; Italy.

Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.

II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.

Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

(a) Dipartimento di Fisica, Università di Genova, Genova;
(b) INFN Sezione di Genova; Italy.

II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany.

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.

LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America.

(a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei;
(b) Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao;
(c) School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai;
(d) Tsung-Dao Lee Institute, Shanghai; China.

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg;
(b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan.

(a) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong;
(b) Department of Physics, University of Hong Kong, Hong Kong;
(c) Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.

Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.

Department of Physics, Indiana University, Bloomington IN; United States of America.

(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine;
(b) ICTP, Trieste;
(c) Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.

INFN Sezione di Lecce;
(b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.
68(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano; Italy.
69(a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli; Italy.
70(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia; Italy.
71(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.
72(a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.
73(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.
74(a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.
75(a) INFN-TIFPA; (b) Università degli Studi di Trento, Trento; Italy.
76 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.
77 Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.
78 Joint Institute for Nuclear Research, Dubna; Russia.
79 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.
80(a) Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.
81 KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.
82 Graduate School of Science, Kobe University, Kobe; Japan.
83 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.
84 Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.
85 Faculty of Science, Kyoto University, Kyoto; Japan.
86 Kyoto University of Education, Kyoto; Japan.
87 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.
88 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.
89 Physics Department, Lancaster University, Lancaster; United Kingdom.
90 Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.
91 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.
92 School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.
93 Department of Physics, Royal Holloway University of London, Egham; United Kingdom.
94 Department of Physics and Astronomy, University College London, London; United Kingdom.
95 Louisiana Tech University, Ruston LA; United States of America.
96 Physics Department, University of Michigan, Ann Arbor MI; United States of America.
97 Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
America.

107 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.
108 Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.
109 Group of Particle Physics, University of Montreal, Montreal QC; Canada.
110 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.
111 National Research Nuclear University MEPhI, Moscow; Russia.
112 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.
113 Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.
114 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.
115 Nagasaki Institute of Applied Science, Nagasaki; Japan.
116 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.
117 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.
118 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.
119 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.
120 Department of Physics, Northern Illinois University, DeKalb IL; United States of America.
121 (a) Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk; (b) Novosibirsk State University Novosibirsk; Russia.
122 Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia.
123 Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow; Russia.
124 Department of Physics, New York University, New York NY; United States of America.
125 Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.
126 Ohio State University, Columbus OH; United States of America.
127 Faculty of Science, Okayama University, Okayama; Japan.
128 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.
129 Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
130 Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic.
131 Center for High Energy Physics, University of Oregon, Eugene OR; United States of America.
132 LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.
133 Graduate School of Science, Osaka University, Osaka; Japan.
134 Department of Physics, University of Oslo, Oslo; Norway.
135 Department of Physics, Oxford University, Oxford; United Kingdom.
136 LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris; France.
137 Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
138 Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia.
139 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.
140 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; (b) Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Departamento de Física, Universidade de Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teórica y del Cosmos, Universidad de
Granada, Granada (Spain); (g) Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica; (h) Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.

141 Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.

142 Czech Technical University in Prague, Prague; Czech Republic.

143 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.

144 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.

145 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.

146 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.

147 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Universidad Andres Bello, Department of Physics, Santiago; (c) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.

148 Department of Physics, University of Washington, Seattle WA; United States of America.

149 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.

150 Department of Physics, Shinshu University, Nagano; Japan.

151 Department Physik, Universität Siegen, Siegen; Germany.

152 Department of Physics, Simon Fraser University, Burnaby BC; Canada.

153 SLAC National Accelerator Laboratory, Stanford CA; United States of America.

154 Physics Department, Royal Institute of Technology, Stockholm; Sweden.

155 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.

156 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.

157 School of Physics, University of Sydney, Sydney; Australia.

158 Institute of Physics, Academia Sinica, Taipei; Taiwan.

159 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.

160 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.

161 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.

162 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.

163 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.

164 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.

165 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.

166 Tomsk State University, Tomsk; Russia.

167 Department of Physics, University of Toronto, Toronto ON; Canada.

168 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON; Canada.

169 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.

170 Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.

171 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.

172 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.

173 Department of Physics, University of Illinois, Urbana IL; United States of America.

174 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.

175 Department of Physics, University of British Columbia, Vancouver BC; Canada.
Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.

Department of Physics, University of Warwick, Coventry; United Kingdom.

Waseda University, Tokyo; Japan.

Department of Particle Physics, Weizmann Institute of Science, Rehovot; Israel.

Department of Physics, University of Wisconsin, Madison WI; United States of America.

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.

Department of Physics, Yale University, New Haven CT; United States of America.

Yerevan Physics Institute, Yerevan; Armenia.

Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.

Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town; South Africa.

Also at CERN, Geneva; Switzerland.

Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

Also at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona; Spain.

Also at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.

Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah; United Arab Emirates.

Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.

Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.

Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.

Also at Department of Physics, California State University, East Bay; United States of America.

Also at Department of Physics, California State University, Fresno; United States of America.

Also at Department of Physics, California State University, Sacramento; United States of America.

Also at Department of Physics, King’s College London, London; United Kingdom.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.

Also at Department of Physics, Stanford University, Stanford CA; United States of America.

Also at Department of Physics, University of Adelaide, Adelaide; Australia.

Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.

Also at Department of Physics, University of Michigan, Ann Arbor MI; United States of America.

Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.

Also at Giresun University, Faculty of Engineering, Giresun; Turkey.

Also at Graduate School of Science, Osaka University, Osaka; Japan.

Also at Hellenic Open University, Patras; Greece.

Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.

Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.
Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; China.

Also at Institute of Particle Physics (IPP), Vancouver; Canada.

Also at Institute of Physics, Academia Sinica, Taipei; Taiwan.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.

Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.

Also at Istanbul University, Dept. of Physics, Istanbul; Turkey.

Also at Joint Institute for Nuclear Research, Dubna; Russia.

Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.

Also at Louisiana Tech University, Ruston LA; United States of America.

Also at LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris; France.

Also at Manhattan College, New York NY; United States of America.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

Also at National Research Nuclear University MEPhI, Moscow; Russia.

Also at Physics Department, An-Najah National University, Nablus; Palestine.

Also at Physics Dept, University of South Africa, Pretoria; South Africa.

Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.

Also at School of Physics, Sun Yat-sen University, Guangzhou; China.

Also at The City College of New York, New York NY; United States of America.

Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.

Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

Also at TRIUMF, Vancouver BC; Canada.

Also at Universita di Napoli Parthenope, Napoli; Italy.

* Deceased