A gateway between GitLab CI and LHCbDIRAC

C.Burr, B.Couturier on behalf of the LHCb Collaboration

24th International Conference on Computing in High Energy and Nuclear Physics
4-8 November 2019, Adelaide, Australia

c.burr@cern.ch   ben.couturier@cern.ch

The problem

Why implement a gateway between GitLab CI and LHCbDIRAC?

The LHCb experiment uses GitLab\(^1\) to manage its physics software lifecycle. While standard GitLab CI (Continuous Integration) runners are appropriate to run unit tests or small test jobs, data analysis production jobs validation is CPU intensive and exceeds the capacities of standard runners with test runtimes varying from a few minutes to a tens of hours.

⇒ Hence the idea to run GitLab CI jobs on the WLCG\(^2\) (using LHCb’s grid middleware, LHCbDIRAC).

LHCbDIRAC is developed in Python and based on the DIRAC\(^3\) Interwae. Interfacing them meant:

- Using the GitLab REST\(^4\) API to interact with the GitLab server i.e.
  - Get the next CI job to run for a given project, including all parameters known to GitLab
  - Report on the status of the job (must run frequently else GitLab may consider the job as stuck)
  - Terminate the job and push artefacts back to the server
- Managing the CI jobs in a reliable and scalable manner
  - A production grade task queue system is appropriate way to solve this issue

The LHCb-ci-runner system

System design

- The lhcb-ci-runner standalone package was developed to interface with the GitLab REST API to ease those operations
- Use of the Celery\(^5\) distributed task queue system.
- Celery internally uses the RabbitMQ\(^6\) messaging system.
- A Web Frontend using Flask\(^7\) allows users to manage the projects and tokens.
- Runner code must be implemented as a python package deployed on PyPI
- Plugins can be added dynamically using Python entry points

Deployment

- Deployed on CERN’s instance of the Redhat OpenShift\(^8\) Container platform to ensure the scalability of the system.
- To avoid single points of failure, a RabbitMQ cluster could be created for higher reliability.
- Flask Web Frontend as a container in the same openshift project.
- Data kept on a volume in openshift or a CERN DBOnDemand MySQL instance.

Security considerations

- The GitLab project manager needs to request a token from GitLab to pass it to the system using the web frontend
- GitLab is trusted by the gateway to provide the appropriate credentials when connecting to LHCbDIRAC (trust between the GitLab instance and LHCbDIRAC is therefore essential)
- Authenticated CERN GitLab users are mapped to Grid credentials using the VOMS API

Current prototype and applications

Analysis productions

- The current prototype allows testing running test productions on the grid using LHCbDIRAC
- Allows a dynamic number of jobs to be launched, one per dataset processed (not possible with standard GitLab runners)
- Status summary reported to GitLab CI, additional logs and output for each production can be found in a dedicated web app

PyPI deployment

- Many PyPI packages created for LHCb core software
- Provides centralised storage of PyPI credentials
- Removes overhead to allow for faster deployment

Documentation deployment

- The documentation can be prepared using Sphinx
- In the GitLab CI job
- Deployed to S3 using the appropriate credentials

CVMFS deployment

- Packages to deploy can be prepared in the CI job
- A specific PyPI package will be used by the runner to send a message to the installation queue

Current prototype and applications

A prototype has been developed that shows that it is possible to develop a reliable gateway between GitLab CI and LHCbDIRAC. This allows for a more scalable and extensible allocation of resources for the CI jobs. The components developed are however generic and not restricted to running jobs on LHCbDIRAC: they can be used to run CI jobs on any resource available, independently of the LHCb software stack.

---

1. GitLab https://about.gitlab.com/
2. WLCG https://wlcg.web.cern.ch/
3. DIRAC http://diracgrid.org/
4. RabbitMQ https://www.rabbitmq.com
5. Celery distributed task queue http://www.celeryproject.org
7. Redhat Openshift https://www.openshift.com
8. Web sequence diagrams https://www.websequencediagrams.com/