Measurement of the Lund jet plane using charged particles in 13 TeV proton–proton collisions with the ATLAS detector

The ATLAS Collaboration

The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton–proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.
Jets are collimated sprays of particles resulting from high-energy quark and gluon production. The details of the process that underlies the fragmentation of quarks and gluons with quantum chromodynamic (QCD) charge into neutral hadrons is not fully understood. In the soft gluon (‘eikonal’) picture of jet formation, a quark or gluon radiates a haze of relatively low energy and statistically independent gluons [1, 2]. As QCD is nearly scale-invariant, this emission pattern is approximately uniform in the two-dimensional space spanned by ln(1/z) and ln(1/ϑ), where z is the momentum fraction of the emitted gluon relative to the primary quark or gluon core and ϑ is the emission opening angle. This space is called the Lund plane [3]. The Lund plane probability density can be extended to higher orders in QCD and is the basis for many calculations of jet substructure observables [4–7].

The Lund plane is a powerful representation for providing insight into jet substructure; however, the plane is not observable because it is built from quarks and gluons. A recent proposal [8] describes a method to construct an observable analog of the Lund plane using jets, which captures the salient features of this representation. Jets are formed using clustering algorithms that sequentially combine pairs of proto-jets starting from the initial set of constituents [9]. Following the proposal, a jet’s constituents are reclustered using the Cambridge/Aachen (C/A) algorithm [10, 11], which imposes an angle-ordered hierarchy on the clustering history. Then, the C/A history is followed in reverse (‘declustered’), starting from the hardest proto-jet. The Lund plane can then be approximated by using the softer (harder) proto-jet to represent the emission (core) in the original theoretical depiction. For each proto-jet pair, at each step in the C/A declustering sequence, an entry is made in the approximate Lund plane (henceforth, the ‘primary Lund jet plane’ or LJP) using the observables

\[
\frac{1}{N_{\text{jets}}} \frac{d^2N_{\text{emissions}}}{d\ln(1/z)d\ln(R/\Delta R)} \propto \text{constant},
\]

(1)

where \(N_{\text{jets}} \) is the jet multiplicity of an event. This construction of the plane is selected to separate momentum and angular measurements, although other choices such as (ln(R/ΔR), \(k_t = z\Delta R \)) are also valid.

The Lund plane has played a central role in state-of-the-art QCD calculations of jet substructure [12–17] which have so far only been studied with the jet mass \(m_{\text{jet}} \) [18, 19] (which is itself a diagonal line in the LJP: \(\ln 1/z \sim \ln m_{\text{jet}}^2/p_T^2 - 2 \ln R/\Delta R \)) and groomed jet radius [20, 21]. The number of emissions within regions of the LJP is also calculable within QCD and provides optimal discrimination between quark and gluon jets [5].

This Letter presents a double-differential cross-section measurement of the LJP which is corrected for detector effects, using an integrated luminosity of 139 fb\(^{-1}\) of \(\sqrt{s} = 13 \) TeV proton–proton (pp) collision

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \).
data collected by the ATLAS detector. A unique feature of this measurement is that contributions from various QCD effects such as initial-state radiation, the underlying event and multi-parton interactions, hadronization, and perturbative emissions are well-separated in the LJP. This factorization is shown in Figure 1(a), which qualitatively indicates the regions populated by soft vs. hard, wide-angle vs. collinear, and perturbative vs. nonperturbative radiation. Since different regions are dominated by factorized processes, the LJP measurement can be useful for tuning nonperturbative models and for constraining the model parameters of advanced parton shower (PS) Monte Carlo (MC) programs [22–25].

The ATLAS detector [26–28] is a general-purpose particle detector which provides nearly 4π coverage in solid angle. The inner tracking detector (ID) is inside a 2 T magnetic field and measures charged-particle trajectories up to |η| = 2.5. The innermost component of the ID is a pixelated silicon detector with fine granularity that is able to resolve ambiguities inside the dense environment of jet cores [29], surrounded by silicon strip and transition radiation tracking detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected clusters of cells [30] are formed into jets using the anti-kt algorithm with radius parameter R = 0.4 [31, 32]. The jet energy scale is calibrated so that, on average, the detector-level jet energy is the same as that of the corresponding particle-level jets [33].

Events are selected using single-jet triggers [34, 35]. The leading and subleading jets are used for the measurement and are required to satisfy p_T^{leading} > 675 GeV and p_T^{leading} < 1.5 × p_T^{subleading}. This jet-p_T balance requirement simplifies the interpretation of the final state in terms of a 2 → 2 scattering process. Both jets must have |η| < 2.1 to be within the ID acceptance. About 29.5 million jets satisfy these selection criteria.

Particle-level charged hadrons and their reconstructed tracks are used for this measurement because individual particle trajectories can be precisely identified with the ID. As the LJP observables are dimensionless and isospin is an approximate symmetry of the strong force, the difference between the LJP observables constructed using all interacting particles and charged particles is small [20]. Tracks are required to have p_T > 500 MeV, and to be associated with the primary vertex with the largest sum of track p_T^2 in the event [36]. Tracks within ΔR = 0.4 of the cores of selected jets are used to construct the LJP observables by clustering them using the C/A algorithm and populating the plane by iterative declustering. The fiducial region of the measurement spans 19 bins in ln(1/z) between ln(1/0.5) and 8.4 × ln(1/0.5), and 13 bins in ln(R/ΔR) between 0.0 and 4.33. The maximum ΔR is the jet radius and the minimum ΔR is comparable to the pixel pitch. The maximum z is 0.5 and the minimum is 500 MeV/p_T^{jet}.

Samples of dijet events were simulated in order to perform the unfolding and to compare with the corrected data. The nominal sample was simulated using PYTHIA 8.186 [37, 38] with the NNPDF2.3 LO [39] set of parton distribution functions (PDF), a p_T-ordered PS, Lund string hadronization [40, 41], and the A14 set of tuned parameters (tune) [42]. Additional samples were simulated by PYTHIA 8.230 [43] with the NNPDF2.3 LO PDF set and the A14 tune, using either the PYTHIA LO matrix elements (MEs) or NLO MEs from POWHEG [44–47]; SHERPA 2.1.1 [48] with the CT10LO PDF set, a p_T-ordered PS [49], an ME with up to three partons (merged with the CKKW prescription [50]) and the AHADIC (A Hadronization model in C++) cluster-based hadronization model [51, 52]; SHERPA 2.2.5 with the CT14NNLO PDF set [53] including 2 → 2 MEs and either the AHADIC hadronization model or the Lund string model; and HERWIG 7.1.3 [25, 54, 55] with the MMHT2014NLO PDF set [56] and either the default angle-ordered (Ang. ord.) PS or a dipole PS and a cluster hadronization model [51]. Further details of these samples may be found in Ref. [57]. The PYTHIA 8.186 and SHERPA 2.1.1 events were passed through the ATLAS detector simulation [58] based on GEANT 4 [59]. The effect of multiple pp interactions in the same and neighboring bunch crossings (pileup) was modeled by overlaying the hard-scatter event with minimum-bias pp collisions generated by PYTHIA 8 with the A3 tune [60] and the NNPDF2.3 LO PDF set. The distribution
of pileup vertices was reweighted to match the data events, which have an average of 33.7 simultaneous interactions per bunch-crossing.

Figures 1(b)–1(d) illustrate the kinematic domains of various physical effects in the LJP using ratios at charged-particle level between pairs of MC simulations where one component of the simulation is varied. Varying the PS model in Herwig 7.1.3 (Figure 1(b)) results in differences of up to 50% in the perturbative hard and wide-angle emissions entering the lower-left region of the LJP. Changing the hadronization model in Sherpa 2.1.1 (Figure 1(c)) causes variations up to 50% in a different region of the plane, populated by the softer and more collinear emissions at the boundary between perturbative and nonperturbative regions. Varying the ME from LO (Pythia 8.230) to NLO (Powheg+Pythia 8.230) (Figure 1(d)) causes small changes of up to 10% only in the region populated by the hardest and widest-angle emissions.

Selected data are unfolded to correct for detector bias, resolution, and acceptance effects by applying iterative Bayesian unfolding [61] with four iterations implemented in RooUnfold [62]. The MC generator used to unfold the data is Pythia 8.186. The number of iterations was chosen to minimize the total uncertainty. The unfolding procedure corrects the LJP constructed from detector-level objects to charged-particle level, where jets and charged particles are defined similarly to those at detector level: jets are reconstructed using the same anti-

k

t

algorithm with detector-level stable (\(c\tau > 10 \) mm) non-pileup particles, excluding muons and neutrinos, as inputs. The same kinematic requirements as for detector-level jets are imposed on the particle-level jets; charged particles with \(p_T > 500 \) MeV within \(\Delta R = 0.4 \) of the cores of particle-level jets are used to populate the charged-particle-level LJP.

Emissions at detector level and charged-particle level are uniquely matched in \(\eta-\phi \) to construct the response matrix. The matching procedure follows the order of the C/A declustering, starting from the widest-angle detector-level emission and iterating towards the jet core. The closest charged-particle-level match with angular separation \(\Delta R < 0.1 \) takes precedence. Unmatched emissions from tracks not due to a single charged particle (detector level) and from nonreconstructed charged particles (charged-particle level) are accounted for with purity and efficiency corrections. Corrections are applied before (purity) and after (efficiency) the regularized inversion of the response matrix. Both the purity and efficiency corrections are about 20% for wide-angle, hard emissions (the lower-left quadrant of the LJP), increasing to 80% for the most collinear splittings and to 50% in the lowest-\(z \) bins. For matched emissions, the \(\ln(1/z) \) and \(\ln(R/\Delta R) \) bin migrations between particle level and detector level are largely independent of each other. Furthermore, since the differential cross section varies slowly across the LJP, the purities and efficiencies are approximately the same across the entire LJP. The \(\ln(R/\Delta R) \) migrations in a given \(\ln(1/z) \) bin are less than 60% for the smallest opening angles and decrease to less than 40% for the widest angles. The \(\ln(1/z) \) migrations decrease from about 50% for the softest to about 20% for the hardest emissions, with some degradation for the softest emissions at small opening angles. Migrations for both observables are nearly symmetric except for \(\ln(R/\Delta R) > 3 \), where harder-to-resolve small opening angles are measured with asymmetric resolution. In less than 10% of these cases, particle-level and detector-level emissions are mismatched and therefore measured with the wrong \(\ln(1/z) \). While the \(\ln(R/\Delta R) \) migrations are nearly the same when \(\ln(1/z) \) migrates by one bin, the \(\ln(1/z) \) migrations increase by about 30% when \(\ln(R/\Delta R) \) migrates by one bin.

The unfolded distribution is normalized to the number of jets that pass the event selection, rendering the measurement insensitive to the total jet cross section. After normalization, the integral of the LJP is the average number of emissions within the fiducial region.

Experimental systematic uncertainties are evaluated by applying variations to each source, propagating them through the unfolding procedure, and taking the difference between the modified result and the
Figure 1: (a) Schematic representation of the LJP. The line $z\theta \lesssim \Lambda_{QCD}$ roughly indicates the transition between regions where either perturbative ($z\theta > \Lambda_{QCD}$) or nonperturbative ($z\theta < \Lambda_{QCD}$) effects are expected to dominate. “UE/MPI” denotes the region where effects of the underlying event and multi-particle interactions are relevant. (b) The ratio of the Lund jet plane as simulated by the Herwig 7.1.3 MC generator with either an angle-ordered parton shower or a dipole parton shower. (c) The ratio of the Lund jet plane as simulated by the Sherpa 2.2.5 (String) MC generator with either the AHADIC cluster-based or Lund string-based hadronization algorithm. (d) The ratio of the LJP as simulated by either the Powheg+Pythia 8.230 or Pythia 8.230 MC generators. The inner set of axes indicate the coordinates of the LJP itself, while the outer set indicate corresponding values of z and ΔR.

ATLAS Simulation

ATLAS Simulation

ATLAS Simulation
nominal result. The theoretical uncertainties are due to the modeling of jet fragmentation. Different systematic uncertainties are treated as being independent. The size of various sources of systematic uncertainty within selected regions of the LJP is displayed in Figure 3.

Uncertainties in the jet energy scale and resolution are determined using a mixture of simulation-based and in situ techniques [33]. These uncertainties cause the migration of jets into or out of the fiducial acceptance, and are typically above 3% in total, reaching at most 7%. Uncertainties related to the reconstruction of isolated tracks and tracks within dense environments are considered by modifying the measured p_T of individual tracks or removing them completely [29, 63]. These uncertainties are small, contributing less than 0.5%. Other experimental uncertainties related to the modeling of pileup and to the stability of the measurement across data-taking periods are less than 1% except for the most collinear splittings, where they reach 5%. A data-driven nonclosure uncertainty is determined by unfolding the detector-level distribution following a reweighting based on a comparison of the corresponding simulated detector-level distribution with the data [64]. This uncertainty is less than 1% except for the most collinear splittings, where it approaches 5%. An uncertainty for the matching procedure between emissions at detector level and charged-particle level is determined by repeating the unfolding and iterating through the C/A declustering sequence in reverse (from the most collinear emissions to the most wide-angled), taking the change in the resulting unfolded data as an uncertainty. This uncertainty is less than 1% everywhere.

Theoretical uncertainties arise mainly from the accuracy of jet fragmentation modeling. Varying the jet fragmentation modeling can impact the result through a combination of sources: the efficiency/purity corrections, the response matrix, and the unfolding prior. These contributions are estimated by repeating the unfolding with Sherpa 2.2.1. As the correlation between the various uncertainty sources is unknown, an envelope of the 100% and 0% correlation hypotheses is taken as the total modeling uncertainty. The total modeling uncertainty ranges between 5% and 20% depending on the region (larger for soft-collinear splittings) and is the largest single source of uncertainty. Experimental uncertainties are found to be comparable to those arising from modeling in some regions of the LJP.

The total systematic uncertainty varies across the LJP; an uncertainty between 5% and 20% is achieved. The uncertainty is found to increase as $k_t = z\Delta R$ decreases: the bin with the smallest k_t is also measured least-precisely, and has a total uncertainty of about 20%.

The unfolded LJP is shown in Figure 2. A triangular region with $k_t \gtrsim \Lambda_{\text{QCD}}$ is populated nearly uniformly by perturbative emissions, agreeing with the LL expectation of Eq. (1). A large number of emissions are found at the transition to the nonperturbative regime, as α_s is enhanced for small values of k_t. Emissions beyond the transition fall within the nonperturbative region of the LJP (for which $k_t \lesssim \Lambda_{\text{QCD}}$), and are suppressed. The average number of emissions in the fiducial region is measured to be 7.34 ± 0.03 (syst.) ± 0.11 (stat.). The uncertainty is estimated by propagating uncertainties from the measurement in an uncorrelated and symmetrized manner. The corresponding average value for Pythia 8.230 is 7.64 emissions, and is 7.67 emissions for Powheg+Pythia 8.230. The average value for Sherpa 2.2.5 is 6.90 for AHADIC hadronization and 7.30 for Lund string hadronization. The average value for Herwig 7 is 7.41 for the dipole PS and 7.37 for the angle-ordered PS. While a similar bracketing of the data by Pythia and Sherpa with AHADIC hadronization was noted in Ref. [65], the particle multiplicity inside jets has not previously been decomposed into perturbative and nonperturbative components.

Figure 3 shows data from four selected horizontal and vertical slices through the LJP, along with a breakdown of the systematic uncertainties. The data are compared with predictions from several MC generators. While no prediction describes the data accurately in all regions, the Herwig 7.1.3 angle-ordered prediction provides the best description across most of the plane. The differences between the PS algorithms
implemented in Herwig 7.1.3 are notable at large values of $k_t = z\Delta R$, where the two models disagree most significantly for hard emissions reconstructed at the widest angles (Figures 3(a) and 3(b)). The Powheg+Pythia and Pythia predictions only differ significantly for hard and wide-angle perturbative emissions, where ME corrections are relevant. The hadronization algorithms implemented in Sherpa 2.2.5 are most different at small values of k_t, particularly for soft-collinear splittings at the transition between perturbative and nonperturbative regions of the plane. The ability of the LJP to isolate physical effects is highlighted in Figure 3(b), where as emissions change from wide-angled to more collinear, the distribution passes through a region sensitive to the choice of PS model, and then enters a region which is instead sensitive to the hadronization model. Figures 3(c) and 3(d) show regions dominated by nonperturbative effects. The Pythia samples describe the data in the collinear region of the jet core well, but all simulations fail to describe the softest, widest-angle emissions, which are characteristic of contributions from the underlying event. The Pythia 8.186 and Sherpa 2.2.1 predictions are not shown, but are consistent with the Pythia 8.230 and Sherpa 2.2.5 (Lund string hadronization) predictions, respectively. These observations indicate that the LJP may provide useful input to both perturbative and nonperturbative model development and tuning.

In summary, a measurement of the jet substructure based on the Lund jet plane is reported. The analysis dataset corresponds to an integrated luminosity of 139 fb$^{-1}$ of 13 TeV LHC proton–proton collisions recorded by the ATLAS detector. The measurement is performed on an inclusive selection of dijet events, with a leading jet $p_T > 675$ GeV. Selected jets are reconstructed from topological clusters using the anti-k_t algorithm with $R = 0.4$, and their associated charged-particle tracks are used to construct the observables of interest. The data are presented as an unfolded double-differential cross section, and compared with several Monte Carlo generators with various degrees of modeling accuracy. This measurement illustrates the ability of the Lund jet plane to isolate various physical effects, and will provide useful input to both perturbative and nonperturbative model development and tuning.
\[R = \rho(\text{emission}, \text{core}) \]

\[\Delta = \Delta R(\text{emission, core}) \]

Figure 2: The LJP measured using jets in 13 TeV pp collision data, corrected to particle level. The inner set of axes indicates the coordinates of the LJP itself, while the outer set indicates corresponding values of \(z \) and \(\Delta R \).
Figure 3: Representative horizontal and vertical slices through the LJP. Unfolded data are compared with particle-level simulation from several MC generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) $0.67 < \ln(R/\Delta R) < 1.00$, (b) $1.80 < \ln(1/z) < 2.08$, (c) $3.33 < \ln(R/\Delta R) < 3.67$, and (d) $5.13 < \ln(1/z) < 5.41$.

\[z = p_T^{\text{emission}} / (p_T^{\text{emission}} + p_T^{\text{core}}) \]
Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [66].
References

Auxiliary material

Figure 4: The LJP reconstructed using jets in 13 TeV pp collisions, as simulated by the *Pythia* 8.230 MC generator. The inner set of axes indicate the coordinates of the LJP itself, while the outer set indicate corresponding values of z and ΔR.
Figure 5: The LJP reconstructed using jets in 13 TeV pp collisions, as simulated by the Powheg+Pythia 8.230 MC generator. The inner set of axes indicate the coordinates of the LJP itself, while the outer set indicate corresponding values of z and ΔR.
Figure 6: The LJP reconstructed using jets in 13 TeV pp collisions, as simulated by the Sherpa 2.2.5 MC generator with the AHADIC cluster fragmentation model. The inner set of axes indicate the coordinates of the LJP itself, while the outer set indicate corresponding values of z and ΔR.

\[\Delta R = \Delta R(\text{emission, core}) \]
Figure 7: The LJP reconstructed using jets in 13 TeV pp collisions, as simulated by the Sherpa 2.2.5 MC generator with a Lund string fragmentation model. The inner set of axes indicate the coordinates of the LJP itself, while the outer set indicate corresponding values of z and ΔR.
Figure 8: The LJP reconstructed using jets in 13 TeV pp collisions, as simulated by the Herwig 7.1.3 MC generator with a dipole parton shower. The inner set of axes indicate the coordinates of the LJP itself, while the outer set indicate corresponding values of z and ΔR.
Figure 9: The LJP reconstructed using jets in 13 TeV pp collisions, as simulated by the Herwig v7.1.3 MC generator with an angular parton shower. The inner set of axes indicate the coordinates of the LJP itself, while the outer set indicate corresponding values of z and ΔR.
Figure 10: The LJP measured using jets in 13 TeV pp collision data, corrected to particle level. The inner set of axes indicates the coordinates of the LJP itself, while the outer set indicates corresponding values of z and ΔR. This figure is the same as Figure 2, but reproduced with a logarithmic scale.
Figure 11: The total relative uncertainty (experimental, statistical, and related to MC modeling effects, unfolding and pile-up) as a function of the LJP.
Figure 12: Vertical slices through the LJP. Unfolded data are compared to particle-level simulation from several generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) $0.00 < \ln(R/\Delta R) < 0.33$, (b) $0.33 < \ln(R/\Delta R) < 0.67$, (c) $0.67 < \ln(R/\Delta R) < 1.00$, and (d) $1.00 < \ln(R/\Delta R) < 1.33$.
Figure 13: Vertical slices through the LJP. Unfolded data are compared to particle-level simulation from several generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) $1.33 < \ln(R/\Delta R) < 1.67$, (b) $1.67 < \ln(R/\Delta R) < 2.00$, (c) $2.00 < \ln(R/\Delta R) < 2.33$, and (d) $2.33 < \ln(R/\Delta R) < 2.67$.

ATLAS $\sqrt{s} = 13$ TeV, 139 fb$^{-1}$ $p_T > 675$ GeV

Data
- Pythia 8.230
- Sherpa 2.2.5 (AHADIC)
- Sherpa 2.2.5 (String)
- Herwig 7.1.3 (DiPole)

Total Syst. - MC Modeling - Experimental
- Pile-Up - Unfolding - Stat.
Figure 14: Vertical slices through the LJP. Unfolded data are compared to particle-level simulation from several generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) $2.67 < \ln(R/\Delta R) < 3.00$, (b) $3.00 < \ln(R/\Delta R) < 3.33$, (c) $3.33 < \ln(R/\Delta R) < 3.67$, and (d) $3.67 < \ln(R/\Delta R) < 4.00$.
Figure 15: Vertical slices through the LJP. Unfolded data are compared to particle-level simulation from several generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: $4.00 < \ln(R/\Delta R) < 4.33$.

$$z = \frac{p_{T1}^{\text{emission}}}{p_{T1}^{\text{core}} + p_{T1}^{\text{emission}}}$$
Figure 16: Horizontal slices through the LJP. Unfolded data are compared to particle-level simulation from several generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) $0.69 < \ln(1/z) < 0.97$, (b) $0.97 < \ln(1/z) < 1.25$, (c) $1.25 < \ln(1/z) < 1.52$, and (d) $1.52 < \ln(1/z) < 1.80$.

Data
- ATLAS
 - $\sqrt{s} = 13$ TeV, 139 fb$^{-1}$
 - $p_T > 675$ GeV

Generators
- Pythia 8.230
- Sherpa 2.2.5 (AHADIC)
- Sherpa 2.2.5 (String)
- Herwig 7.1.3 (Ang. ord.)
- Herwig 7.1.3 (Dipole)

Uncertainty
- Total Syst.
- MC Modeling
- Experimental

Ratios
- $\Delta R = \Delta R_{\text{emission, core}}$
- $\Delta R = \Delta R_{\text{emission, core}}$

Relative Uncertainty
- 10^{-1}
- 10^{-2}

Experimental Uncertainty
- $0 < \ln(1/z) < 0.52$
- $0 < \ln(1/z) < 0.69$
- $0 < \ln(1/z) < 0.97$
- $0 < \ln(1/z) < 1.25$
- $0 < \ln(1/z) < 1.52$
- $0 < \ln(1/z) < 1.80$
Figure 17: Horizontal slices through the LJP. Unfolded data are compared to particle-level simulation from several generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) \(1.80 < \ln(1/z) < 2.08\), (b) \(2.08 < \ln(1/z) < 2.36\), (c) \(2.36 < \ln(1/z) < 2.63\), and (d) \(2.63 < \ln(1/z) < 2.91\).
Figure 18: Horizontal slices through the LJP. Unfolded data are compared to particle-level simulation from several generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) $2.91 < \ln(1/z) < 3.19$, (b) $3.19 < \ln(1/z) < 3.47$, (c) $3.47 < \ln(1/z) < 3.74$, and (d) $3.74 < \ln(1/z) < 4.02$.

\[\Delta R = \Delta R(\text{emission, core}) \]
Figure 19: Horizontal slices through the LJP. Unfolded data are compared to particle-level simulation from several generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) $4.02 < \ln(1/z) < 4.30$, (b) $4.30 < \ln(1/z) < 4.57$, (c) $4.57 < \ln(1/z) < 4.85$, and (d) $4.85 < \ln(1/z) < 5.13$.
Figure 20: Horizontal slices through the LJP. Unfolded data are compared to particle-level simulation from several generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) $5.13 < \ln(1/z) < 5.41$, (b) $5.41 < \ln(1/z) < 5.68$, (c) $5.68 < \ln(1/z) < 5.96$.

\[\Delta R = \Delta R(\text{emission, core}) \]
Figure 21: A set of detector- and truth-level emissions in the Lund Plane from a single jet. The declustered Cambridge/Aachen clustering sequence places emissions into the figure in a sequence, starting from the widest-angle emission (the left-most marker) and proceeding to the most collinear one (the right-most marker).
Figure 22: Representative horizontal and vertical slices through the LJP. Unfolded data are compared with particle-level Pythia 8.230 simulated events. Open markers indicate the corresponding detector-level distributions. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) $0.67 < \ln(R/ΔR) < 1.00$, (b) $1.80 < \ln(1/z) < 2.08$, (c) $3.33 < \ln(R/ΔR) < 3.67$, and (d) $5.13 < \ln(1/z) < 5.41$.
Figure 23: The total covariance matrix of all statistical and systematic uncertainties associated with the measurement in bins of $\ln(1/z) \times \ln(R/\Delta R)$. Bin indices begin in the bottom-left corner of the LJP, and increase moving left-to-right then bottom-to-top across the 2D space.
Figure 24: The covariance matrix of all statistical uncertainties associated with the measurement in bins of \(\ln(1/z)\times \ln(R/\Delta R)\). Bin indices begin in the bottom-left corner of the LJP, and increase moving left-to-right then bottom-to-top across the 2D space.
The ATLAS Collaboration

G. Zobernig181, A. Zoccoli23b,23a, K. Zoch53, T.G. Zorbas149, R. Zou37, L. Zwalinski36.

1Department of Physics, University of Adelaide, Adelaide; Australia.
2Physics Department, SUNY Albany, Albany NY; United States of America.
3Department of Physics, University of Alberta, Edmonton AB; Canada.
4(a)Department of Physics, Ankara University, Ankara;(b)Istanbul Aydin University, Istanbul;(c)Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey.
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
6High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7Department of Physics, University of Arizona, Tucson AZ; United States of America.
8Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
9Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
10Physics Department, National Technical University of Athens, Zografou; Greece.
11Department of Physics, University of Texas at Austin, Austin TX; United States of America.
12(a)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul;(b)Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul;(c)Department of Physics, Bogazici University, Istanbul;(d)Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
13Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
14Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain.
15(a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;(b)Physics Department, Tsinghua University, Beijing;(c)Department of Physics, Nanjing University, Nanjing;(d)University of Chinese Academy of Science (UCAS), Beijing; China.
16Institute of Physics, University of Belgrade, Belgrade; Serbia.
17Department for Physics and Technology, University of Bergen, Bergen; Norway.
18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America.
19Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
21School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22(a)Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá;(b)Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia; Colombia.
23(a)INFN Bologna and Universita' di Bologna, Dipartimento di Fisica;(b)INFN Sezione di Bologna; Italy.
24Physikalisches Institut, Universität Bonn, Bonn; Germany.
25Department of Physics, Boston University, Boston MA; United States of America.
26Department of Physics, Brandeis University, Waltham MA; United States of America.
27(a)Transilvania University of Brasov, Brasov;(b)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest;(c)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi;(d)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca;(e)University Politehnica Bucharest, Bucharest;(f)West University in Timisoara, Timisoara; Romania.
28(a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava;(b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31 California State University, CA; United States of America.
32 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
33 (a) Department of Physics, University of Cape Town, Cape Town; (b) iThemba Labs, Western Cape; (c) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (d) University of South Africa, Department of Physics, Pretoria; (e) School of Physics, University of the Witwatersrand, Johannesburg; South Africa.
34 Department of Physics, Carleton University, Ottawa ON; Canada.
35 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Faculté des Sciences, Université Ibn-Tofail, Kénitra; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPPTM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat; Morocco.
36 CERN, Geneva; Switzerland.
37 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.
38 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.
39 Nevis Laboratory, Columbia University, Irvington NY; United States of America.
40 Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.
41 (a) Dipartimento di Fisica, Università della Calabria, Rende; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.
42 Physics Department, Southern Methodist University, Dallas TX; United States of America.
43 Physics Department, University of Texas at Dallas, Richardson TX; United States of America.
44 National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.
45 (a) Department of Physics, Stockholm University; (b) Oskar Klein Centre, Stockholm; Sweden.
46 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.
47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany.
48 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.
49 Department of Physics, Duke University, Durham NC; United States of America.
50 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.
51 INFN e Laboratori Nazionali di Frascati, Frascati; Italy.
52 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
53 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany.
54 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
55 (a) Dipartimento di Fisica, Università di Genova, Genova; (b) INFN Sezione di Genova; Italy.
56 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany.
57 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.
58 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America.
60 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (b) Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao; (c) School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai; (d) Tsung-Dao Lee Institute, Shanghai; China.
61 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.
62 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan.
63 (a) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study,
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.

64Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.

65IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.

66Department of Physics, Indiana University, Bloomington IN; United States of America.

67(a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b)ICTP, Trieste; (c)Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.

68(a)INFN Sezione di Lecce; (b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.

69(a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano; Italy.

70(a)INFN Sezione di Napoli; (b)Dipartimento di Fisica, Università di Napoli, Napoli; Italy.

71(a)INFN Sezione di Pavia; (b)Dipartimento di Fisica, Università di Pavia, Pavia; Italy.

72(a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.

73(a)INFN Sezione di Roma; (b)Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.

74(a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.

75(a)INFN Sezione di Roma Tre; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.

76(a)INFN-TIFPA; (b)Università degli Studi di Trento, Trento; Italy.

77Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.

78University of Iowa, Iowa City IA; United States of America.

79Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.

80Joint Institute for Nuclear Research, Dubna; Russia.

81(a)Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; (b)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (c)Universidade Federal de São João del Rei (UFSJ), São João del Rei; (d)Instituto de Física, Universidade de São Paulo, São Paulo; Brazil.

82KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.

83Graduate School of Science, Kobe University, Kobe; Japan.

84(a)AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.

85Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.

86Faculty of Science, Kyoto University, Kyoto; Japan.

87Kyoto University of Education, Kyoto; Japan.

88Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.

89Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.

90Physics Department, Lancaster University, Lancaster; United Kingdom.

91Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.

92Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.

93School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.

94Department of Physics, Royal Holloway University of London, Egham; United Kingdom.

95Department of Physics and Astronomy, University College London, London; United Kingdom.

96Louisiana Tech University, Ruston LA; United States of America.

97Fysiska institutionen, Lunds universitet, Lund; Sweden.

98Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne; France.

99Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.

100Institut für Physik, Universität Mainz, Mainz; Germany.
School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.
CPPM, Aix-Marseille Université, CNRS-IN2P3, Marseille; France.
Department of Physics, University of Massachusetts, Amherst MA; United States of America.
Department of Physics, McGill University, Montreal QC; Canada.
School of Physics, University of Melbourne, Victoria; Australia.
Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.
Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.
Group of Particle Physics, University of Montreal, Montreal QC; Canada.
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.
National Research Nuclear University MEPhI, Moscow; Russia.
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.
Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.
Nagasaki Institute of Applied Science, Nagasaki; Japan.
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.
Department of Physics, Northern Illinois University, DeKalb IL; United States of America.
Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk; Novosibirsk; Russia.
Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia.
Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow; Russia.
Department of Physics, New York University, New York NY; United States of America.
Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.
Ohio State University, Columbus OH; United States of America.
Faculty of Science, Okayama University, Okayama; Japan.
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.
Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic.
Institute for Fundamental Science, University of Oregon, Eugene, OR; United States of America.
Graduate School of Science, Osaka University, Osaka; Japan.
Department of Physics, University of Oslo, Oslo; Norway.
Department of Physics, Oxford University, Oxford; United Kingdom.
LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris; France.
Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia.
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.

Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; Departamento de Física, Universidade de Coimbra, Coimbra; Centro de Física Nuclear da Universidade de Lisboa, Lisboa; Departamento de Física, Universidade do Minho, Braga; Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica; Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.

Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.

Czech Technical University in Prague, Prague; Czech Republic.

Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.

Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; Universidad Andres Bello, Department of Physics, Santiago; Instituto de Alta Investigación, Universidad de Tarapacá; Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.

Department of Physics, University of Washington, Seattle WA; United States of America.

Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.

Department of Physics, Shinshu University, Nagano; Japan.

Department Physik, Universität Siegen, Siegen; Germany.

Department of Physics, Simon Fraser University, Burnaby BC; Canada.

SLAC National Accelerator Laboratory, Stanford CA; United States of America.

Physics Department, Royal Institute of Technology, Stockholm; Sweden.

Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.

Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.

School of Physics, University of Sydney, Sydney; Australia.

Institute of Physics, Academia Sinica, Taipei; Taiwan.

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.

Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.

International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.

Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.

Tomsk State University, Tomsk; Russia.

Department of Physics, University of Toronto, Toronto ON; Canada.

TRIUMF, Vancouver BC; Department of Physics and Astronomy, York University, Toronto ON; Canada.

Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.

Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.
Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
Department of Physics, University of Illinois, Urbana IL; United States of America.
Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.
Department of Physics, University of British Columbia, Vancouver BC; Canada.
Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.
Department of Physics, University of Warwick, Coventry; United Kingdom.
Waseda University, Tokyo; Japan.
Department of Particle Physics, Weizmann Institute of Science, Rehovot; Israel.
Department of Physics, University of Wisconsin, Madison WI; United States of America.
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.
Department of Physics, Yale University, New Haven CT; United States of America.
a Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.
b Also at CERN, Geneva; Switzerland.
c Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
d Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
e Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain.
f Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah; United Arab Emirates.
g Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
h Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
i Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.
j Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.
k Also at Department of Physics, California State University, East Bay; United States of America.
l Also at Department of Physics, California State University, Fresno; United States of America.
m Also at Department of Physics, California State University, Sacramento; United States of America.
n Also at Department of Physics, King’s College London, London; United Kingdom.
o Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.
p Also at Department of Physics, Stanford University, Stanford CA; United States of America.
q Also at Department of Physics, University of Adelaide, Adelaide; Australia.
r Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.
s Also at Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
t Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine; Italy.
u Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.
v Also at Giresun University, Faculty of Engineering, Giresun; Turkey.
w Also at Graduate School of Science, Osaka University, Osaka; Japan.
x Also at Hellenic Open University, Patras; Greece.
y Also at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.
z Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.
aa Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.
Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.

Also at Institute of Particle Physics (IPP), Vancouver; Canada.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.

Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.

Also at Joint Institute for Nuclear Research, Dubna; Russia.

Also at Louisiana Tech University, Ruston LA; United States of America.

Also at Manhattan College, New York NY; United States of America.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

Also at National Research Nuclear University MEPhI, Moscow; Russia.

Also at Physics Department, An-Najah National University, Nablus; Palestine.

Also at Physics Dept, University of South Africa, Pretoria; South Africa.

Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.

Also at School of Physics, Sun Yat-sen University, Guangzhou; China.

Also at The City College of New York, New York NY; United States of America.

Also at TRIUMF, Vancouver BC; Canada.

Also at Universita di Napoli Parthenope, Napoli; Italy.

* Deceased