Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the CMS detector in 2016–2018, and corresponding to an integrated luminosity of 137 fb$^{-1}$. The search is performed in the fully leptonic final state $ZZ \rightarrow \ell\ell\ell\ell'$, where $\ell, \ell' = e, \mu$. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is $\sigma_{\text{EW}}(pp \rightarrow ZZjj \rightarrow \ell\ell\ell\ell'jj) = 0.33^{+0.11}_{-0.10}$ (stat)$^{+0.04}_{-0.03}$ (syst) fb in the most inclusive volume, in agreement with the standard model prediction of 0.275 ± 0.021 fb. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9.

Submitted to Physics Letters B
1 Introduction

In the standard model (SM), the electroweak (EW) vector bosons, like the other fundamental particles, acquire their masses through the coupling to the Brout-Englert-Higgs field. The photon remains massless, with only two degrees of polarization (i.e., transverse), whereas the W and Z bosons acquire an additional degree of freedom (i.e., longitudinal), as a consequence of the electroweak symmetry breaking (EWSB) \[1, 2\]. Thus, the scattering of massive vector bosons is at the heart of the EWSB mechanism and its study can lead to significant insight into the origin of particle masses. Moreover, if the couplings between the Higgs boson and vector bosons (HVV) differ from their SM values, the subtle interplay between HVV, triple, and quartic gauge couplings as predicted in the SM is incomplete, and the cross section for the longitudinal scattering diverges at large scattering energies, eventually violating the unitarity.

At the CERN LHC, vector boson scattering (VBS) is the interaction of two EW vector bosons emitted by quarks (q) from the two colliding protons. The VBS process is generally labeled by the type of outgoing vector bosons. The two jets (jj) originating from the scattered quarks are typically emitted in the forward-backward region of the detector, giving rise to events whose signature in the detector is characterized by a region in rapidity (so-called “rapidity gap”) \[3, 4\], where no additional hadronic activity is expected from the hard scattering. The decay of the vector bosons into fermions defines the final signature of the VBS-like event. The pure VBS contributions, however, are embedded into a wider set of possible two-to-six processes, with which they interfere (Fig. 1). All processes at the order of α_{EW}^6 (tree level) are considered as EW production (Fig. 1 upper panels and bottom left panel), whereas the processes at the order $\alpha_{\text{EW}}^4 \alpha_S^2$ where at tree level the jets are induced by quantum chromodynamics (QCD) (lower right panel in Fig. 1), constitute a background referred to as QCD-induced background. Kinematic requirements on the dijet system are used to define fiducial regions enriched in VBS-like events and where QCD-induced backgrounds are suppressed.

Both the ATLAS and CMS Collaborations have performed searches for the scattering of massive vector bosons, using data from proton-proton (pp) collisions at the center-of-mass energy of 13 TeV. The ATLAS Collaboration reported the observation of EW production of two jets in association with a same-sign W boson pair \[5\], with a WZ boson pair \[6\], and, recently, with a Z boson pair \[7\]. Results were also reported on the measurement of the EW diboson production (WW, WZ, ZZ) in association with a high-mass dijet system in semileptonic final states \[8\], with an observed significance of 2.7 standard deviations. The CMS Collaboration observed the production of two EW-induced jets with two same-sign W bosons \[9, 10\] and with WZ pairs \[10\], and measured the EW production of jets in association with ZZ \[11\] with an observed significance of 2.7 standard deviations.

This paper presents evidence for the EW production of two jets in association with two Z bosons, where both Z bosons decay into electrons or muons, $ZZ \rightarrow \ell\ell\ell\ell\ell\ell$. Despite a low cross section, a small $Z \rightarrow \ell\ell$ branching fraction, and a large QCD-induced background, this channel provides a clean leptonic final state with a small experimental background, where one or more reconstructed lepton candidates originate from the misidentification of jet fragments or from nonprompt leptons.

The search for the EW-induced production of the $\ell\ell\ell\ell\ell\ell$ final state is carried out using pp collisions at $\sqrt{s} = 13$ TeV recorded with the CMS detector at the LHC. The data set corresponds to an integrated luminosity of 137 fb$^{-1}$ collected in 2016, 2017, and 2018. A discriminant based on a matrix element likelihood approach (MELA) \[12–16\] is used to extract the signal significance and to measure the cross sections for the EW and the EW+QCD production of the $\ell\ell\ell\ell\ell\ell$ final state in a fiducial volume. Finally, the selected $\ell\ell\ell\ell\ell\ell$ events are used to constrain anomalous
quartic gauge couplings (aQGC) described in the effective field theory approach [17] by the operators T_0, T_1, and T_2, as well as the neutral-current operators T_8 and T_9 [18].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The first level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events of interest with a latency of 3.2 μs. The high-level trigger processor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage [19]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [20].

3 Signal and background simulation

Several Monte Carlo (MC) event generators are used to simulate signal and background contributions. The simulated samples are employed to optimize the event selection, evaluate the
signal efficiency and acceptance, and to model the signal and irreducible background contributions in the signal extraction fit.

The EW production of two Z bosons and two final-state quarks, where the Z bosons decay leptonically, is simulated at leading order (LO) using MADGRAPH5_aMC@NLO v2.4.6 (abbreviated as MG5 in the following) [21]. The leptonic Z boson decays are simulated using MADSPIN [22]. The sample includes triboson processes, where the Z boson pair is accompanied by a third vector boson that decays hadronically, as well as diagrams involving the quartic gauge coupling vertex. The predictions from this sample are cross-checked with those obtained from the LO generator PHANTOM v1.2.8 [23] with agreement in the yields and the distributions exploited for the signal extraction.

The leading QCD-induced production of two Z bosons in association with jets, whose contribution with two jets in the final state is referred to as \(q\bar{q} \rightarrow ZZjj \), is simulated at next-to-leading order (NLO) with MG5 with up to two extra parton emissions, and merged with the parton shower simulation using the FxFx scheme [24]. Next-to-next-to-leading order corrections calculated with MATRIX v1.0.0 [25-27] are applied as \(K \) factors, differentially as a function of the invariant mass of the ZZ system (\(m_{ZZ} \)). Additional NLO EW corrections are applied for \(m_{ZZ} > 2m_Z \), following the calculations from Ref. [28]. The interference between the EW and QCD diagrams is evaluated using dedicated samples produced with MG5 at LO. Its contribution is added in the cross section fits via a linearized scaling law. The loop-induced production of two Z bosons from a gluon-gluon (gg) initial state, whose contribution with two jets in the final state is referred to as \(gg \rightarrow ZZjj \), is simulated at LO with up to two extra parton emissions using MG5 by explicitly requiring a loop-induced process. For the 1- and 2-jet contributions, a pp initial state instead of gg is specified in MG5 to also include initial-state radiation contributions where a gluon involved in the hard process is emitted from an initial quark. Finally, the samples with 0 to 2 extra partons are merged with parton shower simulation using the MLM matching scheme [29,30]. An NLO/LO \(K \) factor, which is extracted from Refs. [31,32], is used to normalize this process.

Background processes that contain four prompt, isolated leptons and additional jets in the final state, namely \(ttZ \) and \(VVZ \) (\(V = W, Z \)), are simulated with MG5 at NLO.

The simulation of the aQGC processes is performed at LO using MG5 and employs matrix element reweighting to obtain a finely spaced grid for each of the five anomalous couplings probed by the analysis.

The PYTHIA 8.226 and 8.230 [33] package versions are used for parton showering, hadronization and the underlying event simulation, with parameters set by the CUETP8M1 tune [34] (CP5 tune [35]) for the 2016 (2017 and 2018) data-taking period. The NNPDF3.0 (NNPDF3.1) set of parton distribution functions, PDFs [36], is used for the 2016 (2017 and 2018) data-taking period. Unless specified otherwise, the simulated samples are normalized to the cross sections obtained from the respective event generator.

The detector response is simulated using a detailed description of the CMS detector implemented in the GEANT4 package [37,38]. The simulated events are reconstructed using the same algorithms used for the data, and include additional interactions in the same and neighboring bunch crossings, referred to as pileup. Simulated events are weighted so that the pileup distribution reproduces that observed in the data, which has an average of about 23 (32) interactions per bunch crossing in 2016 (2017 and 2018).
4 Event reconstruction and selection

The final state consists of at least two pairs of oppositely charged isolated leptons and at least two hadronic jets. The ZZ selection is similar to that used in the CMS $H \to ZZ \to \ell\ell\ell\ell$ measurement [39].

The primary triggers require the presence of a pair of loosely isolated leptons, whose exact requirements depend on the data-taking year. Triggers requiring three leptons with low transverse momentum (p_T), as well as isolated single-electron and single-muon triggers, help to recover efficiency. The overall trigger efficiency for events that satisfy the ZZ selection described below is $> 98\%$.

Events are reconstructed using a particle-flow algorithm [40] that identifies each individual particle with an optimized combination of all subdetector information. The candidate vertex with the largest value of summed physics-object p_T^2 is the primary pp interaction vertex. The physics objects are the jets, clustered using the jet finding algorithm [41, 42] with the tracks assigned to candidate vertices as inputs, and the associated missing transverse momentum (p_T^{miss}), taken as the negative vector sum of the p_T of those jets (which include the leptons).

Electrons are identified using a multivariate classifier, which includes observables sensitive to bremsstrahlung along the electron trajectory, the geometrical and energy-momentum compatibility between the electron track and the associated energy cluster in the electromagnetic calorimeter, the shape of the electromagnetic shower, isolation variables, and variables that discriminate against electrons originating from photon conversions [43].

Muons are reconstructed by combining information from the silicon tracker and the muon system [44]. The matching between the muon-system and tracker tracks proceeds either outside-in, starting from a track in the muon system, or inside-out, starting from a track in the silicon tracker. The muons are selected from the reconstructed muon track candidates by applying minimal requirements on the track in both the muon system and silicon tracker.

To further suppress electrons from photon conversions and muons originating from in-flight decays of hadrons, the three-dimensional impact parameter of each lepton track, computed with respect to the primary vertex position, is required to be less than four times the uncertainty in the impact parameter.

Leptons are required to be isolated from other particles in the event. The relative isolation is defined as

$$R_{\text{iso}} = \left[\sum_{\text{charged hadrons}} p_T + \max \left(0, \sum_{\text{neutral hadrons}} p_T + \sum_{\text{photons}} p_T - p_T^{\text{PU}} \right) \right] / p_T^{\ell},$$

where the sums run over the charged and neutral hadrons, as well as the photons, in a cone defined by $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3$ around the lepton trajectory, where η and ϕ denote the azimuthal angle and pseudorapidity of the particle, respectively. To minimize the contribution of charged particles from pileup to the isolation calculation, charged hadrons are included only if they originate from the primary vertex. The contribution of neutral particles from pileup p_T^{PU} is evaluated for electrons with the jet area method described in Ref. [45]. For muons, p_T^{PU} is taken as half the p_T sum of all charged particles in the cone originating from pileup vertices. The factor of one-half accounts for the expected ratio of charged to neutral particle production in hadronic interactions. Muons with $R_{\text{iso}} < 0.35$ are considered isolated, whereas for electrons, the R_{iso} variable is included in the multivariate classifier.

The lepton reconstruction and selection efficiency is measured in bins of p_T^{ℓ} and η^{ℓ} using the
tag-and-probe technique on events with single Z bosons. The measured efficiencies are used to correct the simulation. The muon (electron) momentum scales are calibrated in bins of p_T and η using the J/ψ meson and Z boson (Z boson only) leptonic decays.

Jets are reconstructed from particle-flow candidates using the anti-k_T clustering algorithm, as implemented in the FASTJET package, with a distance parameter of 0.4. To ensure a good reconstruction efficiency and to reduce the instrumental background, as well as the contamination from pileup, loose identification criteria based on the multiplicities and energy fractions carried by charged and neutral hadrons are imposed on jets. Only jets with $|\eta| < 4.7$ are considered.

Jet energy corrections are extracted from data and simulated events to account for the effects of pileup, uniformity of the detector response, and residual differences between the jet energy scale in data and simulation. The jet energy scale calibration relies on corrections parameterized in terms of the uncorrected p_T and η of the jet, and is applied as a multiplicative factor, scaling the four-momentum vector of each jet. To ensure that jets are well measured and to reduce the pileup contamination, all jets must have a corrected $p_T > 30$ GeV. Jets from pileup are further rejected using pileup jet identification criteria based on the compatibility of the associated tracks with the primary vertex inside the tracker acceptance and on the topology of the jet shape in the forward region.

A signal event must contain at least two Z candidates, each formed from pairs of isolated electrons or muons of opposite charges. Only reconstructed electrons (muons) with $p_T > 7$ (5) GeV are considered. At least two leptons are required to have $p_T > 10$ GeV and at least one is required to have $p_T > 20$ GeV. All leptons are required to be separated by $\Delta R (\ell_1, \ell_2) > 0.02$, and electrons are required to be separated from muons by $\Delta R (e, \mu) > 0.05$.

Within each event, all permutations of leptons giving a valid pair of Z candidates are considered. For each ZZ candidate, the lepton pair with the invariant mass closest to the nominal Z boson mass is denoted Z_1. The other dilepton candidate is denoted Z_2. Both m_{Z_1} and m_{Z_2} are required to be in the range 60–120 GeV. All pairs of oppositely charged leptons that can be built from the ZZ candidate, regardless of flavor, are required to satisfy $m_{\ell\ell} > 4$ GeV to suppress backgrounds from hadron decays. If multiple ZZ candidates in an event pass this selection, the one with the largest scalar p_T sum of the Z_2 leptons is retained. Finally, the invariant mass of the four leptons is required to satisfy $m_{4\ell} > 180$ GeV. This selection is referred to as the ZZ selection.

The search for the EW production of two Z bosons is performed on a subset of events that pass the ZZ selection, namely those with at least two jets. The jets are required to be separated from the leptons of the ZZ candidate by $\Delta R > 0.4$. The two highest p_T jets are referred to as the tagging jets and their invariant mass (m_{jj}) is required to be > 100 GeV. This selection is referred to as the ZZjj inclusive selection and is used to measure the signal significance, the total fiducial cross sections, and to perform the aQGC search. Additionally, two VBS signal subregions are defined for fiducial cross section measurements in signal-enriched regions: a loose VBS signal-enriched region that requires $m_{jj} > 400$ GeV and $|\Delta \eta_{jj}| > 2.4$ and corresponds to a signal purity of $\approx 20\%$, and a tight VBS signal-enriched region that requires $m_{jj} > 1$ TeV and $|\Delta \eta_{jj}| > 2.4$ and corresponds to a signal purity of $\approx 50\%$. Finally, a background control region is defined from events that satisfy the ZZjj inclusive selection but fail at least one of the criteria that define the loose VBS signal-enriched region.
5 Background estimation

The dominant background arises from the production of two Z bosons in association with QCD-induced jets. The yield and shape of the matrix element discriminant for this irreducible background are taken from simulation, but ultimately constrained by the data in the fit that extracts the EW signal, as described in Section 7. Other irreducible backgrounds arise from processes that produce four genuine high-\(p_T\) isolated leptons, \(pp \to t\bar{t}Z+\text{jets}\) and \(pp \to VVZ+\text{jets}\). These small contributions feature kinematic distributions similar to that of the dominant background and are estimated from simulation.

Reducible backgrounds arise from processes in which heavy-flavor jets produce secondary leptons or from processes in which jets are misidentified as leptons. They are referred to as Z+X and are predominately composed of Z+jets events, with minor contributions from \(t\bar{t}+\text{jets}\) and WZ+jets processes. The lepton identification and isolation requirements significantly suppress this background, which is only 2–3% after the ZZjj inclusive selection and is even smaller in the signal region. This reducible contribution is estimated from data by weighting events from a control region by a lepton misidentification rate, which is also determined from data. Events in the control region satisfy the ZZjj inclusive selection, with the exception that the Z2 is composed of same-sign same-flavor leptons (SS-SF). The SS-SF leptons are required to originate from the primary vertex without any identification or isolation requirement.

The lepton misidentification rate is measured by selecting events that feature one Z boson candidate and a third reconstructed lepton. The fraction of events for which the third lepton satisfies the identification and isolation criteria is the lepton misidentification rate. The misidentification rates are evaluated using the tight requirement \(|m_{Z1} - m_Z| < 7\text{ GeV}\) to reduce the contribution from asymmetric photon conversions, and \(p^\text{miss}_T < 25\text{ GeV}\) to suppress the WZ contribution. The procedure is identical to that used in Ref. [39].

6 Systematic uncertainties

The uncertainties in the QCD renormalization and factorization scales for the signal and in the jet energy scale are the two dominant systematic uncertainties in the measurement. The impact of the variation for each source of uncertainty is summarized below.

Renormalization and factorization scale uncertainties are evaluated by varying both scales independently. The following variations from the default scale choice \(\mu_R = \mu_F \equiv \mu_0\) are considered: \([\mu_F, \mu_R] = [\mu_0, \mu_0/2], [\mu_0, 2\mu_0], [\mu_0/2, \mu_0], [2\mu_0, \mu_0], [\mu_0/2, \mu_0/2], [2\mu_0, 2\mu_0]\), taking the largest variation as the systematic uncertainty, which is about 6% for the EW signal and ranges from 10 to 12% for the q\(\bar{q}\) → ZZjj QCD background. All quoted ranges correspond to variations for the different final states. Since the uncertainty in gg → ZZjj that relates to missing higher order corrections are accounted for using a \(K\) factor, an uncertainty in the normalization of 11% is used, as derived from Refs. [31, 32]. The PDF and related \(\alpha_S\) variations are evaluated from the variations of the respective eigenvalues set following the NNPDF prescription [36], and are 3.2% (6.6%) for the q\(\bar{q}\) → ZZjj QCD background (EW signal). Although the PDFs used are different in the various years (see Section 3), the associated uncertainties are very similar. Given the small dependence on the discriminant value, a constant value of 3–6% is used for these uncertainties, depending on the sample considered.

The impact of the jet energy scale uncertainty ranges from 4.9 to 11.4% (0.7 to 1.2%) for the q\(\bar{q}\) → ZZjj QCD background (EW signal) and the impact of the jet energy resolution uncertainty [49] is 2.2–6.3% (0.2–0.4%). The uncertainty in the trigger as well as the lepton recon-
struction and selection efficiencies ranges from 2.5–9%. The uncertainty in the integrated luminosity is 2.3–2.5% depending on the data-taking period [51–53]. The uncertainty in the estimate of the reducible background from control samples ranges from 33% to 45%, depending on the final state. This uncertainty includes the limited number of events in the control regions as well as differences in background composition between the control regions used to determine the lepton misidentification rates and those used to estimate the yield in the signal region. The uncertainty from the limited size of the MC samples amounts to 2.5–4.2% for the $qq \rightarrow ZZjj$ QCD background, 3.2% for the $gg \rightarrow ZZjj$ QCD background, and is $<1\%$ for the EW signal.

For ttZ and VVZ, the limited MC sample size is the dominant source of uncertainty, ranging from 19 to 24%.

7 Search for the EW production of ZZ with two jets

After the ZZjj inclusive selection, the expected EW signal purity is about 6% with 85% of events coming from the QCD-induced production. Additional kinematic selections are therefore necessary to enhance the contribution from EW production. Table 1 presents the expected and observed event yields for the ZZjj inclusive selection, as well as for the loose and tight VBS signal-enriched selections.

<table>
<thead>
<tr>
<th>Year</th>
<th>Signal (EW ZZjj)</th>
<th>Z+X</th>
<th>$qq \rightarrow ZZjj$</th>
<th>$gg \rightarrow ZZjj$</th>
<th>$ttZ+VVZ$</th>
<th>Total predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ZZjj inclusive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>6.3 ± 0.7</td>
<td>2.8 ± 1.1</td>
<td>65.6 ± 9.5</td>
<td>13.5 ± 2.0</td>
<td>8.4 ± 2.2</td>
<td>96 ± 13</td>
<td>95</td>
</tr>
<tr>
<td>2017</td>
<td>7.4 ± 0.8</td>
<td>2.4 ± 0.9</td>
<td>77.7 ± 11.2</td>
<td>20.3 ± 3.0</td>
<td>9.6 ± 2.5</td>
<td>117 ± 15</td>
<td>111</td>
</tr>
<tr>
<td>2018</td>
<td>10.4 ± 1.1</td>
<td>4.1 ± 1.6</td>
<td>98.1 ± 14.2</td>
<td>29.1 ± 4.3</td>
<td>14.2 ± 3.8</td>
<td>156 ± 20</td>
<td>159</td>
</tr>
<tr>
<td>All</td>
<td>24.1 ± 2.5</td>
<td>9.4 ± 3.6</td>
<td>241.5 ± 34.9</td>
<td>62.9 ± 9.3</td>
<td>32.2 ± 8.5</td>
<td>370 ± 48</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>VBS signal-enriched (loose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>4.2 ± 0.4</td>
<td>0.4 ± 0.2</td>
<td>9.7 ± 1.4</td>
<td>3.2 ± 0.5</td>
<td>1.1 ± 0.3</td>
<td>18.7 ± 2.3</td>
<td>21</td>
</tr>
<tr>
<td>2017</td>
<td>4.9 ± 0.5</td>
<td>0.5 ± 0.2</td>
<td>13.5 ± 1.9</td>
<td>5.5 ± 0.8</td>
<td>1.2 ± 0.3</td>
<td>25.5 ± 3.1</td>
<td>17</td>
</tr>
<tr>
<td>2018</td>
<td>6.9 ± 0.7</td>
<td>0.8 ± 0.3</td>
<td>14.9 ± 2.2</td>
<td>8.3 ± 1.2</td>
<td>1.7 ± 0.5</td>
<td>32.6 ± 3.9</td>
<td>30</td>
</tr>
<tr>
<td>All</td>
<td>16.0 ± 1.7</td>
<td>1.6 ± 0.6</td>
<td>38.1 ± 5.5</td>
<td>17.0 ± 2.5</td>
<td>4.1 ± 1.1</td>
<td>76.8 ± 9.3</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>VBS signal-enriched (tight)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>2.4 ± 0.3</td>
<td>0.10 ± 0.04</td>
<td>1.3 ± 0.2</td>
<td>0.7 ± 0.1</td>
<td>0.24 ± 0.06</td>
<td>4.8 ± 0.5</td>
<td>4</td>
</tr>
<tr>
<td>2017</td>
<td>2.7 ± 0.3</td>
<td>0.05 ± 0.02</td>
<td>1.9 ± 0.3</td>
<td>1.2 ± 0.2</td>
<td>0.14 ± 0.04</td>
<td>6.0 ± 0.7</td>
<td>3</td>
</tr>
<tr>
<td>2018</td>
<td>3.9 ± 0.4</td>
<td>0.17 ± 0.06</td>
<td>2.0 ± 0.3</td>
<td>1.5 ± 0.2</td>
<td>0.30 ± 0.08</td>
<td>7.8 ± 0.9</td>
<td>10</td>
</tr>
<tr>
<td>All</td>
<td>9.0 ± 1.0</td>
<td>0.32 ± 0.12</td>
<td>5.3 ± 0.8</td>
<td>3.3 ± 0.5</td>
<td>0.68 ± 0.18</td>
<td>18.6 ± 2.1</td>
<td>17</td>
</tr>
</tbody>
</table>

The determination of the signal strength for the EW production, i.e., the ratio of the measured cross section to the SM expectation $\mu = \sigma/\sigma_{SM}$, utilizes a matrix element discriminant (K_D) to separate the signal and the QCD background. The discriminant is constructed following the approach described in Refs. [13–15]. The performance of the K_D discriminant was checked against a multivariate discriminant based on a boosted decision tree (BDT) employing seven input variables ($m_{jj}, \Delta \eta_{jj}, m_{4\ell}, \eta_{Z1}, \eta_{Z2}, R(p_T^{hard}), R(p_T^{jets})$) as defined and used in Ref. [11]. Furthermore, a BDT using up to 28 input variables, including the above as well as those used in Ref. [7], was studied and no significant gain was obtained. This confirms that the K_D discriminant captures the differences between the kinematical distributions of signal and background events.

Figure 2 presents the m_{jj} and $|\Delta \eta_{jj}|$ distributions in the ZZjj inclusive region. The distribution of the K_D discriminant for all events in the ZZjj inclusive selection is shown in Fig. 3. The high
signal purity contribution is visible at large discriminant values.

The distribution of the K_D discriminant for the backgrounds is validated in the background control region defined by selecting events with $m_{jj} < 400$ GeV or $|\Delta\eta_{jj}| < 2.4$. A good agreement is observed between the data and the SM expectation.

![Graph 1](data/file1.png)

Figure 2: Distribution of m_{jj} (left) and $|\Delta\eta_{jj}|$ (right) for events satisfying the ZZjj inclusive selection. Points represent the data, filled histograms the expected signal and background contributions (stacked). The unfilled purple histograms represent the EW contribution (not stacked), scaled by a factor of 30. The lower panels show the ratio of the number of events in the data to the total number of expected background events.

The K_D discriminant distribution for events in the ZZjj inclusive selection is used to extract the significance of the EW signal via a maximum-likelihood fit. The expected distributions for the signal and the irreducible backgrounds are taken from the simulation while the reducible background is estimated from the data. The shape and normalization of each distribution are allowed to vary in the fit within the respective uncertainties. This approach constrains the yield of the QCD-induced production from the background-enriched region of the discriminant distribution.

The systematic uncertainties are treated as nuisance parameters in the fits and profiled \[54\]. The measured signal strengths from the fits in the three analysis regions are used to determine the fiducial cross sections for the EW and the EW+QCD production. The fiducial volumes are almost identical to the selections imposed at the reconstruction level, and is detailed in Table 2. The generator-level lepton momenta are corrected by adding the momenta of generator-level photons within $\Delta R(\ell, \gamma) < 0.1$. The kinematic requirements to select Z boson candidates and the final ZZjj candidate are the same as those used for the reconstruction-level analysis.

Table 3 reports the measured cross sections and their SM predictions in the three ZZjj fiducial regions. For the SM predictions we report those extracted from generated events in MC samples adopted for the analysis, as well as higher-order calculations at NLO in QCD \[55, 56\]. In addition, we compare with a theoretical prediction at LO in QCD, but including NLO EW corrections; in the ZZjj baseline region it amounts to $0.242^{+0.015}_{-0.013}$ fb, where the uncertainty comes from variations of the factorization and renormalization scales.

The measured (expected) EW signal strength in the ZZjj inclusive region is $\mu_{EW} = 1.21^{+0.47}_{-0.40}$ ($1.00^{+0.43}_{-0.36}$). In the same region the measured (expected) EW+QCD signal strength is $\mu_{EW+QCD} =$
Figure 3: Distributions of the matrix element discriminant with fit normalizations for events satisfying the ZZjj inclusive selection. Points represent the data, filled histograms the fitted signal and background contributions. The gray bands represent the uncertainties obtained from the fit covariance matrix. In the lower panel, points show the ratio of the number of events in the data to the total number of background events, with the red line indicating the ratio of the fitted total distribution to its background-only component. The observed significance is indicated in the lower panel.

To quantify the significance of the EW signal, we compute the probability of the background-only hypothesis (p-value) as the tail integral of the test statistic evaluated at $\mu_{\text{EW}} = 0$ under the asymptotic approximation [57]. The background-only hypothesis is excluded with a significance of 4.0 (3.5 expected) standard deviations.

8 Limits on anomalous quartic gauge couplings

In an effective field theory approach to physics beyond the Standard Model, dimension-8 operators stem from covariant derivatives of the Higgs doublet and from charged and neutral field strength tensors associated to gauge bosons. The latter generate eight independent operators, corresponding to couplings of the transverse degrees of freedom (T_i) of the gauge fields. The ZZjj channel is particularly sensitive to the charged-current operators T_0, T_1, and T_2, as well as the neutral-current operators T_8 and T_9 [18]. The $m_{4\ell}$ distribution is used to constrain the aQGC parameters f_{T_i}/Λ^4, corresponding to Wilson coefficients of the aforementioned operators.

Figure 4 shows the expected $m_{4\ell}$ distributions with postfit normalizations for the SM and for an example aQGC scenario, as well as the observed distribution in the data. The expected yield enhancement at large values of $m_{4\ell}$ exhibits a quadratic dependence on the anomalous couplings, and a parabolic function is fitted to the per-mass bin yields, allowing for an interpolation between the discrete coupling parameters of the simulated aQGC signals. The statistical
Table 2: Particle-level selections used to define the fiducial regions for EW and EW+QCD cross sections.

<table>
<thead>
<tr>
<th>Particle type</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZjj inclusive</td>
<td>(p_T(\ell_1) > 20 \text{ GeV}) (p_T(\ell_2) > 10 \text{ GeV}) (p_T(\ell) > 5 \text{ GeV}) (</td>
</tr>
<tr>
<td>Z and ZZ</td>
<td>(60 < m(\ell\ell) < 120 \text{ GeV}) (m(4\ell) > 180 \text{ GeV})</td>
</tr>
<tr>
<td>Jets</td>
<td>at least 2 (p_T(j) > 30 \text{ GeV}) (</td>
</tr>
<tr>
<td>VBS-enriched (loose)</td>
<td>ZZjj inclusive +</td>
</tr>
<tr>
<td>Jets</td>
<td>(</td>
</tr>
<tr>
<td>VBS-enriched (tight)</td>
<td>ZZjj inclusive +</td>
</tr>
<tr>
<td>Jets</td>
<td>(</td>
</tr>
</tbody>
</table>

Table 3: Measured cross sections and corresponding SM predictions in the three fiducial regions. The reported SM predictions include those extracted from generated events in MC samples adopted for the analysis (LO), as well as higher-order calculations at NLO in QCD (NLO QCD).

<table>
<thead>
<tr>
<th>Perturbative order</th>
<th>SM (\sigma) (fb)</th>
<th>Measured (\sigma) (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZjj inclusive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EW LO</td>
<td>0.275 ± 0.021</td>
<td>0.33^{+0.11}{-0.10} \text{(stat)}^{+0.04}{-0.03} \text{(syst)}</td>
</tr>
<tr>
<td>EW NLO QCD</td>
<td>0.278 ± 0.017</td>
<td></td>
</tr>
<tr>
<td>EW+QCD</td>
<td>5.35 ± 0.51</td>
<td>5.29^{+0.31}_{-0.30} \text{(stat)} ± 0.46 \text{(syst)}</td>
</tr>
<tr>
<td>VBS-enriched (loose)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EW LO</td>
<td>0.186 ± 0.015</td>
<td>0.200^{+0.078}{-0.067} \text{(stat)}^{+0.023}{-0.013} \text{(syst)}</td>
</tr>
<tr>
<td>EW NLO QCD</td>
<td>0.197 ± 0.013</td>
<td></td>
</tr>
<tr>
<td>EW+QCD</td>
<td>1.21 ± 0.09</td>
<td>1.00^{+0.12}{-0.11} \text{(stat)}^{+0.06}{-0.05} \text{(syst)}</td>
</tr>
<tr>
<td>VBS-enriched (tight)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EW LO</td>
<td>0.104 ± 0.008</td>
<td>0.09^{+0.04}_{-0.03} \text{(stat)} ± 0.02 \text{(syst)}</td>
</tr>
<tr>
<td>EW NLO QCD</td>
<td>0.108 ± 0.007</td>
<td></td>
</tr>
<tr>
<td>EW+QCD</td>
<td>0.221 ± 0.014</td>
<td>0.20^{+0.05}_{-0.04} \text{(stat)} ± 0.02 \text{(syst)}</td>
</tr>
</tbody>
</table>
Figure 4: Distributions of the four-lepton invariant mass with fit normalizations for f_{T9}/Λ^4 and for events satisfying the ZZjj inclusive selection. Points represent the data, filled histograms the fitted signal and background contributions, and the gray band the uncertainties derived from the fit covariance matrix. The expected distribution for an example value of $f_{T9}/\Lambda^4 = 2 \, \text{TeV}^{-4}$ is also shown. The last bin includes all contributions with $m_{4\ell} > 1200 \, \text{GeV}$.

The analysis employs the same methodology used for the signal strength, including the profiling of the systematic uncertainties. The distributions of the background model, including the EW component, are normalized to their measured values in the EW signal extraction (as discussed in Section 7). The Wald Gaussian approximation and Wilks’ theorem are used to derive 2σ confidence level (CL) intervals on the aQGC parameters [57–59]. The measurement is statistically limited.

Table 4: Expected and observed limits of the 2σ CL intervals on the couplings of the quartic operators T0, T1, and T2, as well as the neutral current operators T8 and T9. The unitarity bounds are also listed. All coupling parameter limits are in TeV$^{-4}$, while the unitarity bounds are in TeV.

<table>
<thead>
<tr>
<th>Coupling</th>
<th>Exp. lower</th>
<th>Exp. upper</th>
<th>Obs. lower</th>
<th>Obs. upper</th>
<th>Unitarity bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{T0}/Λ^4</td>
<td>-0.37</td>
<td>0.35</td>
<td>-0.24</td>
<td>0.22</td>
<td>2.4</td>
</tr>
<tr>
<td>f_{T1}/Λ^4</td>
<td>-0.49</td>
<td>0.49</td>
<td>-0.31</td>
<td>0.31</td>
<td>2.6</td>
</tr>
<tr>
<td>f_{T2}/Λ^4</td>
<td>-0.98</td>
<td>0.95</td>
<td>-0.63</td>
<td>0.59</td>
<td>2.5</td>
</tr>
<tr>
<td>f_{T8}/Λ^4</td>
<td>-0.68</td>
<td>0.68</td>
<td>-0.43</td>
<td>0.43</td>
<td>1.8</td>
</tr>
<tr>
<td>f_{T9}/Λ^4</td>
<td>-1.5</td>
<td>1.5</td>
<td>-0.92</td>
<td>0.92</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Table 4 lists the individual lower and upper limits obtained by setting all other anomalous couplings to zero. The unitarity bounds are determined using the results from Ref. [60] as the scattering energy $m_{4\ell}$ at which the aQGC strength set equal to the observed limit would result in a scattering amplitude that violates unitarity.
9 Summary

A search was performed for the electroweak production of two jets in association with two Z bosons in the four-lepton final state in proton-proton collisions at 13 TeV. The data correspond to an integrated luminosity of 137 fb$^{-1}$ collected with the CMS detector at the LHC.

The electroweak production of two jets in association with a pair of Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The measured fiducial cross section is $\sigma_{\text{fid}} = 0.33^{+0.11}_{-0.10}$ (stat)$^{+0.04}_{-0.03}$ (syst) fb, which is consistent with the standard model prediction of 0.275 ± 0.021 fb.

Limits on anomalous quartic gauge couplings are set at 95% confidence level in terms of effective field theory operators, with units in TeV$^{-4}$:

$$-0.24 < f_{T0}/\Lambda^4 < 0.22$$
$$-0.31 < f_{T1}/\Lambda^4 < 0.31$$
$$-0.63 < f_{T2}/\Lambda^4 < 0.59$$
$$-0.43 < f_{T8}/\Lambda^4 < 0.43$$
$$-0.92 < f_{T9}/\Lambda^4 < 0.92$$

These are the most stringent limits to date on the neutral current operators T8 and T9.

Acknowledgments

We are grateful to A. Denner, R. Franken, M. Pellen and T. Schmidt for providing the calculation of the EW cross section with NLO EW corrections in our ZZjj inclusive fiducial region.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPI (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPSI, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la
Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFI research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Italian and Serbian Ministries for Foreign Affairs and International Cooperation (MAECI/MFA), grant n. RS19MO06 (Italy-Serbia); the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, grant no. 14.W03.31.0026 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program and “Nauka” Project FSWE-2020-0008 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[18] O. J. P. Éboli, M. C. Gonzalez-Garcia, and J. K. Mizukoshi, “$pp \rightarrow j j e^\pm \mu^\mp \nu$ and $jj e^\pm \mu^\mp \nu$ at $\mathcal{O}(\alpha^6_{em})$ and $\mathcal{O}(\alpha^4_{em}\alpha_S^2)$ for the study of the quartic electroweak gauge boson vertex at CERN LHC”, Phys. Rev. D 74 (2006) 073005, doi:10.1103/PhysRevD.74.073005 | arXiv:hep-ph/0606118

References

 arXiv:2003.00503 Submitted to JINST.

[52] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at

[53] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at

[54] ATLAS and CMS Collaborations, LHC Higgs Combination Group, “Procedure for the
 LHC Higgs boson search combination in Summer 2011”, CMS-NOTE-2011-005;

[55] B. Jaeger, A. Karlberg, and G. Zanderighi, “Electroweak $ZZ\gamma\gamma$ production in the
 Standard Model and beyond in the POWHEG-BOX V2”, JHEP 03 (2014) 141,

 calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043,

 doi:10.1140/epjc/s10052-011-1554-0 arXiv:1007.1727 [Erratum:
 doi:10.1140/epjc/s10052-013-2501-z].

[58] T. Junk, “Confidence level computation for combining searches with small statistics”,

 doi:10.1088/0954-3899/28/10/313

[60] E. Almeida da Silva, O. J. P. Eboli, and M. C. Gonzalez-Garcia, “Unitarity constraints on
 anomalous quartic couplings”, Phys. Rev. D 101 (2020) 113003,
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhotovsky, A. Litomin, V. Makarenko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, I. Atanasov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China
W. Fang, Q. Guo, H. Wang, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

Sun Yat-Sen University, Guangzhou, China
Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Jaramillo, J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar González, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim12,13, S. Elgammal14, A. Ellithi Kamel15

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehatat, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
E. Brücken, F. Garcia, J. Havukainen, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
T. Toriaishvili18, Z. Tsamalaidze11

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

National and Kapodistrian University of Athens, Athens, Greece

National Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsiopitis, A. Zacharopoulos

University of Ioάnnina, Ioάnnina, Greece
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi†

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Eötvös Loránd University, Karoly Robert Campus, Gyongyos, Hungary
T. Csorgo, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Kumar, K. Naskar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, D. Roy, N. Sahoo

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Department of Physics, Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbrescia a, b, R. Aly a, b, C. Aruta a, c, A. Colaleo a, D. Creanza a, c, N. De Filippis a, c, M. De Palma a, b, A. Di Florio a, b, A. Di Pilato a, b, W. Elmetenaukee a, b, L. Fiore a, A. Gelmi a, b, M. Gul a, G. Iaselli a, c, M. Ince a, b, S. Lezki a, b, G. Maggi a, c, M. Margiotta a, I. Margiotta a, b, V. Mastrapasqua a, b, J.A. Merlin a, S. Mya a, b, S. Nuzzo a, b, A. Pompili a, b, G. Pugliese a, c, A. Ranieri a, G. Selvaggi a, b, L. Silvestris a, F.M. Simone a, b, R. Venditti a, P. Verwilligen a

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi a, C. Battilana a, b, D. Bonacorsi a, b, L. Borgonovi a, b, S. Braibant-Giacomelli a, b, R. Campanini a, b, P. Capiluppi a, b, A. Castro a, b, F.R. Cavallo a, C. Ciocca a, M. Cuffiani a, b, G.M. Dallavalle a, T. Diotalevi a, b, F. Fabbris a, A. Fanfani a, b, E. Fontanesi a, b, P. Giacomelli a, L. Giommi a, b, C. Grandi a, L. Guiducci a, b, F. Iemmi a, b, S. Lo Meo a, b, S. Marcellini a, G. Masetti a, F.L. Navarria a, b, A. Perrotta a, F. Primavera a, b, T. Rovelli a, G.P. Siroli a, b, N. Tosi a

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergo a, b, d, S. Costa a, b, A. Di Mattia a, R. Potenza a, b, A. Tricomi a, b, d, c, C. Tuve a, b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglio a, A. Cassese a, R. Ceccarelli a, b, V. Ciulli a, b, C. Civinini a, R. D’Alessandro a, b, F. Fiori a, E. Focardi a, b, G. Latino a, b, P. Lenzi a, b, M. Lizzo a, b, M. Meschini a, S. Paoletti a, R. Seidita a, b, G. Sguazzoni a, L. Viliani a

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
M. Bozzo a, b, F. Ferro a, R. Mulargia a, b, E. Robutti a, S. Tosi a, b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benaglia a, A. Beschi a, b, F. Brivio a, b, F. Cetorelli a, b, V. Ciriolo a, b, d, 20, F. De Guio a, b, M.E. Dinardo a, b, P. Dini a, S. Gennai a, A. Ghezzi a, b, P. Govoni a, b, L. Guzzi a, b, M. Malberti a, S. Malvezzi a, D. Menasce a, F. Monti a, b, L. Moroni a, M. Pagani a, b, D. Pedrini a, S. Ragazzi a, b, T. Tabarelli de Fatis a, b, D. Valsecchi a, b, d, 20, D. Zollo a, b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempo a, N. Cavallo a, c, A. De Iorio a, b, F. Fabozzi a, c, F. Fienga a, A.O.M. Iorio a, b, L. Lista a, b, S. Meola a, d, 20, P. Paolucci a, b, 20, B. Rossi a, C. Sciaccio a, b, E. Voevodina a, b

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzi a, N. Bachetta a, D. Bisello a, b, A. Boletti a, b, A. Bragagnolo a, b, R. Carlin a, b, P. Checchia a, P. De Castro Manzano a, T. Dorigo a, F. Gasparini a, b, U. Gasparini a, b, S.Y. Hoh a, b, L. Layer a, M. Margoni a, b, A.T. Meneguzzo a, b, M. Presilla a, P. Ronchese a, b, R. Rossin a, b, F. Simonetto a, b, G. Strong, A. Tiko a, b, M. Tosi a, H. YARAR a, b, M. Zanetti a, b, P. Zotto a, b, A. Zucchetta a, b, G. Zumerle a, b
INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
C. Aime a,b, A. Braghiari a, S. Calzaferri a,b, D. Fiorina a,b, P. Montagna a,b, S.P. Ratti a,b, V. Re a, M. Ressegotti a,b, C. Riccardi a,b, P. Salvini a, I. Vai a, P. Vitulo a,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasini a,b, G.M. Bilei a, D. Ciangottini a,b, L. Fanò a,b, P. Lariccia a,b, G. Mantovani a,b, V. Marianii a,b, M. Menichelli a, F. Moscatelli a, A. Piccinelli a,b, A. Rossii a,b, A. Santocchia a,b, D. Spiga a, T. Tedeschi a,b

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsov a, P. Azzurri a, G. Bagliesi a, V. Bertacchi a,c, L. Bianchini a, T. Boccali a, R. Castaldi a, M.A. Ciocci a,b, R. Dell’Orso a, M.R. Di Domenico a,b, S. Donato a, L. Giannini a,c, A. Giassi a, M.T. Grippo a, F. Ligabue a,c, E. Manca a,c, G. Mandorli a,c, A. Messineo a,b, F. Palladini a, G. Ramirez-Sanchez a,c, A. Rizzi a,b, G. Rolandi a,c, S. Roy Chowdhury a,b,c, A. Scribano a, N. Shafiei a,b, P. Spagnolo a, R. Tenchini a, G. Tonelli a,b, N. Turini a, A. Venturi a, P.G. Verdini a

INFN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy
F. Cavallari a, M. Cipriani a,b, D. Del Re a,b, E. Di Marco a, M. Diemoz a, E. Longo a,b, P. Meridiani a, G. Organtini a,b, F. Pandolfi a, R. Paramatti a,b, C. Quaranta a,b, S. Rahatlou a,b, C. Rovelli a, F. Santanastasio a,b, L. Soffi a,b, R. Tramontano a,b

INFN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapane a,b, R. Arcidiacono a,c, S. Argiro a,c, M. Arneodo a,c, N. Bartosik a, R. Bellan a,b, A. Bellora a,b, C. Biino a, A. Cappati a,b, N. Cartiglia a, S. Cometti a, M. Costa a,b, R. Covarelli a,b, N. Demaria a, B. Kiani a,b, F. Legger a, C. Mariotti a, S. Maselli a, E. Migliore a,b, V. Monaco a,b, E. Monteil a,b, M. Monteno a, M.M. Obertino a,b, G. Ortona a, L. Pachera a,b, N. Pastrone a, M. Pelliccioni a, G.L. Pinna Angioni a,b, M. Ruspai a,c, R. Salvatico a,b, F. Siviero a,b, V. Sola a, A. Solano a,b, D. Soldi a,b, A. Staiano a, D. Trocino a,b

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belforte a, V. Candelise a,b, M. Casarsa a, F. Cassutti a, A. Da Rold a,b, G. Della Ricca a,b, F. Vazzoler a,b

Kyungpook National University, Daegu, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurto

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim
Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Yonsei University, Department of Physics, Seoul, Korea
H.D. Yoo

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, H. Lee, Y. Lee, I. Yu

Riga Technical University, Riga, Latvia
V. Veckalns

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko, V. Popov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, A. Oskin, P. Parygin, S. Polikarpov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov, L. Sukhikh

Tomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev
University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, M. Dordovic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

University of Colombo, Colombo, Sri Lanka
MK Jayananda, B. Kailasapathy, D.U.J. Sonnadara, DDC Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland
ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

Universität Zürich, Zurich, Switzerland
C. Amsler, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özçelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
F. Aydogmus Sen, S. Cerci, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, K.V. Ellis, K. Harder,

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Bayor University, Waco, USA

Catholic University of America, Washington, DC, USA
R. Bartek, A. Domínguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, O. Charaf, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev

University of Colorado Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, J.R. González Fernández, I. Kravchenko, J.E. Siado, G.R. Snow†, B. Stieger, W. Tabb, F. Yan

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, A. Lefeld, B.L. Winer, B.R. Yates

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
P.E. Karchin, N. Poudyal, P. Thapa
University of Wisconsin - Madison, Madison, WI, USA
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
5: Also at Universidade Estadual de Campinas, Campinas, Brazil
6: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7: Also at UFMS, Nova Andradina, Brazil
8: Also at Universidade Federal de Pelotas, Pelotas, Brazil
9: Also at University of Chinese Academy of Sciences, Beijing, China
10: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
11: Also at Joint Institute for Nuclear Research, Dubna, Russia
12: Also at Helwan University, Cairo, Egypt
13: Now at Zewail City of Science and Technology, Zewail, Egypt
14: Now at British University in Egypt, Cairo, Egypt
15: Now at Cairo University, Cairo, Egypt
16: Also at Purdue University, West Lafayette, USA
17: Also at Université de Haute Alsace, Mulhouse, France
18: Also at Tbilisi State University, Tbilisi, Georgia
19: Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
20: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
21: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
22: Also at University of Hamburg, Hamburg, Germany
23: Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran
24: Also at Brandenburg University of Technology, Cottbus, Germany
25: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
26: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
27: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
28: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
29: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
30: Also at IIT Bhubaneswar, Bhubaneswar, India
31: Also at Institute of Physics, Bhubaneswar, India
32: Also at G.H.G. Khalsa College, Punjab, India
33: Also at Shoolini University, Solan, India
34: Also at University of Hyderabad, Hyderabad, India
35: Also at University of Visva-Bharati, Santiniketan, India
36: Also at Indian Institute of Technology (IIT), Mumbai, India
37: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
38: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
39: Now at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
40: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
41: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
42: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
43: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
44: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
45: Also at Institute for Nuclear Research, Moscow, Russia
46: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
47: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
48: Also at University of Florida, Gainesville, USA
49: Also at Imperial College, London, United Kingdom
50: Also at Moscow Institute of Physics and Technology, Moscow, Russia, Moscow, Russia
51: Also at P.N. Lebedev Physical Institute, Moscow, Russia
52: Also at California Institute of Technology, Pasadena, USA
53: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
54: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
55: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
56: Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy, Pavia, Italy
57: Also at National and Kapodistrian University of Athens, Athens, Greece
58: Also at Universität Zürich, Zurich, Switzerland
59: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
60: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
61: Also at Çukurova University, Adana, Turkey
62: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
63: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Cyprus
64: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
65: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
66: Also at Mersin University, Mersin, Turkey
67: Also at Piri Reis University, Istanbul, Turkey
68: Also at Adiyaman University, Adiyaman, Turkey
69: Also at Ozyegin University, Istanbul, Turkey
70: Also at Izmir Institute of Technology, Izmir, Turkey
71: Also at Necmettin Erbakan University, Konya, Turkey
72: Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
73: Also at Marmara University, Istanbul, Turkey
74: Also at Milli Savunma University, Istanbul, Turkey
75: Also at Kafkas University, Kars, Turkey
76: Also at Istanbul Bilgi University, Istanbul, Turkey
77: Also at Hacettepe University, Ankara, Turkey
78: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
79: Also at IPPP Durham University, Durham, United Kingdom
80: Also at Monash University, Faculty of Science, Clayton, Australia
81: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
82: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
83: Also at Ain Shams University, Cairo, Egypt
84: Also at Bingol University, Bingol, Turkey
85: Also at Georgian Technical University, Tbilisi, Georgia
86: Also at Sinop University, Sinop, Turkey
87: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
88: Also at Nanjing Normal University Department of Physics, Nanjing, China
89: Also at Texas A&M University at Qatar, Doha, Qatar
90: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea