High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET

To cite this article: Stefan Gundacker et al 2019 Phys. Med. Biol. 64 055012

View the article online for updates and enhancements.

Recent citations
- Embedded time of arrival estimation for digital silicon photomultipliers with in-pixel TDCs
 William Lemaire et al
- Improvement of the timing properties of Ce-doped oxyorthosilicate LYSO scintillating crystals
 G. Tamulaitis et al
- Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission
 Stefan Gundacker et al
High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET

Stefan Gundacker1,2, Rosana Martinez Turtos2, Etienne Auffray2, Marco Paganoni1 and Paul Lecoq2

1 UniMIB, Piazza dell’Ateneo Nuovo, 1—20126, Milano, Italy
2 CERN, 1211 Geneve 23, Switzerland

E-mail: stefan.gundacker@cern.ch

Keywords: high-frequency electronics, TOF-PET, LSO:Ce codoped with Ca, fast timing, coincidence time resolution, single photon time resolution, Cherenkov emission in scintillators

Abstract

Scintillator based radiation detectors readout by SiPMs successively break records in their reached time resolution. Nevertheless, new challenges in time of flight positron emission tomography (TOF-PET) and high energy physics are setting unmatched goals in the 10 ps range. Recently it was shown that high frequency (HF) readout of SiPMs significantly improves the measured single photon time resolution (SPTR), allowing to evaluate the intrinsic performance of large area devices; e.g. FBK NUV-HD SiPMs of $4 \times 4 \text{ mm}^2$ area and 40 μm single photon avalanche diode (SPAD) size achieve 90 ps FWHM. In TOF-PET such readout allows to lower the leading edge detection threshold, so that the fastest photons produced in the crystal can be utilized. This is of utmost importance if a high SPTR and prompt Cherenkov light generated by the hot-recoil electron upon 511 keV photo-absorption should improve timing. This paper shows that high-frequency bipolar transistor readout of state-of-the-art SiPMs coupled to high-performance scintillators can substantially improve the best achievable coincidence time resolution (CTR) in TOF-PET. In this context a CTR of 158 ± 3 ps FWHM with $2 \times 2 \times 3 \text{ mm}^3$ BGO crystals coupled to FBK SiPMs is achieved. This faint Cherenkov signal is as well present in standard LSO scintillators, which together with low SPTR values (<90 ps FWHM) improves the CTR of $2 \times 2 \times 3 \text{ mm}^3$ LSO:Ce:Ca coupled to FBK NUV-HD $4 \times 4 \text{ mm}^2$ with 25 μm SPAD size to 61 ± 2 ps FWHM using HF-electronics, as compared to 73 ± 2 ps when readout by the NINO front-end ASIC. When coupling the LSO:Ce:Ca crystals to FBK NUV-HD SiPMs of $4 \times 4 \text{ mm}^2$ and 40 μm SPAD size, using HF-electronics, a CTR of even 58 ± 3 ps for $2 \times 2 \times 3 \text{ mm}^3$ and 98 ± 3 ps for $2 \times 2 \times 20 \text{ mm}^3$ is achieved. This new experimental data will allow to further discuss the timing limits in scintillator-based detectors.

List of acronyms

- ASIC: Application-specific integrated circuit
- BGO: Bi$_4$Ge$_3$O$_{12}$
- CTR: Coincidence time resolution
- FBK: Fondazione Bruno Kessler
- FWHM: Full width at half maximum
- HF: High-frequency
- HPK: Hamamatsu Photonics K.K.
- ILY: Intrinsic light yield
- LSO: Lu$_2$SiO$_3$
- LTE: Light transfer efficiency
- LuAG: Lu$_3$Al$_5$O$_{12}$
- LYSO: (Lu,Y)$_2$SiO$_5$
- MMIC: Monolithic microwave integrated circuit
1. Introduction

Emerging challenges in time of flight positron emission tomography (TOF-PET) set the coincidence time resolution (CTR) goal towards values of 10 ps FWHM. In previous work we have concluded that there is no physical barrier prohibiting such low CTR values in PET (Gundacker 2014, Gundacker et al 2016b, Lecoq 2017). However, sound technological solutions have to be found in order to improve the photostatistics of the scintillation process (higher light yield, faster rise- and decay times) and the single photon time resolution (SPTR) of the photodetector, e.g. silicon photomultiplier (SiPM). Furthermore a complete assessment of the various available scintillators in terms of their best achievable time resolution is still missing. This is important, because the appearance of new photodetectors and readout electronics makes it successively possible to explore fast known and unknown scintillation processes. For example recent studies have shown that using Cherenkov emission in BGO upon 511 keV photo-absorption can deliver CTRs in the range of 200 ps FWHM (Brunner and Schaar 2017). Considering standard scintillation statistics, several publications (Hyman et al 1964, Conti et al 2009, Seifert et al 2012b, Gundacker et al 2013a, Derenzo et al 2014) conclude that the CTR is directly proportional to the square root of the scintillation decay time (τ_d) and indirectly proportional to the square root of the number of detected photons (n'), i.e. $\text{CTR} \propto \sqrt{\tau_d/n'}$. If further only scintillation statistics is considered the CTR would be as well directly proportional to the square root of the scintillation rise time (τ_r), as shown in equation (1). The factor 2.18 is a consequence of determining the variance of the first scintillation photon emitted and includes the transformation into FWHM of the standard deviation in coincidence (Gundacker 2014, Gundacker et al 2016b).

$$\text{CTR}_{1st} = 2.18 \cdot \sqrt{\tau_r \cdot \tau_d \cdot n'}.$$ (1)

Equation (1) already gives a good idea of the intrinsic time resolution limit of scintillator based detectors. For example if considering LYSO:Ce with an intrinsic light yield of 20 500 photons per 511 keV (Turtos et al 2016), a rise time of 70 ps and a decay time of 40 ns (Gundacker et al 2016b) the $\text{CTR}_{1st} = 25$ ps. Lowering the rise time to 20 ps and the decay time to 30 ns in the case of LSO:Ce:Ca would lower this value to $\text{CTR}_{1st} = 12$ ps FWHM. This shows that the scintillation statistics itself would allow for very good CTRs, however, inefficiencies in the detector like additional photon time transfer spread (PTS) and imperfect light transfer efficiency (LTE) of the emitted scintillation light deteriorates the best achievable time resolution (Derenzo et al 2014). As well the electronic readout can potentially degrade the CTR. This influence was estimated to be low or even negligible in past studies (Gundacker et al 2013a), however, the appearance of SiPMs with very good single photon time resolutions (<90 ps FWHM) demand to re-evaluate this statement. Indeed, measurements presented in this work will show that a significant improvement in CTR can be achieved if HF electronic readout of high-performance SiPMs with high SPTR is being used.

2. Materials and methods

This section gives an overview of the crystals and SiPMs utilized in this study, followed by a depiction of the CTR measurement setup. Special attention is given to the introduction of the high-frequency readout electronics and its comparison to the well established NINO front-end ASIC (Anghinolfi et al 2004). These two electronic readout concepts are further discussed within SPTR measurements, giving a first insight in the combined SiPM—electronic performance.

2.1. LSO:Ce codoped Ca scintillators and FBK NUV-HD SiPMs

For our studies we used $2 \times 2 \times 3$ mm3 sized LSO:Ce codoped with 0.4%Ca and $2 \times 2 \times 20$ mm3 sized LSO:Ce codoped with 0.2%Ca crystals from the producer Agile. Both scintillation materials show very fast decay and rise times (Gundacker et al 2018), whereas the self absorption is a bit less in the 0.2%Ca codoped crystals making them better suitable for higher aspect ratios (Gundacker et al 2016). The scintillation properties of both materials are summarized in table 1.
Table 1. Measured scintillation kinematics of the scintillators used in this study. The intrinsic light yield (ILY) of the LSO:Ce:Ca samples was estimated by light output measurements of $2 \times 2 \times 10 \, \text{mm}^3$ crystals relative to LYSO:Ce crystals with the same dimensions. The ILY of this LYSO:Ce was afore determined to $40,000 \, \text{ph MeV}^{-1}$ by electron excitation (Turto et al 2016). The measurements were performed with a Hamamatsu PMT R2059, crystals were wrapped in Teflon and optically coupled by Rhodorsil 47 V ($n = 1.42$). For further information we refer to Gundacker et al (2016) and Gundacker et al (2018).

<table>
<thead>
<tr>
<th>Composition</th>
<th>τ_c (ps)</th>
<th>τ_ts (ns)</th>
<th>R_f (%)</th>
<th>R_t (%)</th>
<th>ILY (ph MeV$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSO:Ce:0.2%Ca</td>
<td>9 ± 9</td>
<td>10.8 ± 1</td>
<td>5 ± 1</td>
<td>95 ± 1</td>
<td>39200</td>
</tr>
<tr>
<td>LSO:Ce:0.4%Ca</td>
<td>10 ± 10</td>
<td>7.5 ± 1</td>
<td>32.4 ± 0.2</td>
<td>95 ± 1</td>
<td>32000</td>
</tr>
</tbody>
</table>

As photodetectors we used two different near ultraviolet high density (NUV-HD) SiPMs with an active area of $4 \times 4 \, \text{mm}^2$ and $25 \times 25 \, \text{µm}^2$ or $40 \times 40 \, \text{µm}^2$ single photon avalanche diode (SPAD) size from Fondazione–Bruno–Kessler (FBK) (Piemonte et al 2016). These SiPMs exhibit a very high fill factor which allows for peak photon detection efficiency (PDE) values of up to 55%–65% at 410 nm (Piemonte et al 2016) and because of no entrance window (for these particular samples) a direct coupling to the bare SiPM with high refractive index glues is possible (in this work Meltmount with refractive index of ~ 1.582). We estimate the product of PDE and LTE, i.e. the fraction of light produced in the scintillator which is detected by the SiPM, roughly to be in the order of $\sim 44\%$ in the case of $2 \times 2 \times 3 \, \text{mm}^3$ and $\sim 24\%$ in the case of $2 \times 2 \times 20 \, \text{mm}^3$ crystals. The PDE as well extents to the near ultraviolet ($>35\%$ for 300 nm) making them perfect candidates to sense Cherenkov (Lecoq et al 2010, Brunner et al 2014, Kwon et al 2016) and hot intraband (Omelkov et al 2016, 2018) emission produced in the scintillator. Additionally, these SiPMs show best single photon time resolution (SPTR) as compared to other producers with measured values of 90 ps FWHM when illuminating the whole device (Cates et al 2018). Subtracting the laser pulse width of 42 ps FWHM (Nemallapudi et al 2016) and the remaining electronic noise term of 35 ps FWHM, the intrinsic SPTR of the whole device illuminated is 71 ps FWHM. We have measured the breakdown voltage of the $25 \times 25 \, \text{µm}^2$ SPAD area SiPM to 25.4 V and of the $40 \times 40 \, \text{µm}^2$ to 28.2 V.

2.2. Electronics: high frequency readout

In figure 1(a) we show the HF amplifier schematics used in this study. The HF part with the transformer was already introduced in Cates et al (2018), although in the present work different RF-amplifiers are used, i.e. BGA616. The implemented transmission line transformer is commercially available (Macom MABA-007159) with a cut-off frequency of 3 GHz and small dimensions of $3.81 \times 3.81 \times 2.6 \, \text{mm}^3$ only. This circuit efficiently amplifies and extracts the high-speed high bandwidth signal from the SiPM which is mainly coupled via the quenching capacitance C_f of the SPAD to the SiPM output terminal (Corsi et al 2006, Seifert et al 2009). It should be noted that the SiPM terminal capacitance (the capacitance of the inactive cells plus the SiPM grid capacitance) together with the quenching capacitance C_f constitutes a capacitive divider for the fast SPAD signal. Hence, in this readout-scheme a larger SiPM area and thus higher terminal capacitance implicates a measured lower amplitude of the single photon avalanche signal. The bandwidth of the HF-signal path was measured to be approximately 1.5 GHz when the SiPM is connected to the amplifier. Because the voltage amplification of the HF-part is between 50 and 100 (depending on the applied amplifier bias current) a second path to measure the energy deposited in the crystal glued to the SiPM is needed. This was realized with a standard AD8000 operational amplifier circuit which does not significantly lower the timing channel bandwidth nor introduces additional electronic noise. The particular advantage of splitting the energy and time signal allows to have the best resolution for the timing and energy channels independently. For comparison we show in figure 1(b) the schematics of the SiPM readout with the NINO front-end ASIC (Anghinolli et al 2004, Gundacker et al 2013a). Figure 2(a) shows an example of the measured SPTR with FBK NUV-HD SiPMs having a $4 \times 4 \, \text{mm}^2$ active area and 40 µm SPAD pitch, using the NINO front-end ASIC or this HF-amplifier. As already mentioned with this HF-amplifier it is possible to measure SPTR values of 90 ps FWHM illuminating the whole $4 \times 4 \, \text{mm}^2$ FBK SiPM, due to its high-bandwidth allowing for highest slew rates (Cates et al 2018). This means a real intrinsic SPTR of 71 ps FWHM subtracting the laser pulse width of 42 ps FWHM and the remaining electronic noise part of 35 ps FWHM. In figure 2(b) we additionally show the measured SPTR for Hamamatsu S13360 SiPMs with $3 \times 3 \, \text{mm}^2$ active area and 50 µm SPAD size. Here the improvement achieved by the HF readout as compared to NINO is less pronounced. This can be explained by a higher SPAD signal amplitude for the HPK sample in regard to the FBK NUV-HD SiPM (\sim2 times) due to the smaller SiPM area and larger SPAD size, hence, the electronic noise influence is less pronounced for the NINO measurements. The overall higher SPTR for HPK might be explained by a worse intrinsic time resolution of the SPADs themselves caused by a different electric field configuration in the SPAD leading to stronger edge effects (Acerbi and Gundacker 2018). The SPTR measurements have been performed with a PiLAs picosecond laser at a wavelength of 420 nm. More details for NINO measurements can be found in Nemallapudi et al (2016) and for HF-amplifier measurements in Cates et al (2018).
2.3. Coincidence time resolution measurement setup

The CTR was measured with the standard setup shown in figure 3(a). A 22Na source emits two 511 keV gammas which are detected in coincidence by the LSO:Ce:Ca crystals coupled to the NUV-HD SiPMs readout by the HF-electronics for the time signal and the analog operational amplifier for the energy signal. The electronic signals are digitized by a LeCroy DDA735Zi oscilloscope with 3.5 GHz bandwidth and a sampling rate of 40 Gs s$^{-1}$.

Figure 1. (a) Schematics of the HF-amplifier readout electronics employing two BGA616 bipolar monolithic microwave integrated circuit (MMIC) amplifiers. (b) Schematics of the readout electronics using the time-over-threshold discriminator chip NINO. The input stage of NINO is as well shown on the right hand side (Anghinolfi et al 2004).

Figure 2. (a) The SPTR measured with the HF-amplifier is significantly better as compared to the measured SPTR with NINO for FBK NUV-HD SiPMs with 4×4 mm2 active area and 40 μm SPAD size. This can be understood by a suppressed electronic noise term due to a very high slew rate (dV/dt) of the HF-amplifier signal. SiPM operated at 9.8 V overvoltage. (b) SPTR values measured with HPK S13360, 3×3 mm2 area and 50 μm SPAD size with the HF-electronics and NINO readout. The SPTR improvement using HF-electronics is less pronounced because of a higher single photo-electron signal amplitude seen in this HPK SiPM (larger SPAD size, smaller SiPM area). SiPM operated at 10.5 V overvoltage.

2.3. Coincidence time resolution measurement setup

The CTR was measured with the standard setup shown in figure 3(a). A 22Na source emits two 511 keV gammas which are detected in coincidence by the LSO:Ce:Ca crystals coupled to the NUV-HD SiPMs readout by the HF-electronics for the time signal and the analog operational amplifier for the energy signal. The electronic signals are digitized by a LeCroy DDA735Zi oscilloscope with 3.5 GHz bandwidth and a sampling rate of 40 Gs s$^{-1}$.
S Gundacker et al (using four channels this reduces to 20 Gs s$^{-1}$, i.e. 50 ps binning). The leading edge threshold is set on the oscilloscope calculating the signal crossing time via linear interpolation. In figure 3(b) an example of the energy spectra recorded is shown together with the applied photopeak selection (-1.5σ, $+2\sigma$). It should be mentioned that the exact photopeak selection window is changing the obtained CTR marginally by a few picoseconds only. Plotting the delay times for the selected events gives the delay time histogram and a resulting Gaussian fit the CTR in full width at half maximum (FWHM). To test the acquisition system for nonlinearities, we also performed several scans that moved the source position by a known distance along the line of response and recorded the time offset of the delay time histogram. If not stated otherwise we always wrapped the crystals in Teflon (at least three layers) and glued them with Meltmount ($n = 1.582$) to the bare SiPM without protective glass or resin window.

3. Coincidence time resolution results

3.1. NUV-HD with 25 × 25 μm2 SPADs coupled to 3 and 20 mm long LSO:Ce:Ca

In figure 4 the CTR measured with NUV-HD 25 × 25 μm2 SPADs is shown for two crystal sizes (2 × 2 × 3 mm3 and 2 × 2 × 20 mm3) from the producer Agile. The measurements were performed at a SiPM bias voltage of 38 V (12.6 V overvoltage), which was determined to be the optimum for this SiPM (Gundacker et al 2016). The single SPAD amplitude at this overvoltage was measured to 28.6 mV applying maximum bandwidth (~ 1.5 GHz). Additionally, figure 4(a) shows the effect of limiting the electronic bandwidth for the 3 mm long crystal coupled. Lowering the bandwidth from ~ 1.5 GHz provided by the amplifier to 200 MHz deteriorates the CTR from 61 ± 2 ps to 70 ± 3 ps, respectively. In the exact same configuration we measured 73 ± 3 ps with the NINO front-end ASIC (Gundacker et al 2016), which most likely is explained by the lower bandwidth and speed of NINO as compared to this HF-amplifier. With 1 GHz bandwidth limit we measure a best CTR of 64 ± 2 ps FWHM, which is only slightly but nevertheless significantly worse than with the full bandwidth of ~ 1.5 GHz. This measured worse CTR with lower electronic bandwidth can be understood by a slower signal slew rate and additional averaging of the detected time stamps due to the bandwidth filtering which obscures the time information of the first photons detected, as well seen by a minimum CTR at higher threshold values. To check our setup and to exclude any bias in the experiment we show in figure 4(b) measurements done with different source positions. As expected the centroid of the Gaussian is moving by ~ 6.67 ps per each millimeter of source displacement.

3.2. NUV-HD with 40 × 40 μm2 SPADs coupled to 3 and 20 mm LSO:Ce:Ca

CTR measurements performed with NUV-HD 40 × 40 μm2 SPAD size are shown in figure 5. The values are measured at a SiPM bias of 39 V (10.8 V overvoltage), determined to give the best CTR values. At this overvoltage the single SPAD signal was measured to be 44.2 mV applying maximum bandwidth (~ 1.5 GHz). For the long LSO:Ce:0.2%Ca 2 × 2 × 20 mm3 crystal we obtain a best CTR of 98 ± 2 ps FWHM, constituting a significant improvement as compared to the 25 μm SPAD size SiPM, which we mainly explain by the higher PDE of the 40 μm SPAD SiPM. A CTR of 58 ± 2 ps FWHM is obtained in the case of coupling 2 × 2 × 3 mm3 LSO:Ce:0.4%Ca to the 40 μm SPAD SiPM. Further, it can be seen that the highest CTR for 20 mm long crystals is achieved at somewhat higher thresholds (~ 30 mV) as compared to 3 mm long crystals (~ 10 mV). This is a direct consequence of the additional PTS in the longer crystal which sets the best timing at a higher rank of photon-detection (Fishburn and Charbon 2010, Seifert et al 2012a, Gundacker et al 2015). Furthermore we want to mention that the CTR results shown in figure 5(a) are performed with a longer measurement time, which is the reason for the smaller statistical fluctuation as compared to the CTR values presented in figure 4(a). CTR measurements with different source positions for the 20 mm long crystals can be seen in figure 5(b).
3.3. The case of BGO and prompt photon emission

Due to the fast slew rate of the electronic signal delivered by the high-frequency readout it becomes as well possible to use the faint prompt photon emission (Cherenkov and hot intraband luminescence) in scintillators, e.g. in BGO or LuAG:Pr. An example of the measured CTR with BGO can be seen in figure 6 performed with FBK NUV-HD \(4 \times 4 \text{ mm}^2\) SiPMs with \(25 \mu \text{m SPAD size}\). Additionally the CTR with \(2 \times 2 \times 3 \text{ mm}^3\) crystal size is shown when the bandwidth of the timing signal is limited to 200 MHz (black circles and fit as black dotted line). (b) Source movement measurements of FBK NUV-HD \(4 \times 4 \text{ mm}^2\) SiPMs with \(25 \mu \text{m SPAD size}\) coupled to \(2 \times 2 \times 3 \text{ mm}^3\) LSO:Ce:0.4%Ca crystals. The centroid of the Gaussian is moving as expected by \(\sim 6.67 \text{ ps mm}^{-1}\) if the \(^{22}\text{Na}\) source is displaced, confirming a correct mode of operation. All measurements were performed at a SiPM bias of 38 V (12.6 V over breakdown). The single SPAD signal amplitude is 28.6 mV at full bandwidth of \(\sim 1.3 \text{ GHz}\).

Figure 4. (a) Measured CTR as a function of leading edge threshold with \(2 \times 2 \times 3 \text{ mm}^3\) LSO:Ce:0.4%Ca and \(2 \times 2 \times 20 \text{ mm}^3\) LSO:Ce:0.2%Ca crystals coupled to FBK NUV-HD \(4 \times 4 \text{ mm}^2\) SiPMs with \(25 \mu \text{m SPAD size}\). (b) Source movement measurements of FBK NUV-HD \(4 \times 4 \text{ mm}^2\) SiPMs with \(25 \mu \text{m SPAD size}\) coupled to \(2 \times 2 \times 3 \text{ mm}^3\) LSO:Ce:0.4%Ca crystals. The centroid of the Gaussian is moving as expected by \(\sim 6.67 \text{ ps mm}^{-1}\) if the \(^{22}\text{Na}\) source is displaced, confirming a correct mode of operation. All measurements were performed at a SiPM bias of 38 V (12.6 V over breakdown). The single SPAD signal amplitude is 28.6 mV at full bandwidth of \(\sim 1.3 \text{ GHz}\).

Figure 5. (a) Measured CTR as a function of leading edge threshold measured with \(2 \times 2 \times 3 \text{ mm}^3\) LSO:Ce:0.4%Ca and \(2 \times 2 \times 20 \text{ mm}^3\) LSO:Ce:0.2%Ca crystals coupled to FBK NUV-HD \(4 \times 4 \text{ mm}^2\) SiPMs with \(40 \mu \text{m SPAD size}\). (b) With the same setup when \(2 \times 2 \times 20 \text{ mm}^3\) LSO:Ce:0.2%Ca crystals are coupled, the centroid of the Gaussian delay time histogram is moving as expected by \(\sim 6.67 \text{ ps mm}^{-1}\) \(^{22}\text{Na}\) displacement, confirming a correct mode of operation. All measurements were performed at a SiPM bias of 39 V (10.8 V over breakdown). The single SPAD amplitude is 44.2 mV at full bandwidth of \(\sim 1.5 \text{ GHz}\).

Figure 4. (a) Measured CTR as a function of leading edge threshold with \(2 \times 2 \times 3 \text{ mm}^3\) LSO:Ce:0.4%Ca and \(2 \times 2 \times 20 \text{ mm}^3\) LSO:Ce:0.2%Ca crystals coupled to FBK NUV-HD \(4 \times 4 \text{ mm}^2\) SiPMs with \(25 \mu \text{m SPAD size}\). Additionally the CTR with \(2 \times 2 \times 3 \text{ mm}^3\) crystal size is shown when the bandwidth of the timing signal is limited to 200 MHz (black circles and fit as black dotted line). (b) Source movement measurements of FBK NUV-HD \(4 \times 4 \text{ mm}^2\) SiPMs with \(25 \mu \text{m SPAD size}\) coupled to \(2 \times 2 \times 3 \text{ mm}^3\) LSO:Ce:0.4%Ca crystals. The centroid of the Gaussian is moving as expected by \(\sim 6.67 \text{ ps mm}^{-1}\) if the \(^{22}\text{Na}\) source is displaced, confirming a correct mode of operation. All measurements were performed at a SiPM bias of 38 V (12.6 V over breakdown). The single SPAD signal amplitude is 28.6 mV at full bandwidth of \(\sim 1.3 \text{ GHz}\).

3.3. The case of BGO and prompt photon emission

Due to the fast slew rate of the electronic signal delivered by the high-frequency readout it becomes as well possible to use the faint prompt photon emission (Cherenkov and hot intraband luminescence) in scintillators, e.g. in BGO or LuAG:Pr. An example of the measured CTR with BGO can be seen in figure 6 performed with FBK NUV-HD \(4 \times 4 \text{ mm}^2\) SiPMs with \(25 \mu \text{m SPAD size}\). Additionally the CTR with \(2 \times 2 \times 3 \text{ mm}^3\) crystal size is shown when the bandwidth of the timing signal is limited to 200 MHz (black circles and fit as black dotted line). (b) Source movement measurements of FBK NUV-HD \(4 \times 4 \text{ mm}^2\) SiPMs with \(25 \mu \text{m SPAD size}\) coupled to \(2 \times 2 \times 3 \text{ mm}^3\) LSO:Ce:0.4%Ca crystals. The centroid of the Gaussian is moving as expected by \(\sim 6.67 \text{ ps mm}^{-1}\) if the \(^{22}\text{Na}\) source is displaced, confirming a correct mode of operation. All measurements were performed at a SiPM bias of 38 V (12.6 V over breakdown). The single SPAD signal amplitude is 28.6 mV at full bandwidth of \(\sim 1.3 \text{ GHz}\).

Figure 5. (a) Measured CTR as a function of leading edge threshold measured with \(2 \times 2 \times 3 \text{ mm}^3\) LSO:Ce:0.4%Ca and \(2 \times 2 \times 20 \text{ mm}^3\) LSO:Ce:0.2%Ca crystals coupled to FBK NUV-HD \(4 \times 4 \text{ mm}^2\) SiPMs with \(40 \mu \text{m SPAD size}\). (b) With the same setup when \(2 \times 2 \times 20 \text{ mm}^3\) LSO:Ce:0.2%Ca crystals are coupled, the centroid of the Gaussian delay time histogram is moving as expected by \(\sim 6.67 \text{ ps mm}^{-1}\) \(^{22}\text{Na}\) displacement, confirming a correct mode of operation. All measurements were performed at a SiPM bias of 39 V (10.8 V over breakdown). The single SPAD amplitude is 44.2 mV at full bandwidth of \(\sim 1.5 \text{ GHz}\).
4. Discussing the SiPM readout

The best time resolution achieved by the electronic readout can be summarized with the relation \(\sigma_{\text{elec. timing}} = \frac{\sigma_n}{dV/dt} \) (Nemallapudi et al. 2016, Cates et al. 2018) with the electronic noise given by the rms or standard deviation of the noise floor (\(\sigma_n \)) and the signal slew rate (\(dV/dt \)) of the signal at a given leading edge detection threshold. Hence, improving the electronic readout timing jitter can be done by increasing the signal amplitude, decreasing the signal rise time or lowering the electronic noise floor. The latter has clear physical barriers and can only be improved by a limited amount. Interestingly SiPMs show a very fast intrinsic single photon signal rise time of the order of several hundreds of picoseconds (Acerbi and Gundacker 2018). To utilize this very fast signal rise time in order to achieve a high signal slew rate (\(dV/dt \)), high-frequency readout is necessary with a \(-3 \) dB bandwidth noticeably higher 1 GHz, with the detector (SiPM) coupled to the electronics. The discussed design in this paper employing an RF-balun transformer represents an efficient way to readout the SiPM signal in a differential mode adapting to the single ended input of high speed high-frequency monolithic microwave integrated circuit (MMIC) amplifiers (e.g. BGA616). This has two immediate advantages, suppressing common ground noise in the SiPM and doubling the signal amplitude at the amplifier input. As already discussed, via the quenching resistor’s parallel capacitance \(C_D \) a high-frequency path is established allowing to use the intrinsically very fast SPAD signal rise time. A disadvantage of this design is that the SiPM voltage signal height depends on the terminal capacitance and, hence, is lower for larger area SiPMs. However, the use of transformers with adapted turn ratio could help to a certain extent in such situations.

In the current form the integration of this circuit into an ASIC with many channels is rather difficult. The main limiting factor besides the RF-transformer is the quite high power consumption of the MMIC amplifiers. Within a proper design the use of the RF-transformer could probably be omitted without significant performance loss, which will be subject for future studies. Reducing the power budget will as well lower the available bandwidth and thus decreases the signal slew rate. This is partly offset by a reduction in electronic noise due to the lower bandwidth design but still constitutes a worse situation, because the optimal electronic bandwidth is naturally linked to the intrinsic bandwidth (rise time) of the SiPM signal. Another way to improve timing without increasing the electronic bandwidth could be the symbiotic development of the SiPM plus readout ASIC. For instance by implementing ways to enhance the fast signal amplitude, e.g., increasing the quenching capacitance \(C_D \) or employing a specially designed fast readout node, as done in SensL devices (O’Neill et al. 2012).

To conclude, high-frequency readout is one way to reach the limits in timing performance given by modern analog SiPMs, but most likely not the only way. On the other hand, the fully digital SiPM does not struggle with these limitations and will presumably be the best option to achieve the intrinsic timing limits in TOF-PET, given by photostatistics and the photodetector itself, if the detector can be successfully integrated in a scalable 3D design (Nolet et al. 2018).
5. Conclusion

We have shown that HF readout with a ~3 dB bandwidth ~1.5 GHz of SiPMs can improve the timing in TOF-PET noticeably with CTR values measured of 58 ± 2 ps and 98 ± 3 ps for 2 × 2 × 3 mm³ and 2 × 2 × 20 mm³ LSO:Ce codoped with Ca crystals, respectively. The main reason of this improvement as compared to standard ASIC readout lies in a much faster signal slew rate (dV/dt) which allows to detect the very first photons sensed by the SiPM, i.e. the leading edge threshold can be lowered effectively in a greater extent. The current generation of NUV-HD SiPMs from FBK shows as well very low intrinsic SPTR values (<71 ps FWHM) and high photon detection efficiency in the near ultraviolet. These two factors additionally help to improve the CTR via (1) a high SPTR which allows to utilize the intrinsic high timing performance of the LSO:Ce:Ca scintillation process and (2) the ultraviolet sensitivity which increases the detection probability of prompt photons (in particularly Cherenkov radiation but as well to some extent hot intraband luminescence). Here it is important to mention that these two factors only can improve the CTR if a low leading edge threshold can be achieved. In other words, the HF-readout allows to make best use of the good SPTR of the tested SiPMs without deteriorating the CTR by a too high electronic noise or small slew rate. This again underlines the importance of a low SPTR value in SiPMs and the interplay of the electronic readout. In a large system, where power consumption limits do not allow for extremely high bandwidths other solutions have to be found, which can and have to be developed symbiotically with the SiPM design. Further studies in this direction and additional experiments to understand the full connection of prompt photons and the SPTR are ongoing and will be subject to future publications.

Acknowledgment

This work has been performed in the framework of the Crystal Clear Collaboration, COST Action TD1401 (FAST) and the TICAL ERC advanced grant #338953. The authors would like to express their highest gratitude to Joshua William Cates and Pierre Jarron for the many interesting and fruitful discussions. Further we want to thank Claudio Piemonte, Alberto Gola and the whole FBK team for kindly providing the SiPM samples used in this study.

ORCID iDs

Stefan Gundacker https://orcid.org/0000-0003-2087-3266
Rosana Martinez Turtos https://orcid.org/0000-0002-1077-4849

References

Gundacker S 2014 Time resolution in scintillator based detectors for positron emission tomography PhD Thesis (Vienna University of Technology)
Gundacker S, Acerbi F, Auffray E, Gola A, Nemallapudi M, Paternoster G, Piemonte C and Lecoq P 2016 State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs J. Instrum. 11 P08008

Nemallapudi M, Gundacker S, Lecoq P and Auffray E 2016 Single photon time resolution of state of the art SiPMs *J. Instrum.* **11** P10016

