Contents

I Quantum Fields and Renormalization

1. Why Quantum Field Theory? 3
 1.1 Historical Perspective 3
 1.2 Strong Interactions 6
 1.3 Weak Interactions 8
 1.4 Gravitational Interaction 9
 1.5 Gauge Revolution 11
 1.6 Unification 14
 1.7 Action Principle 16
 1.8 From First to Second Quantization 21
 1.9 Noether’s Theorem 23
 1.10 Exercises 30

2. Symmetries and Group Theory 33
 2.1 Elements of Group Theory 33
 2.2 $SO(2)$ 35
 2.3 Representations of $SO(2)$ and $U(1)$ 39
 2.4 Representations of $SO(3)$ and $SU(2)$ 42
 2.5 Representations of $SO(N)$ 45
 2.6 Spinors 48
 2.7 Lorentz Group 49
 2.8 Representations of the Poincaré Group 53
 2.9 Master Groups and Supersymmetry 56
 2.10 Exercises 58

3. Spin-0 and $\frac{1}{2}$ Fields 61
 3.1 Quantization Schemes 61
 3.2 Klein-Gordon Scalar Field 63
 3.3 Charged Scalar Field 69
 3.4 Propagator Theory 72
 3.5 Dirac Spinor Field 77
 3.6 Quantizing the Spinor Field 86
3.7 Weyl Neutrinos 93
3.8 Exercises 95

4. Quantum Electrodynamics 99
4.1 Maxwell's Equations 99
4.2 Relativistic Quantum Mechanics 102
4.3 Quantizing the Maxwell Field 106
4.4 Gupta–Bleuler Quantization 112
4.5 C, P, and T Invariance 115
 4.5.1 Parity 116
 4.5.2 Charge Conjugation 117
 4.5.3 Time Reversal 119
4.6 CPT Theorem 120
4.7 Exercises 123

5. Feynman Rules and LSZ Reduction 127
5.1 Cross Sections 127
5.2 Propagator Theory and Rutherford Scattering 134
5.3 LSZ Reduction Formulas 141
5.4 Reduction of Dirac Spinors 145
5.5 Time Evolution Operator 147
5.6 Wick's Theorem 151
5.7 Feynman's Rules 156
5.8 Exercises 159

6. Scattering Processes and the S Matrix 163
6.1 Compton Effect 163
6.2 Pair Annihilation 170
6.3 Møller Scattering 173
6.4 Bhabha Scattering 176
6.5 Bremsstrahlung 177
6.6 Radiative Corrections 184
6.7 Anomalous Magnetic Moment 189
6.8 Infrared Divergence 194
6.9 Lamb Shift 196
6.10 Dispersion Relations 199
6.11 Exercises 204

7. Renormalization of QED 209
7.1 The Renormalization Program 209
7.2 Renormalization Types 212
 7.2.1 Nonrenormalizable Theories 213
 7.2.2 Renormalizable Theories 215
Contents

7.2.3 Super-renormalizable Theories 216
7.2.4 Finite Theories 217
7.3 Overview of Renormalization in ϕ^4 Theory 218
7.4 Overview of Renormalization in QED 227
7.5 Types of Regularization 235
7.6 Ward–Takahashi Identities 243
7.7 Overlapping Divergences 247
7.8 Renormalization of QED 250
7.8.1 Step One 250
7.8.2 Step Two 251
7.8.3 Step Three 252
7.8.4 Step Four 254
7.9 Exercises 256

II Gauge Theory and the Standard Model

8. Path Integrals 261
8.1 Postulates of Quantum Mechanics 261
8.1.1 Postulate I 262
8.1.2 Postulate II 262
8.2 Derivation of the Schrödinger Equation 272
8.3 From First to Second Quantization 273
8.4 Generator of Connected Graphs 279
8.5 Loop Expansion 284
8.6 Integration over Grassmann Variables 285
8.7 Schwinger–Dyson Equations 288
8.8 Exercises 291

9. Gauge Theory 295
9.1 Local Symmetry 295
9.2 Faddeev–Popov Gauge Fixing 298
9.3 Feynman Rules for Gauge Theory 304
9.4 Coulomb Gauge 307
9.5 The Gribov Ambiguity 311
9.6 Equivalence of the Coulomb and Landau Gauge 314
9.7 Exercises 318

10. The Weinberg–Salam Model 321
10.1 Broken Symmetry in Nature 321
10.2 The Higgs Mechanism 326
10.3 Weak Interactions 333
10.4 Weinberg–Salam Model 335
10.5 Lepton Decay 338
10.6 R_ξ Gauge 342
10.7 't Hooft Gauge 345
10.8 Coleman–Weinberg Mechanism 348
10.9 Exercises 357

11. The Standard Model 363
11.1 The Quark Model 363
11.2 QCD 374
 11.2.1 Spin-Statistics Problem 375
 11.2.2 Pair Annihilation 376
 11.2.3 Jets 376
 11.2.4 Absence of Exotics 377
 11.2.5 Pion Decay 378
 11.2.6 Asymptotic Freedom 378
 11.2.7 Confinement 378
 11.2.8 Chiral Symmetry 379
 11.2.9 No Anomalies 380
11.3 Jets 380
11.4 Current Algebra 384
11.5 PCAC and the Adler–Weisberger Relation 389
 11.5.1 CVC 390
 11.5.2 PCAC 391
 11.5.3 Adler–Weisberger Relation 393
11.6 Mixing Angle and Decay Processes 396
 11.6.1 Purely Leptonic Decays 397
 11.6.2 Semileptonic Decays 397
 11.6.3 Nonleptonic Decays 398
11.7 GIM Mechanism and Kobayashi–Maskawa Matrix 399
11.8 Exercises 403

12. Ward Identities, BRST, and Anomalies 407
12.1 Ward–Takahashi Identity 407
12.2 Slavnov–Taylor Identities 411
12.3 BRST Quantization 412
12.4 Anomalies 414
12.5 Non-Abelian Anomalies 419
12.6 QCD and Pion Decay into Gamma Rays 420
12.7 Fujikawa’s Method 424
12.8 Exercises 429

13. BPHZ Renormalization of Gauge Theories 431
13.1 Counterterms in Gauge Theory 431
13.2 Dimensional Regularization of Gauge Theory 436
13.3 BPHZ Renormalization 441
13.4 Forests and Skeletons 447
13.5 Does Quantum Field Theory Really Exist? 451
13.6 Exercises 456

14. QCD and the Renormalization Group 459
14.1 Deep Inelastic Scattering 459
14.2 Parton Model 463
14.3 Neutrino Sum Rules 467
14.4 Product Expansion at the Light-Cone 470
14.5 Renormalization Group 476
14.6 Asymptotic Freedom 483
14.7 Callan–Symanzik Relation 485
14.8 Minimal Subtraction 488
14.9 Scale Violations 491
14.10 Renormalization Group Proof 494
 14.10.1 Step One 496
 14.10.2 Step Two 497
 14.10.3 Step Three 497
14.11 Exercises 499

III Nonperturbative Methods and Unification

15. Lattice Gauge Theory 505
15.1 The Wilson Lattice 505
15.2 Scalars and Fermions on the Lattice 508
15.3 Confinement 512
15.4 Strong Coupling Approximation 514
15.5 Monte Carlo Simulations 517
15.6 Hamiltonian Formulation 521
15.7 Renormalization Group 523
15.8 Exercises 524

16. Solitons, Monopoles, and Instantons 529
16.1 Solitons 529
 16.1.1 Example: ϕ^4 531
 16.1.2 Example: Sine–Gordon Equation 533
 16.1.3 Example: Nonlinear O(3) Model 536
16.2 Monopole Solutions 539
16.3 ’t Hooft–Polyakov Monopole 543
16.4 WKB, Tunneling, and Instantons 545
16.5 Yang–Mills Instantons 554
16.6 θ Vacua and the Strong CP Problem 559
16.7 Exercises 566
17. Phase Transitions and Critical Phenomena
 17.1 Critical Exponents
 17.2 The Ising Model
 17.2.1 XYZ Heisenberg Model
 17.2.2 IRF and Vertex Models
 17.3 Yang–Baxter Relation
 17.4 Mean-Field Approximation
 17.5 Scaling and the Renormalization Group
 17.5.1 Step One
 17.5.2 Step Two
 17.5.3 Step Three
 17.5.4 Step Four
 17.6 ϵ Expansion
 17.7 Exercises

18. Grand Unified Theories
 18.1 Unification and Running Coupling Constants
 18.2 $SU(5)$
 18.3 Anomaly Cancellation
 18.4 Fermion Representation
 18.5 Spontaneous Breaking of $SU(5)$
 18.6 Hierarchy Problem
 18.7 $SO(10)$
 18.8 Beyond GUT
 18.8.1 Technicolor
 18.8.2 Preons or Subquarks
 18.8.3 Supersymmetry and Superstrings
 18.9 Exercises

19. Quantum Gravity
 19.1 Equivalence Principle
 19.2 Generally Covariant Action
 19.3 Vierbeins and Spinors in General Relativity
 19.4 GUTs and Cosmology
 19.5 Inflation
 19.6 Cosmological Constant Problem
 19.7 Kaluza–Klein Theory
 19.8 Generalization to Yang–Mills Theory
 19.9 Quantizing Gravity
 19.10 Counterterms in Quantum Gravity
 19.11 Exercises
20. Supersymmetry and Supergravity 663

- **20.1 Supersymmetry** 663
- **20.2 Supersymmetric Actions** 665
- **20.3 Superspace** 669
- **20.4 Supersymmetric Feynman Rules** 680
- **20.5 Nonrenormalization Theorems** 682
- **20.6 Finite Field Theories** 684
- **20.7 Super Groups** 688
- **20.8 Supergravity** 692
- **20.9 Exercises** 696

21. Superstrings 699

- **21.1 Why Strings?** 699
- **21.2 Points versus Strings** 701
- **21.3 Quantizing the String** 705
 - **21.3.1 Gupta–Bleuler Quantization** 705
 - **21.3.2 Light-Cone Gauge** 709
 - **21.3.3 BRST Quantization** 711
- **21.4 Scattering Amplitudes** 712
- **21.5 Superstrings** 717
- **21.6 Types of Strings** 721
 - **21.6.1 Type I** 721
 - **21.6.2 Type IIA** 722
 - **21.6.3 Type IIB** 722
 - **21.6.4 Heterotic String** 722
- **21.7 Higher Loops** 723
- **21.8 Phenomenology** 726
- **21.9 Light-Cone String Field Theory** 730
- **21.10 BRST Action** 732
- **21.11 Exercises** 736

Appendix 741

- **A.1 $SU(N)$** 741
- **A.2 Tensor Products** 743
- **A.3 $SU(3)$** 747
- **A.4 Lorentz Group** 749
- **A.5 Dirac Matrices** 751
- **A.6 Infrared Divergences to All Orders** 755
- **A.7 Dimensional Regularization** 760

Notes 763

References 775

Index 779