New method for the extrapolation of finite-size data to infinite volume

Sergio Caraccioloa, Robert G. Edwardsb, Sabino J. Ferreirac, Andrea Pelissettod and Alan D. Sokale,*

aDipartimento di Fisica and INFN, Università degli Studi di Lecce, Lecce 73100, ITALIA
bSCRI, Florida State University, Tallahassee, FL 32306, USA
cDepartamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161, BRASIL
dDipartimento di Fisica and INFN – Sezione di Pisa, Università degli Studi di Pisa, Pisa 56100, ITALIA
eDepartment of Physics, New York University, 4 Washington Place, New York, NY 10003, USA

We present a simple and powerful method for extrapolating finite-volume Monte Carlo data to infinite volume, based on finite-size-scaling theory. We discuss carefully its systematic and statistical errors, and we illustrate it using three examples: the two-dimensional three-state Potts antiferromagnet on the square lattice, and the two-dimensional \(O(3)\) and \(O(\infty)\) \(\sigma\)-models. In favorable cases it is possible to obtain reliable extrapolations (errors of a few percent) even when the correlation length is 1000 times larger than the lattice.

Quantum field theorists are interested primarily in infinite systems; but Monte Carlo simulations must perforce be carried out on lattices of finite linear size \(L\), limited by computer memory and speed. This raises the problem of extrapolating finite-volume data to \(L = \infty\). We present here a simple and powerful method for performing this extrapolation, based on finite-size-scaling theory [1]; and we discuss carefully its systematic and statistical errors. We illustrate the method using three examples: the two-dimensional three-state Potts antiferromagnet on the square lattice [2], and the two-dimensional \(O(3)\) and \(O(\infty)\) \(\sigma\)-models [3,4]. We have found — much to our surprise — that in favorable cases it is possible to obtain reliable extrapolations (errors of a few percent) at \(\xi / L\) as large as 10–1000. More details can be found in [5].

Consider, for starters, a model controlled by a renormalization-group (RG) fixed point having \textit{one} relevant operator. Let us work on a periodic lattice of linear size \(L\). Let \(\xi(\beta, L)\) be a suitably defined finite-volume correlation length (we use the second-moment correlation length defined by equations (4.11)–(4.13) of [6]), and let \(\mathcal{O}\) be any long-distance observable (e.g. the correlation length or the susceptibility). Then finite-size-scaling theory [1] predicts that

\[
\frac{\mathcal{O}(\beta, L)}{\mathcal{O}(\beta, \infty)} = f_\mathcal{O} \left(\frac{\xi(\beta, \infty)}{L} \right) + O(\xi^{-\omega}, L^{-\omega})
\]

where \(f_\mathcal{O}\) is a universal function and \(\omega\) is a correction-to-scaling exponent. Hence, if \(s\) is any fixed scale factor (usually we take \(s = 2\)),

\[
\frac{\mathcal{O}(\beta, sL)}{\mathcal{O}(\beta, L)} = F_\mathcal{O} \left(\frac{\xi(\beta, L)}{L} \right) + O(\xi^{-\omega}, L^{-\omega})
\]

where \(F_\mathcal{O}\) can be expressed in terms of \(f_\mathcal{O}, f_k\).

Our method proceeds as follows [7]: Make Monte Carlo runs at numerous pairs \((\beta, L)\) and \((\beta, sL)\). Plot \(\mathcal{O}(\beta, sL)/\mathcal{O}(\beta, L)\) versus \(\xi(\beta, L)/L\), using those points satisfying both \(\xi(\beta, L) \geq \xi_{\text{min}}\) and \(L \geq \text{some value} L_{\text{min}}\). If all these points fall with good accuracy on a single curve — thus verifying the Ansatz (2) for \(\xi \geq \xi_{\text{min}}, L \geq L_{\text{min}}\) — choose a smooth fitting function \(F_\mathcal{O}\). Then, using the functions \(F_\xi\) and \(F_\mathcal{O}\), extrapolate the pair \((\xi, \mathcal{O})\) successively from \(L \rightarrow sL \rightarrow s^2L \rightarrow \ldots \rightarrow \infty\).

We have chosen to use functions \(F_\mathcal{O}\) of the form

\[
F_\mathcal{O}(x) = 1 + a_1 e^{-1/x} + \ldots + a_n e^{-n/x}
\]

This form is partially motivated by theory, which tells us that \(F(x) \rightarrow 1\) exponentially fast as \(x \rightarrow \infty\)
0 [10]. Typically a fit of order $3 \leq n \leq 12$ is sufficient; we increase n until the χ^2 of the fit becomes essentially constant. The resulting χ^2 value provides a check on the systematic errors arising from corrections to scaling and/or from the inadequacies of the form (3).

The statistical error on the extrapolated value of $O_\infty(\beta) \equiv O(\beta, \infty)$ comes from three sources: (i) error on $O(\beta, L)$, which gets multiplicatively propagated to O_∞; (ii) error on $\xi(\beta, L)$, which affects the argument $x \equiv \xi(\beta, L)/L$ of the scaling functions F_ξ and F_ω; and (iii) statistical error in our estimate of the coefficients a_1, \ldots, a_n in F_ξ and F_ω. The errors of type (i) and (ii) depend on the statistics available at the single point (β, L), while the error of type (iii) depends on the statistics in the whole set of runs. Errors (i)+(ii) [resp. (i)+(ii)+(iii)] can be quantified by performing a Monte Carlo experiment in which the input data at (β, L) [resp. the whole set of input data] are varied randomly within their error bars and then extrapolated.

The discrepancies between the extrapolated values from different lattice sizes at the same β — to the extent that these exceed the estimated statistical errors — indicate the presence of systematic errors and thus the necessity of increasing L_{min} and/or ξ_{min} and/or n.

A figure of (de)merit of the method is the relative variance on the extrapolated value $O_\infty(\beta)$, multiplied by the computer time needed to obtain it. We expect this relative variance-time product [for errors (i)+(ii) only] to scale as

$$\text{RVTP}(\beta, L) \approx \xi_\infty(\beta)^{d+z_{\text{int}G}} \xi_{\text{C}} \left(\frac{\xi_\infty(\beta)}{L} \right)$$

where d is the spatial dimension and $z_{\text{int}G}$ is the dynamic critical exponent of the Monte Carlo algorithm being used; here ξ_{C} is a combination of several static and dynamic finite-size-scaling functions, and depends both on the observable O and on the algorithm but not on the scale factor s. As ξ_∞/L tends to zero, we expect ξ_{C} to diverge as $(\xi_\infty/L)^{-d}$ (it is wasteful to use a lattice $L \gg \xi_\infty$). As ξ_∞/L tends to infinity, we expect $\xi_{\text{C}} \sim (\xi_\infty/L)^p$ [5], but the power p can be either positive or negative. If $p > 0$, there is an optimum value of ξ_∞/L; this determines the best lattice size at which to perform runs for a given β. If $p < 0$, it is most efficient to use the smallest lattice size for which the corrections to scaling are negligible compared to the statistical errors.

Our first example [2] is the two-dimensional three-state Potts antiferromagnet on the square lattice, which is believed to have a critical point at $\beta = \infty$ [11]. We used the Wang-Swendsen-Koteckê cluster algorithm [12], which appears to have no critical slowing-down ($\tau_{\text{int,M} \approx \text{avg} < 5$ uniformly in β and L) [2]. We ran on lattices $L = 32, 64, 128, 256, 512, 1024, 1536$ at 153 different pairs (β, L) in the range $5 \leq \xi_\infty \leq 20000$. Each run was between 2×10^5 and 2.2×10^7 iterations, and the total CPU time was modest by our standards (about 2 years on an IBM RS-6000/370). We took $\xi_{\text{min}} = 10$ and $L_{\text{min}} = 128$ and used a quintic fit in (3); the result for F_ξ is shown in [2,9] ($\chi^2 = 75.41, 66$ DF, level = 20%). The extrapolated values from different lattice sizes at the same β agree within the estimated statistical errors ($\chi^2 = 43.08, 75$ DF, level > 99%). The result for G_ξ is shown in [5]; the errors are roughly constant for $\xi_\infty/L \geq 0.4$ but rise sharply for smaller ξ_∞/L. In practice we were able to obtain ξ_∞ to an accuracy of about 1% (resp. 2%, 3%, 5%) at $\xi_\infty \approx 1000$ (resp. 2000, 5000, 10000).

Next let us consider [3,4] the two-dimensional $O(3)$ σ-model (see Caracciolo’s talk for more details). We used the Wolff embedding algorithm with standard Swendsen-Wang updates; again critical slowing-down appears to be completely eliminated. We ran on lattices $L = 32, 48, 64, 96, 128, 192, 256, 384, 512$ at 180 different pairs (β, L) in the range $20 \leq \xi_\infty \leq 10^2$. Each run was between 10^5 and 5×10^6 iterations, and the total CPU time was 7 years on an IBM RS-6000/370. We took $\xi_{\text{min}} = 20$ and used a tenth-order fit. There appear to be weak corrections to scaling (of order $\leq 1.5\%$) in the region $0.3 \leq \xi_L/L \leq 0.7$ for lattices with $L \leq 64-96$. We therefore chose $L_{\text{min}} = 128$ for $\xi_L/L \leq 0.7$, and $L_{\text{min}} = 64$ for $\xi_L/L > 0.7$. The result for F_ξ is shown in [4,5] ($\chi^2 = 72.91, 73$ DF, level = 48%). The result for G_ξ is shown in [5]; at large ξ_∞/L it decreases sharply, with a power $p \approx -2$ in agree-
ment with theory [5]. In practice we obtained ξ_∞ to an accuracy of about 0.2% (resp. 0.7%, 1.1%, 1.6%) at $\xi_\infty \approx 10^3$ (resp. 10^4, 10^5, 10^6).

We also carried out a "simulated Monte Carlo" experiment for the $O(N)$ σ-model at $N = \infty$, by generating data from the exact finite-volume solution plus random noise of 0.1% for $L = 64, 96, 128, 0.2\%$ for $L = 192, 256$ and 0.5% for $L = 384, 512$ [which is the order of magnitude we attain in practice for $O(3)$]. We considered 35 values of β in the range $20 \leq \xi_\infty \leq 10^6$. We used $\xi_{\text{min}} = 20$ and $L_{\text{min}} = 64$ (in fact much smaller values could have been used, as corrections to scaling are here very small) and a ninth-order fit; for two different data sets we get $\chi^2 = 114$ (resp. 118) with 166 DF. In practice we obtain ξ_∞ with an accuracy of 0.6% (resp. 1.2%, 2%, 3%) at $\xi_\infty \approx 10^3$ (resp. 10^4, 10^5, 10^6).

Here we can also compare the extrapolated values $\xi_\infty^{\text{extr}}(\beta)$ with the exact values $\xi_\infty^{\text{exact}}(\beta)$. Defining $R = \sum_\beta |\xi_\infty^{\text{extr}}(\beta) - \xi_\infty^{\text{exact}}(\beta)|^2 / \sigma^2(\beta)$, we find for the two data sets $R = 17.19$ (resp. 25.81) with 35 DF. Only 6 (resp. 9) points differ from the exact value more than one standard deviation, and none by more than two.

Details on all of these models will be reported separately [2,4].

The method is easily generalized to a model controlled by an RG fixed point having k relevant operators. It suffices to choose $k - 1$ dimensionless ratios of long-distance observables, call them $R = (R_1, \ldots, R_{k-1})$; then the function F_β will depend parametrically on $R(\beta, L)$. In practice one can divide R-space into "slices" within which F_β is empirically constant within error bars, and perform the fit (3) within each slice. We have used this approach to study the mixed isovector/isotensor σ-model, taking R to be the ratio of isovector to isotensor correlation length [3,4].

The method can also be applied to extrapolate the exponential correlation length (inverse mass gap). For this purpose one must work in a system of size $L^{d-1} \times T$ with $T \gg \xi_{\text{exp}}(\beta, L)$ (cf. [8]).

We wish to thank Martin Hasenbusch and especially Jae-Kwon Kim for sharing their data with us, and for challenging us to push to ever larger values of ξ / L. This research was supported by CNR, INFN, CNPq, FAPEMIG, DOE contracts DE-FG05-85ER25000 and DE-FG05-92ER40742, NSF grant DMS-9200719, and NATO CRG 910251.

REFERENCES

2. S.J. Ferreira and A.D. Sokal, hep-lat/9405015; and in preparation.
7. Our method has many features in common with those of Lüscher, Weisz and Wolff [8] and Kim [9]. In particular, all these methods share the property of working only with observable quantities (ξ, O and L) and not with bare quantities (β). Therefore, they rely only on "scaling" and not on "asymptotic scaling"; and they differ from other FSS-based methods such as phenomenological renormalization.