Topological Structures in QCD at High T

R. Jackiw*

Center for Theoretical Physics, Department of Physics and Laboratory for Nuclear Science
Massachusetts Institute of Technology, Cambridge, MA 02139

(CAM '94, September 1994, Cancun, Mexico MIT-CTP-2386.)

These days, as high energy particle colliders become unavailable for testing speculative theoretical ideas, physicists are looking to other environments that may provide extreme conditions where theory confronts physical reality. One such circumstance may arise at high temperature T, which perhaps can be attained in heavy ion collisions or in astrophysical settings. It is natural therefore to examine the high-temperature behavior of the standard model, and here I shall report on recent progress in constructing the high-T limit of QCD.

In studying a field theory at finite temperature, the simplest approach is the so-called imaginary-time formalism. We continue time to the imaginary interval $[0, 1/iT]$ and consider bosonic (fermionic) fields to be periodic (anti-periodic) on that interval. Perturbative calculations are performed by the usual Feynman rules as at zero temperature, except that in the conjugate energy-momentum, Fourier-transformed space, the energy variable p^0 (conjugate to the periodic time variable) becomes discrete — it is $2\pi nT$, (n integer) for bosons. From this one immediately sees that at high temperature — in the limiting case, at infinite temperature — the time direction disappears, because the temporal interval shrinks to zero. Only zero-energy processes survive, since “non-vanishing energy” necessarily means high energy owing to the discreteness of the energy variable $p^0 \sim 2\pi nT$, and therefore all modes with $n \neq 0$ decouple at large T. In this way a Euclidean three-dimensional field theory becomes effective at high temperatures and describes essentially static processes [1].

While all this is quick and simple, it may be physically inadequate. First of all, frequently one is interested in non-static processes in real time, so complicated analytic continuation from imaginary time needs to be made before passing to the high-T limit, which in imaginary time describes only static processes. Also one may wish to study amplitudes where the real external energy is neither large nor zero, even though virtual internal energies are high.

* This work is supported in part by funds provided by the U.S. Department of Energy (D.O.E.) under cooperative agreement #DE-FC02-94ER40818.
Large T Feynman graphs with external legs carrying limited amounts of energy and internal lines characterized by large momenta (because T is large) have been dubbed “hard thermal loops.” In fact they are a very important feature of high temperature QCD, because they necessarily arise in a resummed perturbative expansion [2,3].

The need for resumming perturbation theory when massless Bose fields are present — like in QCD — may be inferred from the following consideration: the $n = 0$ mode leaves a propagator that behaves as $1/p^2$ and a phase space $d^n p$. It is well known that this kind of kinematics at low momenta leads to infrared divergences in perturbation theory, even for off-mass-shell amplitudes [4]. Since physical QCD does not possess off-mass-shell infrared divergences, perturbation theory must be resummed.

Here is a graphical argument to the same end. Consider a one-loop amplitude $\Pi_1(p)$,

$$\Pi_1(p) \equiv \int dk \, I_1(p, k),$$

given by the graph in the figure.

$$\Pi_1(p) = \sigma \int dk \, I_1(p, k)$$

Compare this to a two-loop amplitude $\Pi_2(p)$,

$$\Pi_2(p) \equiv \int dk \, I_2(p, k)$$

in which Π_1 is an insertion, as in the figure below.

$$\Pi_2(p) = \sigma \int dk \, I_2(p, k)$$

Following Pisarski [2], we estimate the relative importance of Π_2 to Π_1 by the ratio of their integrands,

$$\frac{\Pi_2}{\Pi_1} \sim \frac{I_2}{I_1} = g^2 \frac{\Pi_1(k)}{k^2}.$$

Here g is the coupling constant, and the k^2 in the denominator reflects the fact that we are considering a massless particle, as in QCD. Clearly the $k^2 \rightarrow 0$ limit is relevant to the question whether the higher order graph can be neglected relative to the lower order one. Because one finds that for small k^2 and large T, $\Pi_1(k)$ behaves as T^2, the ratio Π_2/Π_1
is $g^2 T^2 / k^2$. As a result when k is $O(g T)$ or smaller the two-loop amplitude is not negligible compared to the one-loop amplitude. Thus graphs with “soft” external momenta [$O(g T)$ or smaller] have to be included as insertions in higher order calculations.

These so-called “hard thermal loops,” i.e., the high-temperature limits of real-time Feynman graphs with finite external momenta, have become the object of much study, which culminated with the discovery (Braaten, Pisarski, Frenkel, Taylor) [2,3,5] of a remarkable simplicity in their structure. Specifically, the generating functional for hard thermal loops with only external gauge field legs, $\Gamma_{\text{HTL}}(A)$, in an $SU(N)_{g}$ gauge theory containing N_{F} fermion species of the fundamental representation is found (i) to be proportional to $(N + \frac{1}{2} N_{F})$, (ii) to behave as T^2 at high temperature, and (iii) to be gauge invariant.

\begin{equation}
\Gamma_{\text{HTL}}(U^{-1} A U + U^{-1} dU) = \Gamma_{\text{HTL}}(A)
\end{equation}

(Henceforth g, the coupling constant, is scaled to unity.) A further kinematical simplification in Γ_{HTL} has also been established. To explain this we define two light-like four-vectors Q_{\pm}^{μ} depending on a unit three-vector \hat{q}, pointing in an arbitrary direction.

\begin{equation}
Q_{\pm}^{\mu} = \frac{1}{\sqrt{2}}(1, \pm \hat{q})
\end{equation}

\begin{equation}
\hat{q} \cdot \hat{q} = 1, \quad Q_{\pm}^{\mu} Q_{\pm \rho} = 0, \quad Q_{\pm}^{\mu} Q_{\mp \rho} = 1
\end{equation}

Coordinates and potentials are projected onto Q_{\pm}^{μ}:

\begin{equation}
x^{\pm} \equiv x^{\mu} Q_{\pm}^{\mu}, \quad \partial_{\pm} \equiv Q_{\pm}^{\mu} \frac{\partial}{\partial x^{\mu}}, \quad A_{\pm} \equiv A^{\mu} Q_{\pm}^{\mu}
\end{equation}

The additional fact that is now known is that (iv) after separating an ultralocal contribution from Γ_{HTL}, the remainder may be written as an average over the angles of \hat{q} of a functional W that depends only on A_{\pm}; also this functional is non-local only on the two-dimensional x^{\pm} plane, and is ultralocal in the remaining directions, perpendicular to the x^{\pm} plane. [“Ultralocal” means that any potentially non-local kernel $k(x, y)$ is in fact a δ-function of the difference $k(x, y) \propto \delta(x - y)$:]

\begin{equation}
\Gamma_{\text{HTL}}(A) = 2\pi \int d^{4}x A_{\pm}^{\mu}(x) A_{\pm}^{\nu}(x) + \int d \Omega_{\hat{q}} W(A_{\pm})
\end{equation}
These results are established in perturbation theory, and a perturbative expansion of $W(A_+)$, i.e., a power series in A_+, exhibits the above mentioned properties. A natural question is whether one can sum the series to obtain an expression for $W(A_+)$. Important progress on this problem was made when it was observed (Taylor, Wong) [5] that the gauge-invariance condition can be imposed infinitesimally, whereupon it leads to a functional differential equation for $W(A_+)$, which is best presented as

$$\frac{\partial}{\partial x^+} \frac{\delta}{\delta A^+_a} \left[W(A_+) + \frac{1}{2} \int d^4 x \ A^+_a(x) A^+_a(x) \right]$$

$$- \frac{\partial}{-\partial x^-} \left[A^+_a \right] + f^{abc} A^+_a \frac{\delta}{\delta A^+_b} \left[W(A_+) + \frac{1}{2} \int d^4 x \ A^+_a(x) A^+_a(x) \right] = 0$$

In other words we seek a quantity, call it

$$S(A_+) \equiv W(A_+) + \frac{1}{2} \int d^4 x \ A^+_a(x) A^+_a(x) ,$$

which is a functional on a two-dimensional manifold $\{x^+, x^-\}$, depends on a single functional variable A_+, and satisfies

$$\partial^1 \frac{\delta}{\delta A^+_a} S - \partial^2 A^+_a + f^{abc} A^+_b \frac{\delta}{\delta A^+_c} S = 0$$

"1" $\equiv x^+$, "2" $\equiv x^-$, $A^+_a \equiv A^+_a$.

Another suggestive version of the above is gotten by defining $A^+_a \equiv \frac{\delta s}{\delta x^+}$.

$$\partial_1 A^+_2 - \partial_2 A^+_1 + f^{abc} A^+_1 A^+_2 = 0$$

To solve the functional equation and produce an expression for $W(A_+)$, we now turn to a completely different corner of physics, and that is Chern-Simons theory at zero temperature.

The Chern-Simons term is a peculiar gauge theoretic topological structure that can be constructed in odd dimensions, and here we consider it in 3-dimensional space-time.

$$I_{cs} \propto \int d^4 x \ \epsilon^{abcd} \text{tr} \left(\partial_\alpha A_\beta A_\gamma + \frac{2}{3} A_\alpha A_\beta A_\gamma \right)$$

This object was introduced into physics over a decade ago, and since that time it has been put to various physical and mathematical uses. Indeed one of our originally stated motivations for studying the Chern-Simons term was its possible relevance to high-temperature gauge
theory [6]. Here following Efraty and Nair [7], we shall employ the Chern-Simons term for a
determination of the hard thermal loop generating functional, Γ_{HTL}.

Since it is the space-time integral of a density, I_{cs} may be viewed as the action for a
quantum field theory in (2+1)-dimensional space-time, and the corresponding Lagrangian
would then be given by a two-dimensional, spatial integral of a Lagrange density:

$$I_{\text{cs}} \propto \int \, dt \, L_{\text{cs}}$$

$$L_{\text{cs}} \propto \int \, dx \left(A^a_t \dot{A}^a_t + A^a_0 F^a_{12} \right)$$

I have separated the temporal index (0) from the two spatial ones (1,2) and have indicated
time differentiation by an over dot. F^a_{12} is the non-Abelian field strength, defined on a
two-dimensional plane.

$$F^a_{12} = \partial_1 A^a_2 - \partial_2 A^a_1 + \oint A^b_1 A^c_2$$

Examining the Lagrangian, we see that it has the form

$$L \sim \hat{p} \hat{q} - \lambda H(p, q)$$

where A^a_2 plays the role of p, A^a_1 that of q, F^a_{12} is like a Hamiltonian and A^a_0 acts like
the Lagrange multiplier λ, which forces the Hamiltonian to vanish; here A^a_0 enforces the
vanishing of F^a_{12}.

$$F^a_{12} = 0$$

The analogy instructs us how the Chern-Simons theory should be quantized.

We postulate equal-time commutation relations, like those between p and q.

$$[A^a_1(x), A^{a'}_2(x')] = i \delta^{a a'} \delta(x - x')$$

In order to satisfy the condition enforced by the Lagrange multiplier, we demand that F^a_{12},
operating on “allowed” states, annihilate them.

$$F^a_{12} \langle \psi \rangle = 0$$

This equation can be explicitly presented in a Schrödinger-like representation for the
Chern-Simons quantum field theory, where the state is a functional of A^a_1. The action of
the operators A^a_1 and A^a_2 is by multiplication and functional differentiation, respectively.

$$\left| \psi(\hat{A}^a_1) \right\rangle \sim A^a_1 \left| \psi(\hat{A}^a_1) \right\rangle$$

$$\left| \psi(\hat{A}^a_1) \right\rangle \sim \frac{1}{i \delta \hat{A}^a_1} \psi(\hat{A}^a_1)$$
This of course is just the field theoretic analog of the quantum mechanical situation where states are functions of q, the q operator acts by multiplication, and the p operator by differentiation. In the Schrödinger representation, the condition that states be annihilated by F_{12}^a
\[
\left(\partial_1 A_2^* - \partial_2 A_1^* + f_{abc} A_1^* A_2^* A_3^* \right) = 0
\]
leads to a functional differential equation.
\[
\left(\partial_1 \frac{\delta}{\delta A_1^*} - \partial_2 A_1^* + f_{abc} \frac{1}{i} \frac{\delta}{\delta A_1^*} \right) \psi(A_1^*) = 0
\]
If we define S by $\psi = e^{iS}$ we get equivalently
\[
\partial_1 \frac{\delta}{\delta A_1^*} S - \partial_2 A_1^* + f_{abc} \frac{\delta}{\delta A_1^*} S = 0
\]
This equation comprises the entire content of Chern-Simons quantum field theory. S is the Chern-Simons eikonal, which gives the exact wave functional owing to the simple dynamics of the theory. Also the above eikonal equation is recognized to be precisely the equation for the hard thermal loop generating functional, given above.

The gained advantage is that “acceptable” Chern-Simons states, i.e. solutions to the above functional equations, were constructed long ago [8], and one can now take over those results to the hard thermal loop problem. One knows from the Chern-Simons work that ψ and S are given by a 2-dimensional fermionic determinant, i.e. by the Polyakov-Wiegman expression. While these are not described by very explicit formulas, many properties are understood, and the hope is that one can use these properties to obtain further information about high-temperature QCD processes.

For example one can give a very explicit series expansion for Γ_{HTL} in terms of powers of A.
\[
\Gamma_{\text{HTL}} = \frac{1}{2!} \int \Gamma_{\text{HTL}}^{(2)} A A + \frac{1}{3!} \int \Gamma_{\text{HTL}}^{(3)} A A A + \cdots
\]
where the non-local kernels $\Gamma_{\text{HTL}}^{(i)}$ are known explicitly. This power series may now be used to systematize the resummation procedure for perturbative theory. Here is what one does: perturbation theory for Green’s functions may be organized with the help of a functional integral, where the integrand contains (among other factors) $e^{iI_{\text{QCD}}(A)}$ where I_{QCD} is the QCD action. We now rewrite that as
\[
e^{\left\{ I_{\text{QCD}}(A) + \frac{m}{2} \Gamma_{\text{HTL}}(A) - \frac{m}{2} \Gamma_{\text{HTL}}^{(2)}(A) \right\}}
\]
where $m = T \sqrt{N_c N_f / 3}$. Obviously nothing has changed, because we have merely added and subtracted the hard-thermal-loop generating functional. Next we introduce a loop counting parameter l: in an l-expansion, different powers of l correspond to different numbers
of loops, but at the end l is set to unity. The resummed action is then taken to be
\[e^{\mathcal{I}_{\text{resummed}}} = e^{\left\{ \frac{1}{\hbar} \left[\mathcal{I}_{\text{QCD}}(1/4) + \frac{\alpha_s}{2\pi} \Gamma_{\text{HTL}}(1/4) \right] - \frac{\alpha_s}{2\pi} \Gamma_{\text{HTL}}(1/4) \right\}} \]

One readily verifies that an expansion in powers of l describes the resummed perturbation theory, free of infrared divergences.

Even though the closed form for Γ_{HTL} is not very explicit, a much more explicit formula can be gotten for its functional derivative $\frac{\delta \Gamma_{\text{HTL}}}{\delta \mathcal{A}}$. This may be identified with an induced current, which is then used as a source in the Yang-Mills equation. Thereby one obtains a non-Abelian generalization of the Kubo equation, which governs the response of the hot quark gluon plasma to external disturbances [9].

\[D^\mu F_{\mu\nu} = \frac{m^2}{2} j_{\text{induced}}^\nu \]

From the known properties of the fermionic determinant — hard thermal loop generating functional — one can show that j_{induced}^ν is given by

\[j_{\text{induced}}^\nu = \int \frac{d\Omega}{4\pi} \left\{ Q^\nu_+ \left(a_-(\vec{x}) - A_-(\vec{x}) \right) + Q^\nu_- \left(a_+(\vec{x}) - A_+(\vec{x}) \right) \right\} \]

where a_{\pm} are solutions to the equations

\[\partial_+ a_- - \partial_- a_+ + [A_+, a_-] = 0 \]
\[\partial_+ A_- - \partial_- a_+ + [a_+, A_-] = 0 \]

Evidently j_{induced}^ν, as determined by the above equations, is a non-local and non-linear functional of the vector potential A_μ.

There now have appeared several alternative derivations of the Kubo equation. Blaizot and Iancu [10] have analyzed the Schwinger-Dyson equations in the hard thermal regime; they truncated them at the 1-loop level, made further kinematical approximations that are justified in the hard thermal limit, and they too arrived at the Kubo equation. Equivalently the argument may be presented succinctly in the language of the composite effective action [11], which is truncated at the 1-loop (semi-classical) level — two-particle irreducible graphs are omitted. The stationarity condition on the 1-loop action is the gauge invariance constraint on Γ_{HTL}. Finally, there is one more, entirely different derivation — which perhaps is the most interesting because it relies on classical physics [12]. We shall give the argument presently, but first we discuss solutions for the Kubo equation.

To solve the Kubo equation, one must determine a_{\pm} for arbitrary A_\pm, thereby obtaining an expression for the induced current, as a functional of A_\pm. Since the functional is non-local and non-linear, it does not appear possible to construct it explicitly in all generality. However, special cases can be readily handled.
In the Abelian case, everything commutes and linearizes. One can determine \(A_\pm \) in terms of \(A_\mp \).

\[
a_\pm = \frac{\partial_\pm}{\partial_\mp} A_\mp
\]

Incidentally, this formula exemplifies the kinematical simplicity, mentioned above, of hard thermal loops: the nonlocality of \(1/\hat{\partial}_\pm \) lies entirely in the \(\{x^+, x^-\} \) plane. With the above form for \(A_\pm \) inserted into the Kubo equation, the solution can be constructed explicitly. It coincides with the results obtained by Silin long ago, on the basis of the Boltzmann-Vlasov equation [13]. One sees that the present theory is the non-Abelian generalization of that physics; in particular \(m_\pm \), given above, is recognized as the Debye screening length, which remains gauge invariant in the non-Abelian context.

It is especially interesting to emphasize that Silin did not use quantum field theory in his derivation; rather he employed classical transport theory. Nevertheless, his final result coincides with what here has been developed from a quantal framework. This raises the possibility that the non-Abelian Kubo equation can also be derived classically, and indeed such a derivation has been given, as mentioned above.

We now pause in our discussion of solutions to the non-Abelian Kubo equation in order to describe its classical derivation.

Transport theory is formulated in terms of a single-particle distribution function \(\tilde{f} \) on phase space. In the Abelian case, \(\tilde{f} \) depends on position \(\{x^\mu\} \) and momentum \(\{p^\mu\} \) of the particle. For the non-Abelian theory it is necessary to take into account the fact that the particle’s non-Abelian charge \(\{Q^a\} \) also is a dynamical variable: \(Q^a \) satisfies an evolution equation (see below) and is an element of phase space. Therefore, the non-Abelian distribution function depends on \(\{x^\mu\} \), \(\{p^\mu\} \) and \(\{Q^a\} \), and in the collisionless approximation obeys the transport equation \(\frac{d}{d\tau}\tilde{f} = 0 \), \(i.e. \)

\[
\frac{\partial f}{\partial x^\mu} \frac{dx^\mu}{d\tau} + \frac{\partial f}{\partial p^\mu} \frac{dp^\mu}{d\tau} + \frac{\partial f}{\partial Q^a} \frac{dQ^a}{d\tau} = 0
\]

The derivatives of the phase-space variables are given by the Wong equations, for a particle with mass \(\mu \).

\[
\begin{align*}
\frac{dx^\mu}{d\tau} &= \frac{p^\mu}{\mu} \\
\frac{dp^\mu}{d\tau} &= F^\mu_{\rho\tau} \frac{dx^\rho}{d\tau} Q^\tau \\
\frac{dQ^a}{d\tau} &= -f^{a\tau}_{\mu\tau} \frac{dx^\mu}{d\tau} A^\tau Q^\tau
\end{align*}
\]
In order to close the system we need an equation for $F^{\mu\nu}$. In a microscopic description (with a single particle) one would have \((D_\mu F^{\mu\nu})^a = \int d\tau Q^a(\tau) \frac{\partial}{\partial \mu} \delta^4(\mathbf{x} - \mathbf{x}(\tau)) \) and consistency would require covariant conservation of the current; this is ensured provided Q^a satisfies the equation given above. In our macroscopic, statistical derivation, the current is given in terms of the distribution function, so the system of equations closes with

\[
(D_\mu F^{\mu\nu})^a = \int dp dQ Q^a p^- f(x, p, Q)
\]

The collisionless transport equation, with the equations of motion inserted, is called the Boltzmann equation. The closed system formed by the latter supplemented with the Yang-Mills equation is known as the non-Abelian Vlasov equations. To make progress, this highly non-linear set of equations is approximated by expanding around the equilibrium form for \(f \),

\[
\begin{aligned}
\bar{f}_{\text{known}} \propto \left(e^{\pm \sqrt{p^2 + \mu^2} \tau} \right)^{-1}
\end{aligned}
\]

This comprises the Vlasov approximation, and readily leads to the non-Abelian Kubo equation [12].

One may say that the non-Abelian theory is the minimal elaboration of the Abelian case needed to preserve non-Abelian gauge invariance. The fact that classical reasoning can reproduce quantal results is presumably related to the fact that the quantum theory makes use of the (resummed) 1-loop approximation, which is frequently reorganized as an essentially classical effect. Evidently, the quantum fluctuations included in the hard thermal loops coincide with thermal fluctuations.

Returning now to our summary of the solutions to the non-Abelian Kubo equation that have been obtained thus far, we mention first that the static problem may be solved completely [11]. When the Ansatz is made that the vector potential is time independent, $A_\perp = A_\perp(\mathbf{r})$, one may solve for a_\pm to find $a_\pm = -A_\pm$ and the induced current is explicitly computed as

\[
\frac{m^2}{2} j^\mu_{\text{induced}} = \begin{pmatrix} -m^2 A^\mu \cr 0 \end{pmatrix}
\]

This exhibits gauge-invariant electric screening with Debye mass m. One may also search for localized static solutions to the Kubo equation, but one finds only infinite energy solutions, carrying a point-magnetic monopole singularity at the origin. Thus there are no plasma solitons in high-T QCD [11].

Much less is known concerning time-dependent solutions. Blaizot and Iancu [14] have made the Ansatz: that the vector potentials depend only on the combination $\mathbf{x} \cdot \mathbf{k}$, where \mathbf{k} is an arbitrary 4-vector: $A_\pm = A_\pm(\mathbf{x} \cdot \mathbf{k})$. Once again a_\pm can be determined; one finds $a_\pm = \frac{\partial A_\pm}{\partial \tau} A_\tau$, and the induced current is computable. For $\mathbf{k} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, where there
is no space dependence (only a dependence on time is present) one finds

\[\frac{m^2}{2} \overline{J}_\mu^{\mu\text{induced}} = \begin{pmatrix} 0 \\ -\frac{1}{3} \mathcal{M}^2 \Lambda \end{pmatrix} \]

More complicated expressions hold with general \(\vec{k} \). The Kubo equation can be solved numerically; the resulting profile is a non-Abelian generalization of a plasma plane wave.

The physics of all these solutions, as well as of other, still undiscovered ones, remains to be elucidated, and I invite any of you to join in this interesting task.

REFERENCES