Radio observations of neutron star binary pulsar systems have constrained strongly the masses of eight neutron stars. Assuming neutron star masses are uniformly distributed between lower and upper bounds m_i and m_u, the observations determine with 95% confidence that $1.01 < m_i/M_\odot < 1.34$ and $1.43 < m_u/M_\odot < 1.64$. These limits give observational support to neutron star formation scenarios that suggest that masses should fall predominantly in the range $1.3 < m_i/M_\odot < 1.6$, and will also be important in the interpretation of binary inspiral observations by the Laser Interferometer Gravitational-Wave Observatory.

PACS numbers: 97.60.Jd, 04.40.Dg, 97.10.Nf

Observational constraints on the neutron star mass distribution

Lee Samuel Finn
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208-3112
(September 21, 1994)

Radio observations of neutron star binary pulsar systems have constrained strongly the masses of eight neutron stars. Assuming neutron star masses are uniformly distributed between lower and upper bounds m_i and m_u, the observations determine with 95% confidence that $1.01 < m_i/M_\odot < 1.34$ and $1.43 < m_u/M_\odot < 1.64$. These limits give observational support to neutron star formation scenarios that suggest that masses should fall predominantly in the range $1.3 < m_i/M_\odot < 1.6$, and will also be important in the interpretation of binary inspiral observations by the Laser Interferometer Gravitational-Wave Observatory.

a. Introduction and Motivation Radio observations of four neutron star - neutron star (ns-ns) binary pulsar systems have constrained the masses of eight neutron stars, and all the masses lie close to $1.35 M_\odot$. This coincidence suggests that natural formation mechanisms restrict the range of ns masses more than limitations due to the nuclear and super-nuclear equation of state. This suggestion also arises in theoretical studies of core collapse supernovae [1]. Here I explore the statistical significance of this coincidence, with the goal of determining nature’s limits on ns masses: in particular, modeling the ns mass distribution as uniform between upper and lower bounds m_u and m_i, I use the observations to determine the joint probability distribution of m_u and m_i.

While noted before [2], the coincidence in measured ns masses has never been subjected to a statistical analysis that treats the observations jointly and accounts for the statistical uncertainties in the mass determinations. Here I use Bayesian statistical techniques to combine the separate observations and determine the probability distribution of the mass bounds.

A second motivation for this study is the anticipated observation of binary ns inspiral by the Laser Interferometer Gravitational-Wave Observatory (LIGO) [3]. LIGO will be sensitive to ns masses in inspiraling binaries [4,5], and interpretation of its observations will require an accurate assessment of our knowledge of the mass distribution in ns-ns binaries [6]. This work is meant to begin that assessment.

b. Summary of relevant observations Observations of binary pulsars 1913+16 and 1534+12 have determined for each system the total mass M and the pulsar companion mass m_c [7,8]. In both cases the companion is believed to be a ns. Similarly, observations of binary pulsars 2127+11C and 2303+46 have determined for each M and the mass function f [9,2]. Assuming a probability density $P(\cos i) = 1/2$ for the orbital inclination angle i limits the mass of the pulsar and its companion, which (for these two systems) is believed to be a ns. Here I assume that the measured f, M, and m_c are distributed independently and normally about the actual \hat{f}, \hat{M}, and \hat{m}_c, where the distribution variances are given by the reported 1 σ uncertainties in f, M, and m_c:

$$P(x|\hat{f}, \hat{M}, \hat{m}_c) = \frac{1}{\sqrt{2\pi} \sigma_x} e^{-\frac{(x-\hat{x})^2}{2\sigma_x^2}}$$

where x is one of f, M, or m_c, and σ_x represents other, unenumerated assumptions that characterize the observations. Tables I and II give the values adopted here for f, m_c, M, σ_f, σ_m, and σ_M of these four systems.

The relationship between f, M, m_c, \hat{f}, \hat{M}, and \hat{m}_c is not as simple as equation (1); however, for small variances the Gaussian approximation is a good one, and in the absence of a detailed description of the fitting procedure that determines f, m_c, and M from the observations the assumption of statistical independence is reasonable. Additionally, numerical investigations show that the final 95% confidence intervals for m_i and m_u are largely independent of the choice of $P(m_c, M|\hat{m}_c, \hat{M}, \hat{f})$ and $P(f, M|\hat{f}, \hat{M}, \hat{I})$.

No other observed binary pulsar is known to have a ns companion. Both f and M have also been determined for PSRs 1555+09 and 1802-07 [10,2]; however, in these systems the companion is thought to be a white

TABLE I. The values adopted for the total mass M, the companion mass m_c, and the standard error of each $(\sigma_M$ and σ_m) of PSR1913+16 and PSR1534+12 [7,8].

|| System | M/M_\odot | σ_M/M_\odot | m_c/M_\odot | σ_m/M_\odot |
|---|---|---|---|---|
| 1913+16 | 2.82827 | 4 \times 10$^{-3}$ | 1.442 | 0.003 |
| 1534+12 | 2.679 | 0.003 | 1.36 | 0.03 |

TABLE II. The values adopted for the mass function f, the total mass M, and the standard error of each $(\sigma_f$ and σ_M) of PSRs 2127+11C and 2303+46 [9,2,17].

|| System | f | σ_f | M/M_\odot | σ_M/M_\odot |
|---|---|---|---|---|
| 2127+11C | 0.15385 | 1.8 \times 10$^{-3}$ | 2.86 | 3.6 \times 10$^{-3}$ |
| 2303+46 | 0.346387 | 6.7 \times 10$^{-6}$ | 2.57 | 0.08 |

TABLE III. The values adopted for the mass function f, the total mass M, and the standard error of each $(\sigma_f$ and σ_M) of PSRs 2127+11C and 2303+46 [9,2,17].

|| System | f | σ_f | M/M_\odot | σ_M/M_\odot |
|---|---|---|---|---|
| 2127+11C | 0.15385 | 1.8 \times 10$^{-3}$ | 2.86 | 3.6 \times 10$^{-3}$ |
| 2303+46 | 0.346387 | 6.7 \times 10$^{-6}$ | 2.57 | 0.08 |
The probability density $P(m, u | I)$ is defined as

$$P(m, u | I) = \frac{P(g|m, u, I)}{P(g|I)} P(m, u | I).$$

(2)

The probability density $P(m, u | I)$ represents our prior knowledge of the upper and lower bounds m_u and m_l. Imposing here only the most conservative theoretical constraints: causality and general relativity together provide that neutron stars cannot be more massive than $M_\text{n} \approx 3 M_\odot$ \cite{13,14}, and our understanding of the subnuclear density equation of state provides that they are not less massive than $M_\text{n} \approx 0.1 M_\odot$ \cite{15}. As a result, $M_u > m_u > m_l > M_l$. Theory providing no further clear guidance, assume that within these constraints all pairs (m_l, m_u) are equally likely; thus

$$P(m, u | I) = \frac{2}{(M_u - M_l)^2}$$

for $M_l < m_l < m_u < M_u$ and 0 otherwise.

For a given set of observations $\{g\}$, $P(\{g\}|I)$ is a constant whose value must be such that

$$1 = \int_{M_l}^{M_u} dm \int_{m_l}^{m_u} dm_u P(m, u | \{g\}, I).$$

(4)

Thus, once $P(\{g\}|m_l, m_u, I)$ is known, $P(m_l, m_u | \{g\}, I)$ is determined through this normalization integral and there is no need to find $P(\{g\}|I)$ separately.

To evaluate $P(\{g\}|m_l, m_u, I)$, note that the observations of each binary pulsar system are independent; consequently,

$$P(\{g\}|m_l, m_u, I) = \prod_n P(g_n|m, u, I)$$

(5)

where g_n represents the observation of system n. The form of $P(g_n|m_l, m_u, I)$ is determined by the character of the observation g_n. For PSRs 1913+16 and 1534+12, we need the joint probability distribution $P(m, M|m_l, m_u, I)$ of the observed companion mass m_c and total mass M for fixed m_l and m_u. Using Bayes law, this distribution can be expressed as an integral over $P(m, M|m, u, I)$ (cf. eq. 1):

$$P(m, M|m_l, m_u, I) = \int \int d\tilde{m}_c d\tilde{M} P(m_c, M|\tilde{m}_c, \tilde{M}, I) P(\tilde{m}_c, \tilde{M}|m, u, I)$$

(6)

where $P(\tilde{m}_c, \tilde{M}|m, u, I) = (m_u - m_l)^{-2}$.

For PSRs 2127+11C and 2303+46, we need the distribution $P(f, M|m_l, m_u, I)$ of the observed mass function f and total mass M for fixed m_l and m_u. This distribution can be expressed as an integral over $P(f, M|\tilde{f}, \tilde{M}, I)$ (cf. eq. 1):

$$P(f, M|m_l, m_u, I) = \int \int d\tilde{f} d\tilde{M} P(f, M|\tilde{f}, \tilde{M}, I) P(\tilde{f}, \tilde{M}|m, u, I)$$

(7)

To evaluate $P(\tilde{f}, \tilde{M}|m_l, m_u, I)$, write it as

$$P(\tilde{f}, \tilde{M}|m_l, m_u, I) = P(\tilde{f}|\tilde{M}|m_l, m_u, I) P(\tilde{M}|m_l, m_u, I).$$

(8)

The two probability densities on the right-hand side can be calculated separately.
interpreting observations of binary pulsars systems in the context of a model for the pulsar mass distribution. While I have excluded X-ray binaries from the analysis presented here (cf. sec. b), it is worth noting that the inferred mass of the Vela X-1 ns is greater than 1.50 M\(_\odot\) with 95% probability [11]. An upper limit m_\(u\) on the constrains provided by observations of PSRs 1534+12 and 1913+16.

FIG. 1. Assuming ns masses are uniformly distributed between \(m_1\) and \(m_u\), observations of PSRs 1534+12, 1913+16, 2127+11C, and 2303+46 determine the joint probability distribution for \(m_1\) and \(m_u\). Shown here are contours enclosing regions of 68% (dotted) and 95% (solid) of this distribution.

FIG. 2. As in figure 1, except that the contours are based on the constraints provided by observations of PSRs 1534+12 and 1913+16.
greater than this is consistent with our results even at the 68% confidence level; however, \(m_2 \) greater than the most likely value of the Vela X-1 ns mass estimated by [11] (1.85 \(M_\odot \)) lies outside the 95% confidence interval estimated here.

LIGO will be extremely sensitive to the “chirp mass” \(M = (m_1 m_2)^{3/5}(m_1 + m_2)^{-1/5} \) of an inspiraling binary system, but less sensitive to the individual masses [4,5]. In the same manner that our prior knowledge that ns masses could in no case be greater than 3 \(M_\odot \) or less than 0.1 \(M_\odot \) played a role in this analysis (cf. eq. 2, 3 and intervening text), so our understanding of the range and distribution of ns masses gained from this exercise will play a role in determining the confidence intervals for measurements of \(M, m_1, \) and \(m_2 \) using LIGO observations. An accurate assessment of our prior knowledge is especially important in determining when a signal is sufficiently strong that it refines our understanding as opposed to affirming our existing prejudices.

The ns sample used in this survey is highly selected: only components of ns-ns binary pulsar systems are included. In addition to the exclusion of X-ray binaries and isolated neutron stars, this means that half the sample are pulsars. It is believed that isolated, non-millisecond pulsars are a fraction \(10^{-4} \) of neutron stars, and that ns-binary pulsars number approximately 1/10 of these [16]. Since the mass distribution of the ns sub-population considered here may not be representative of neutron stars generally, application of these results to isolated neutron stars must be made cautiously. Without good estimates of the how the mass distributions of these different populations may differ it is not possible to estimate the effects of these selection biases. Nevertheless, it is clear that the homogeneous subset of neutron stars considered here has, with high confidence, a range of masses restricted in a way that our understanding of ns and binary system formation and evolution do not, but eventually must, confront.

I am grateful to Sterl Phinney and Steve Thorsett for helpful conversations. This work was supported by the Alfred P. Sloan Foundation and the National Science Foundation (PHY 9308728).
