IDENTIFICATION OF THE DOUBLY MAGIC NUCLEUS 100Sn AT GANIL.

M.G. SAINT-LAURENT a, R. ANNE a, G. AUGER a, D. BAZIN a, C. BORCEA b, V. BORREL c, J.M. CORRE a, T. DÖRFLER d, A. FOMICHOV e, R. GRZYWACZ f, D. GUILLEMAUD-MUELLER c, R. HUE a, M. HUYSE g, Z. JANAS h, H. KELLER h, M. LEWITOWICZ a, S. LUKYANOV e, A.C. MUELLER c, YU. PENIONZHKEVICH e, M. PFÜTZNER f, F. Pougheon c, K. RYKACZEWSKI f, K. SCHMIDT h, W.D. SCHMIDT-OTT d, O. SORLIN c, J. SZERYPO g, O. TARASOV e, J. WAUTERS g, J. ZYLCZ f

Talk presented in the Tours Symposium on Nuclear Physics II, August 30 – September 2, 1994, Tours, France.
IDENTIFICATION OF THE DOUBLY MAGIC NUCLEUS 100Sn AT GANIL.

M.G. SAINT-LAURENT a, R. ANNE a, G. AUGER a, D. BAZIN a, C. BORCEA b, V. BORREL c, J.M. CORRE a, T. DÖRFLER d, A. FOMICHOV e, R. GRZYWACZ f, D. GUILLEMAUD-MUELLER c, R. HUE a, M. HUYSE g, Z. JANAS h, H. KELLER h, M. LEWITOWICZ a, S. LUKYANOV c, A.C. MUELLER c, YU PENIONZHKEVICH e, M. PFÜTZNER f, F. POUGHEON c, K. RYKACZEWSKI f, K. SCHMIDT h, W.D. SCHMIDT-OTT d, O. SORLIN c, J. SZERYPE g, O. TARASOV e, J. WAUTERS g, J. ZYLCZ f

a GANIL, BP 5027, 14021 Caen Cedex, France
b IAP, Bucharest-Magurele P.O. Box, MG6, Romania
c IPN, 91406 Orsay Cedex, France,
d University of Göttingen, D-3400 Göttingen, Germany
e FLNR, JINR 141980 Dubna, Moscow Region, Russia
f IFD, Warsaw University, 00681Warsaw, Poland
g IKS KU, B-3001 Leuven, Belgium
h GSI, Postfach 110552, D-64220 Darmstadt, Germany

Abstract:

We report on the production of the doubly magic nucleus 100Sn and other proton-rich nuclei in the A~100 region in the reaction 112Sn + natNi at 63MeV/A. The high acceptance device SISSI, the magnetic spectrometers Alpha and LISE3 at GANIL were employed for the collection, separation and infield identification of the different reaction products. The measurements of time-of-flight, energy-loss and kinetic energy at event by event mode allow the mass A, atomic number Z, and charge Q determinations of the reaction products. Over twenty events of 100Sn$^{48+}$ were observed over a period of 44 hours with a primary beam intensity of ~ 2.4pnA.

1- Scientific motivation:

Recently, in April 1994, a first observation of 100Sn was reported [1] in experiment with a 1.1GeV/A 124Xe beam. Also in April 1994, 100Sn was identified in
projectile-fragment separator based experiment at GANIL. On this symposium, we report on this last result. The full description of the experiment is published in [2] for 100Sn and will be published in [3] for other new nuclei.

The 100Sn nucleus, very far from the stability line, is expected to be the heaviest N=Z nuclear system stable against a ground-state proton decay [4]. Theoretical predictions give a half-life $T_{1/2} \approx 0.5$ s. [5], a high decay energy Q_{EC} greater than 7 MeV [6], a proton separation energy S_p less than 3 MeV[6], and a large shell energy gap of about 6.5 MeV [7].

The studies of N=Z and neighboring nuclei in the 100Sn region give information about:

- Magicity of the double closed shell far from the stability line.
- Interaction between protons and neutrons occupying the same shell-model orbits.
- Gamow-Teller (GT) beta decay: $\pi g_9/2 \rightarrow v g_7/2$ [5].

2- Reaction's choice:

![Graph](image)

Fig. 1: Comparison of expected rates of 100Sn per day, predicted by the LISE program, for 112Sn (58MeV/A), 124Xe (44MeV/A) and 127Xe(44MeV/A) incident beams onto Ti target.
To enhance the production of neutron-deficient isotopes, a beam of 63MeV/A of the lightest stable tin isotope 112Sn and a natural Ni target (68.3% 58Ni, 144mg/cm2) were used. The Nickel target was chosen to favourise a high proton to neutron ratio of reaction products and to enhance a cross section for transfer-type reactions. The rare primary beam 112Sn is developed at GANIL in a close and very fruitful collaboration with the Flerov Laboratory of Nuclear Reactions, JINR at Dubna. Fig. 1. shows the comparison of expected rates of 100Sn per day, predicted by the LISE program [8], for 112Sn (58MeV/A), 124Xe (44MeV/A) and 127Xe(44MeV/A) incident beams onto Ti target.

3- Charge state and bp optimization:

In a first experiment (112Sn, 58MeV/nucleon) using the LISE3 spectrometer, we measured a charge state distribution of 112Sn as reported in fig. 2. The charge state distribution of the primary beam after the Ni target was peaked in $Q=49^+$ and $Q=48^+$.

![Graph showing charge state distribution of 112Sn](image)

Fig. 2 : Charge state distribution of 112Sn (58MeV/A) after 89.7mg/cm2 natNi target with 9.5 mg/cm2 12C foil and after 0.81mg/cm2 Al foil.

Systematic and quantitative measurements [9] were performed for the reaction products in order to determine the most abundant charge state and the best brho setting. The production of $^{101-110}$Sn was measured for different charge states and Brho settings. As a consequence in the main experiment performed at the primary beam
energy of 63MeV/A, the charge state Q=Z-2 was chosen and a Brho value of 1.876 Tm. were used to select 100Sn.

4- Experimental setup:

Figure 3 shows the experimental setup used for the identification of 100Sn and neighboring nuclei.

Fig. 3: Schematic diagram of the experimental facilities at GANIL used to produce and identify 100Sn.

4-1 High acceptance device SISSI:

A beam of 63MeV/nucleon of 112Sn$^{46+}$ with an intensity about 110 enA bombarded a 144mg/cm2 Ni target placed in the high acceptance device SISSI (Source d' Ions Secondaires à Solénoïdes Intenses) [10]: A first superconducting solenoid before the target, focuses the incoming beam on the target, producing a very small spot, (\(\phi \) 0.3mm) a second superconducting solenoid with a big angular acceptance collects and refocuses the reaction products. A gain in acceptance of an order of magnitude was obtained compared to the preliminary experiment with LISE3.
The Bp analysis of outgoing fragments was performed by the Alpha[11] and LISE3[12] spectrometers.

4-2 New selection by stripping foil:

To reduce the rate of the light, fully stripped fragments arriving at the final focus of LISE3, a thin mylar foil (1.5μm.) was placed at the intermediate focal point. The role of this foil was to change the charge states of heavy fragments without modifying their velocities. Light fragments, however, remained fully stripped. A change of about 2% in Bp and a corresponding aperture of the Bp slits in the second section of LISE3 reduces strongly the transmission of fully stripped ions and favors that of heavy ones. The remaining unwanted particles were further eliminated by a velocity selection, using the Wien filter [12] located at the end of LISE3.

4-3 Detection:

All selected nuclei were stopped at the last image point of the spectrometer in a telescope consisting of four silicon detectors E1(300μm), E2(300μm), E3(300μm) and E4(500μm) providing energy-loss (ΔE), and total kinetic energy (TKE). Since the ions in the mass region of interest were stopped in the E2 detector, an anticoincidence with the last two silicons was also required. The time of flight (TOF) was measured using a start signal provided by the first Si detector and a stop signal derived from the radio-frequency of the second cyclotron. The magnetic rigidity of the dipoles was measured with nuclear magnetic resonance probes. Finally, a segmented 4π BGO ring [13] surrounding the implantation detector (50% efficiency at 511keV.) was used for detection of prompt gamma-rays to reject events corresponding to reactions in the detectors.

5- Data analysis:

The atomic number is determined by a combination of the energy-loss in the Silicon detector ΔE and time-of-flight (TOF) measurements according to the Bethe formula:

\[Z \sim \sqrt{\frac{\Delta E}{(\frac{1}{\beta^2} - \ln(\frac{5930}{10^2} - 1))}} \]

The charge state Q of each isotope is calculated from the relativistic relation:

\[Q = 3.33 \times 10^{-3} \frac{TKE[MeV] \beta \gamma}{Bp[Tm] (\gamma - 1)} \]

The mass A of each nucleus expressed in a.m.u. is extracted from the equation:

\[A = \frac{Bp[Tm] Q}{3.105 \beta \gamma} \]
To provide very careful calibrations for the energy-loss, total kinetic energy and time-of-flight measurements, the primary 112Sn beam with different charge states from Q=46$^+$ to Q=50$^+$ and different energies, were transmitted by changing the angle of target, without modifying the magnetic rigidity of the beam line. This calibration, which is valid for nuclei in the region of interest, takes into account non linear effects in the electronic chains and the silicon detectors.

6- Results :

6-1 Production and identification of 100Sn :

Fig. 4.a: Mass' distribution of very neutron-deficient Ag, Pd, Rh, and Ru isotopes produced with 112Sn beam at 63MeV/A.
Fig. 4.b: Mass distribution of very neutron-deficient Te, Sb, Sn, In and Cd isotopes produced with 112Sn beam at 63MeV/A.
In fig. 4a and 4b, the mass distributions of Cd, In, Sn, Sb, Te, Ag, Pd, Rh, Ru nuclei selected from Z and A/Q determinations are presented. Over twenty events (summing events found in Q=47\(^{+}\) and Q=48\(^{+}\) charge states) corresponding to \(^{100}\)Sn were observed over a period of 44 hours. Production rates for \(^{100}\)Sn are promising for future half-life and mass measurements. Other nuclei as \(^{87}\)Ru, \(^{89}\)Rh, \(^{91}\)Pd, \(^{98}\)In, \(^{103,104}\)Sb were also identified in this experiment for the first time.

6-2 Search for the isomeric states:

In the preliminary experiment [14] at 58MeV/A incident energy, four large volume (80%-90%) germanium detectors and a NE102 plastic scintillator surrounded the final telescope; they served for measurements of beta and gamma radiation coming from the nuclei implanted in the Silicon detectors. Fig. 5 presents characteristic rays of isomeric states decay observed in coincidence with respective heavy ions. In the second experiment, gamma-rays were detected in the BGO ring in coincidence with heavy fragments. Their analysis is in progress.

Fig. 5: \(\gamma\)-ray spectra following the decay of the isomeric states in a few selected nuclei implanted in the Silicon detectors.
7- Conclusion: Border line of known nuclei near ^{100}Sn:

Fig. 6 displays a section of the chart of nuclei near ^{100}Sn. The last known nuclei are ^{89}Rh [3], ^{91}Pd [3], ^{94}Ag [15,16], ^{97}Cd [17], ^{98}In [18], ^{100}Sn [1,3] ^{103}Sb[3], and ^{106}Te[19]. The theoretical drip line (calculated with the empirical mass formula of Tachibana[20]) is reached for In and Ag isotopes, and is crossed already for Sb and Rh isotopes.

Fig. 6: Part of the chart of nuclei near doubly magic ^{100}Sn

References:

