Support for HTCondor high-throughput computing workflows in the REANA reusable analysis platform

Rokas Mačiulaitis
Paul Brenner
Scott Hampton
Michael D. Hildreth
Kenji Paolo Hurtado Anampa
Irena Johnson
Cody Kankel
Jan Okraska
Diego Rodriguez
Tibor Šimko

CERN
University of Notre Dame
CERN
CERN
CERN

Switzerland
United States
United States
United States
United States
United States
Switzerland
Switzerland
Switzerland

rokas.maciulaitis@cern.ch
paul.r.brenner@nd.edu
shampton@nd.edu
mhildreth@nd.edu
johnson@nd.edu
ckankel@nd.edu
jan.okraska@cern.ch
diego.rodriguez@cern.ch
tibor.simko@cern.ch

www.reana.io

The typical interaction between the REANA-Job-Controller component and the remote HTCondor computing backend involves three steps:

1. Job submission + transferring input files.
2. Job monitoring
3. Transferring back output files.

Extending REANA with HTCondor for high-throughput computing or Slurm for high-performance computing. The abstraction regards job submission and execution, job status monitoring, and the input/output data transfer amongst supported backends.

Validation

The designed solution was prototyped in the REANA platform using the CERN HTCondor cluster. When a user specifies that a certain workflow job is to be run on the HTCondor backend, the REANA-Job-Controller container takes care of job parameter translation for the targeted compute backend. The developed prototype was tested by means of running several particle physics model analyses. The configurable level of “map-reduce” operations in the DAG workflow graph allows to further study the scalability of the solution.

We have furthermore integrated REANA with the Virtual Clusters for Community Computation (VC3) environment. We have developed Ansible templates allowing individual users to deploy the personal REANA system in a VC3 environment. Our design was thus validated by means of two independent deployment scenarios.

Example workflow

This REANA reproducible analysis example studies the Higgs-to-four-lepton decay channel that led to the Higgs boson experimental discovery in 2012. The example uses CMS open data taken in 2011 and 2012.

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

https://github.com/reanahub/reana-demo-cms-h4l