RAPID X-RAY SPECTRAL VARIABILITY IN NGC 3227

A. Ptak, T. Yaqoob, P.J. Serlemitsos, R. Mushotzky, and C. Otani
RAPID X-RAY SPECTRAL VARIABILITY IN NGC 3227

A. Ptak1, T. Yaqoob2, P.J. Serlemitsos, R. Mushotzky, and C. Otani3

Code 666
X-ray Astrophysics Branch
Laboratory for High Energy Astrophysics
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 USA

Accepted for publication in ApJ (Letters)

1Also University of Maryland, College Park
2Also Universities Space Research Association
3Institute of Space and Astronautical Science,
Yoshinodai, Sagamihara, Kanagawa 229, Japan
Abstract

We present preliminary results of an *ASCA* observation of the Seyfert 1 galaxy, NGC 3227. The source exhibits rapid X-ray amplitude and spectral variability, the flux below ~ 2 keV varying by a factor of 3 in ~ 10,000 s while the flux in the 2–10 keV band varies by a factor of ~ 2 in the same interval. The spectrum below ~ 1 keV shows complex structure compared to a simple power-law model. We argue that the simplest interpretation of the spectrum is in terms of a power-law continuum modified by absorption in a photoionized medium. Simple, static, ionized absorber models yield an ionization parameter of ~ 0.05 and column density ~ 3.6 \times 10^{21} \text{ cm}^{-2}. However, the data strongly indicate that the situation is much more complex than this. If the spectral variability is caused by a changing ionization state of the absorber, then both the ionization state and column density are required to decrease as the intrinsic source luminosity increases. This does not have a simple physical interpretation. On the other hand the data are also consistent with the spectral variability being due to changes in the intrinsic power-law index with little change in the ionization state of the absorber. This case could correspond to an absorber which is always in some average ionization state and the continuum variability is too fast for the absorber to deviate significantly from that, or the absorber could be in the form of an X-ray heated wind.

Subject headings: galaxies: individual (NGC 3227) – galaxies: Seyfert – X-rays: galaxies
1. Introduction

Two very important X-ray diagnostics of active galactic nuclei (AGN) are (i) complex spectral features and (ii) spectral variability. Recent data point to similar, prominent absorption structures below ~ 1 keV or so in several AGN which are thought to be signatures of a photoionized medium in the line-of-sight (e.g. Nandra & Pounds 1992; Turner et al. 1993; Fabian et al. 1994). The location and physical structure of this so-called 'warm absorber' is, as yet, not well understood. Work in obtaining precise measurements of the parameters of the putative warm absorber has only just begun since it demands the good energy resolution, broad bandpass and high sensitivity of ASCA. If we can measure its distance from the central engine, its density, temperature and size we can begin to assess its role as a component of models of the active nucleus.

The other diagnostic, spectral variability, has been reported for several AGN on timescales of ~ 1 day or greater. These tend to be objects which have been frequently monitored, notable examples being NGC 5548 (Nandra et al. 1991), NGC 4151 (Yaqoob et al. 1993) and MCG -6-30-15 (Fabian et al. 1994). Depending on the individual case, spectral variability can provide invaluable information on the X-ray emission mechanism, changing ionization state and/or configuration of X-ray absorbing material in the nucleus, or reprocessing of the primary X-ray emission. In some cases spectral variability may be due to the differential variability of two emission components. Conclusive evidence of rapid spectral variability on timescales of less than a day is much scarcer (a notable example is NGC 4051; Matsuoka et al. 1990). However, the reduced statistics of time-resolved spectra has made it difficult to reach any unambiguous conclusions about the origin of the rapid spectral variability when it has been observed.

NGC 3227 ($z = 0.003$) is a variable low-luminosity Seyfert 1 galaxy with a 2–10 keV intrinsic luminosity measured by EXOSAT (Turner & Pounds 1989) and Ginga (George, Nandra & Fabian 1990) in the range $\sim 0.5 - 2.1 \times 10^{42}$ ergs s$^{-1}$ ($H_0 = 50$ km s$^{-1}$ Mpc$^{-1}$
and \(q_0 = 0 \) throughout this paper). A series of five EXOSAT observations over a period of \(\sim 8 \) months found the ratio of soft flux (\(\sim 0.1 - 1 \) keV) measured by the Low Energy Telescope (LE) to the hard flux (\(\sim 2 - 10 \) keV) measured by the Medium Energy experiment (ME) to be variable by a factor \(\sim 5 \) amongst the set of observations which had a minimum separation of 7 days (Turner \& Pounds 1989). However, the LE had no spectral resolution and the ME had no sensitivity below \(\sim 1 - 2 \) keV so the origin of the spectral variability remained unknown.

2. The ASCA Data

NGC 3227 was observed by ASCA (Tanaka et al. 1994) on 1993 May 8. ASCA has four identical thin-foil, light weight X-ray telescopes (XRT) which focus X-rays onto one of two Solid-state Imaging Spectrometers (SIS) or one of two Gas Imaging Spectrometers (GIS) - see Ohashi et al. 1991). See Tanaka et al. (1994) for a summary of the ASCA mission and focal-plane detectors. The SIS, each of which is comprised of four CCD chips were operated in a mode in which all four chips were exposed (4-CCD mode). Only data from one chip (which contains the majority of the counts) from each SIS is analysed here. SIS data from FAINT and BRIGHT modes were combined. Hereafter, the two SIS sensors are referred to as S0 and S1 and the two GIS sensors as S2 and S3. Data were extracted from each sensor from a circular region centered on the source (typically 3.3' - 4.2' in radius for the SIS and 4.3' for the GIS). Background spectra were taken from annuli centered on the source but far enough away to avoid contamination from the source (suitable radii were selected by examining the radial profile). Typical extracted total count-rates for spectra from the four instruments ranged from \(\sim 0.5 - 0.8 \) cts/s and the background constitutes \(\sim 1 - 3\% \) of the total in the SIS and \(\sim 2 - 3\% \) of the total in the GIS. In the following analysis, all spectra were binned so that there was a minimum of 20 counts per energy bin. This allows us to use the \(\chi^2 \) minimization technique in the spectral fitting process.
Also, since we will be most interested in spectral features below 2 keV in this paper, we will concentrate mainly on data for S0. The remaining three instruments will be used for confirming results and tightening constraints on the continuum. S0 is better calibrated below \(\sim 2 \) keV at the present and there were twice as many counts in S0 than S1 due to the location of the source relative to the optical axes and CCD gaps. Note that since the source is relatively bright, the binning only affects data above 3.6 keV and does not ‘wash out’ spectral features below this energy.

3. Amplitude & Spectral Variability

Figure 1a shows the 0.4–10.0 keV light curve for S0 from which dramatic amplitude variability is clearly evident. The points in the light curve were computed from the count rates in the final, merged good time intervals after data selection, so the bin size is variable, varying from \(\sim 300 \) to 2200 seconds. Using small fixed bin sizes gives poor statistics while large bin sizes can ‘wash out’ variability. The largest amplitude change corresponds to an increase of almost a factor of 2 in \(\sim 10,000 \) s (the second peak in the light curve). Figures 1b and 1c show light curves for S0, in the energy bands 0.4–2 keV and 2–10 keV respectively. The 0.4–2 keV band count rate varies by almost a factor of 3 in \(\sim 10,000 \) s while the 2–10 keV band count rate varies by a factor of 2 in the same interval. Figure 1d shows, for S0, the ratio of the 0.4–2 keV to 2–10 keV count rates versus time and confirms the rapid spectral variability apparent from the individual light curves in Figures 1b and 1c. The hypothesis of a constant softness ratio in Figure 1d results in a \(\chi^2 \) of 59.6 for 33 d.o.f., unacceptable at a level of 99.7%. Note that for the softness ratio, the weighted mean level of the background in the same energy band was first subtracted from each light curve. The same pattern in both amplitude and spectral variability is observed in the light curves for S1-S3.
We extracted two spectra from the S0 data - one when the 0.4–10 keV count rate was between 0–0.6 cts/s (hereafter the ‘low-state’ spectrum) and the other greater than 0.7 cts/s (hereafter the ‘high-state’ spectrum). The same time intervals used to extract the S0 low and high-state spectra were then applied to data from S1–S3 to extract three more pairs of low and high-state spectra. Fitting the ratios of the high-state spectra to the low-state spectra for S0–S3 with a constant gives values of χ² which are unacceptable at levels of 99.8%, 83.1%, 95.9% for S0, S1 and S3 respectively; however the fit for S2 is acceptable with a reduced χ² of 0.9. There may be some mixing between the low and high-state spectra due to statistical fluctuations in the count rate, which would tend to move the results to the constant ratio hypothesis (this effect was also seen when high and low state spectra were selected in S0 using softness rather than intensity as the selection criteria, due to the larger error bars in the softness ratio). Fitting the spectral ratios with a power law gives acceptable fits for all instruments. These fits, along with simulations show that if the continuum is modelled by a simple power law plus absorption, the spectral ratios are consistent with a spectral index change of ~ +0.2 between the low and high states.

4. Spectral Fitting

For either the low or high-state SIS spectra, a simple power-law model with cold, uniform, solar abundance absorption (cross-sections taken from Morrison & McCammon 1983) provides an unacceptable fit, leaving broad structures in the residuals. This can be seen in Figure 2 which shows the ratios of data to model for the S0 low and high state spectra. Evidence for spectral complexity at low energies was in fact suggested by an off-axis ROSAT PSPC observation of NGC 3227 (T. J. Turner, private communication). Also evident in Figure 2 is a prominent Fe Kα emission-line feature between 6-7 keV, first discovered by Ginga (Pounds et al. 1989; George, Nandra & Fabian 1990). In all
the spectral fitting described below, we include it in the models as a Gaussian component whose center energy, intrinsic width and normalization are free parameters. Also note that, unless otherwise stated all parameter errors correspond to a 90% confidence interval for 2 interesting parameters (see Lampton, Margon & Bowyer 1976).

In a preliminary spectral fitting analysis we tried modelling the complex soft X-ray spectrum by adding to the simple power-law plus absorber model (a) another power law, (b) a blackbody and (c) an absorption edge with optical depth $\tau = \tau_0 (E/E_0)^{-3}$. All three model components involve the addition of two free parameters and can qualitatively account for the complexity at low-energies. The χ^2 values of these fits and others discussed below are shown in Table 1. The power law plus blackbody provides a better fit for the high state than the double power law although the low-state S0 spectrum can be fit equally well by both models. The power-law plus absorption-edge model provides a better fit to both the low and high states (compared to the power-law plus blackbody model). For both high and low states the threshold energy and optical depth of the edge are $E_0 \sim 0.7$ keV and $\tau_0 \sim 0.7$. The two-component continuum models leave significant residuals below ~ 0.7 keV which can be modelled by an absorption edge with the same parameters as above (or an emission line, as shown in Table 1). We caution that the precise parameters for the absorption edge should be interpreted with care because there are remaining systematics near the Oxygen edge in the SIS response, of the order of $\sim 5-10\%$. However those residuals are qualitatively different to the ones we are discussing in NGC 3227 and are much smaller. The deviations from the simple power-law model are as much as $\sim 100\%$ and for the two-component models as much as $\sim 70\%$ (see Yaqoob et al. 1994 for a direct comparison with 3C 273 in which no evidence for additional Oxygen absorption is found).

Since the two-component continuum models still require an additional low-energy feature and a simpler, one-component continuum with a similar feature can describe the data equally well, we do not consider two-component continuum models any further. Returning
to the power-law plus absorption edge model, we find that adding another absorption edge is marginally significant (at levels of 97% and 89% for the low and high state respectively). The results of this fit are shown in Table 2. The data, best-fitting model and ratios of data to model are shown in Figure 3. The best-fitting column densities are a factor 2–3 higher than the Galactic value of 0.36×10^{21} cm$^{-2}$ (Stark et al. 1992). The best-fitting values of the edge parameters E_1 and τ_1 are remarkably similar in the low and high states with $E_1 \sim 0.67$ keV and $\tau_1 \sim 0.75$ for both spectra. This edge can be interpreted as being due predominantly to O VI, but its energy is also consistent with N VII. The second edge is likely to be predominantly due to O VII – O VIII although its statistical significance is not high. In passing we note that the Fe K line appears to be broader in the low state. However, this requires further detailed investigation which will be reported in future work. Also, note the rather high value of χ^2 for the high-state fit, despite the good overall fit. The largest contribution to χ^2 comes from a local feature at ~ 4 keV, which when modelled as a notch, reduces χ^2 by 16.6 (two additional parameters). The origin of this feature is unknown (it is not present in S1). Table 2 shows that the photon index, Γ, for the low state is lower than that for the high state, by ~ 0.2, as expected from the spectral ratios. The 90% confidence ranges exclude a single value of Γ. We tightened the constraints on Γ further by repeating the fits using data from all four instruments simultaneously, and this gives $\Gamma = 1.52^{+0.02}_{-0.06}$ for the low state and $\Gamma = 1.65^{+0.04}_{-0.03}$ for the high state.

We measure the ratio of observed flux in the high state to that in the low state to be 1.9 and 1.4 in the 0.4–2 keV and 2–10 keV bands respectively. The corresponding absorption-corrected ratios differ by no more than 5%. Absolute SIS fluxes are at present subject to uncertainties in exposure corrections. However, we estimate the mean 2–10 keV observed flux from S2 and S3 over the entire observation to be $\sim 2.5 \times 10^{-11}$ ergs cm$^{-2}$ s$^{-1}$, corresponding to a 2–10 keV absorption-corrected luminosity of $\sim 1.0 \times 10^{42}$ ergs s$^{-1}$.
5. Warm Absorber

Naturally, the above results suggest an interpretation in terms of the X-ray spectrum being modified by a photoionized absorber in the line-of-sight, which might also explain the apparent change in Γ due to the broader opacity profile of an ionized absorber compared to a neutral one. We therefore fit the S0 data with a power-law plus simple warm-absorber model (as in Yaqoob & Warwick 1991), also including an additional cold absorber. In all the following fits, the best-fitting column density of the cold absorber is always consistent with the Galactic value. Unfortunately, individual fits to the low and high state data give ambiguous results due to the complex interaction of Γ, the ionization parameter (U) and the column density of the warm absorber N_w. However, we can restate the problem in two ways: can the low and high states be fitted simultaneously with (i) the same value of Γ, and (ii) the same value of U and N_w? Excellent fits are obtained for both cases, giving $\chi^2 = 347.8$ (334 d.o.f.) for case (i) and $\chi^2 = 344.6$ (335 d.o.f.) for case (ii). However for case (i), from the low to high states, $\log U$ decreases from $-1.17^{+0.11}_{-0.18}$ to $-1.43^{+0.17}_{-0.16}$ and $\log N_w$ decreases from $21.72^{+0.06}_{-0.10}$ to $21.42^{+0.11}_{-0.11}$. This raises the question as to why N_w should decrease in response to an increase in the luminosity and suggests that the model may be too simple. For case (ii) we get best-fitting parameters $\log U = -1.35^{+0.12}_{-0.14}$, $\log N_w = 21.56^{+0.13}_{-0.12}$, $\Gamma = 1.49^{+0.06}_{-0.07}$ for the low state and $\Gamma = 1.75^{+0.07}_{-0.08}$ for the high state (when U is not held at the same value the best-fitting values of U are still $\log U \sim -1.3$ for both states). Case (ii), which corresponds to the spectral variability being caused by intrinsic power-law index changes with little change in the ionization state of the absorber, again indicates that the simple warm-absorber model is inadequate. This is because for the given change in spectrum and luminosity between the low and high states and for a fixed gas density of the absorber and its distance from the central source, we estimate that the ionization parameter should increase by a factor of ~ 1.7. The real situation may be one in which the absorber is always in some average state of ionization due to the time
required to adjust to the continuum being much longer than the variability timescale of the ionizing continuum. Alternatively, the absorber may be in the form of an X-ray heated wind, in which the density scales as r^{-2} and the ionization parameter is 'frozen in' (Miller, Goodrich & Mathews 1993). Detailed interpretation of these results will be discussed in future work.

The authors wish to thank all the members of the ASCA team who have made this work possible. AP, TY, PJS and RM thank the Institute of Space and Astronautical Science (ISAS) for their hospitality during the summer of 1993 where part of this work was done.
References

Fabian, A. C., et al., 1994, PASJ, 46, L59
Yaqoob, T., et al., 1994, PASJ, 46, L49
Figure Captions

Figure 1
(a) The 0.4–10.0 keV light curve from S0. (b) 0.4–2 keV light curve from S0. (c) 2–10 keV light curve from S0. (d) Ratio of 0.4–2 keV to 2–10 keV count rates for S0.

Figure 2
Ratio of S0 data to simple power-law plus cold-absorber model for (a) the low-state and (b) the high-state.

Figure 3
The S0 data, best-fitting power-law plus absorption-edge models for (a) the low state and (b) the high state. The residuals at 2.1 keV are due to a known artifact in the SIS response.
TABLE 1. χ^2 values for various fits to S0 data

<table>
<thead>
<tr>
<th>Model</th>
<th>Low State</th>
<th>High State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power law</td>
<td>224.6(169)</td>
<td>271.9(167)</td>
</tr>
<tr>
<td>Two Power laws</td>
<td>162.0(167)</td>
<td>215.8(165)</td>
</tr>
<tr>
<td>Two Power laws + Gaussian</td>
<td>143.9(164)</td>
<td>191.1(162)</td>
</tr>
<tr>
<td>Power law + Blackbody</td>
<td>162.5(167)</td>
<td>208.2(165)</td>
</tr>
<tr>
<td>Power law + Blackbody + Gaussian</td>
<td>146.8(164)</td>
<td>190.5(162)</td>
</tr>
<tr>
<td>Power law + Edge</td>
<td>154.4(167)</td>
<td>197.7(165)</td>
</tr>
<tr>
<td>Power law + Two Edges</td>
<td>146.0(165)</td>
<td>193.3(163)</td>
</tr>
</tbody>
</table>

Parenthesis indicate the number of degrees of freedom. All models include a cold absorber and an Fe K emission line (see text).
TABLE 2. Power-law plus absorption-edge fits to S0.

<table>
<thead>
<tr>
<th></th>
<th>Low State</th>
<th>High State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ</td>
<td>1.46 (1.37–1.55)</td>
<td>1.67 (1.59–1.76)</td>
</tr>
<tr>
<td>$N_H \ (10^{21} \text{ cm}^{-2})$</td>
<td>0.88 (0.62–1.20)</td>
<td>1.02 (0.83–1.33)</td>
</tr>
<tr>
<td>Edge E_1 (keV)</td>
<td>0.66 (0.61–0.69)</td>
<td>0.67 (0.63–0.70)</td>
</tr>
<tr>
<td>Edge τ_1</td>
<td>0.74 (0.35–1.07)</td>
<td>0.76 (0.52–1.00)</td>
</tr>
<tr>
<td>Edge E_2 (keV)</td>
<td>0.81 (0.72–1.03)</td>
<td>0.90^a</td>
</tr>
<tr>
<td>Edge τ_2</td>
<td>0.32 (0.06–0.65)</td>
<td>< 0.32b</td>
</tr>
<tr>
<td>Fe K E (keV)</td>
<td>6.38 (6.05–6.76)</td>
<td>6.42 (6.33–6.51)</td>
</tr>
<tr>
<td>Fe K σ (keV)</td>
<td>0.32 (0.07–0.81)</td>
<td>0.085 (0.00–0.28)</td>
</tr>
<tr>
<td>Fe K EW (eV)</td>
<td>296 (79–508)</td>
<td>259 (115–404)</td>
</tr>
<tr>
<td>χ^2 (d.o.f.)</td>
<td>146.0 (165)</td>
<td>193.3 (163)</td>
</tr>
</tbody>
</table>

Parenthesis indicate 90% confidence intervals for two interesting parameters.

a Errors not quoted as this edge is only marginally significant.

b Upper limit for $\Delta \chi^2 = 4.61$
Figure 3