IMPORTANCE OF NUCLEON RECOIL IN WEAK DECAY OF HYPERNUCLEI

IL-TONG CHEON

Institute for Nuclear Study, University of Tokyo, Tanashi-shi, Tokyo 188, Japan

and

HEE KWAN HAN

Department of Physics, Yonsei University, Seoul 120-749, Korea
I. INTRODUCTION

Recently, study of the nuclei carrying strangeness quantum numbers becomes very active on the occasion of remarkable improvement in experimental facilities1-3. Decay processes of hypernuclei is usually described by the interaction derived from analysis of a free lambda particle decay in the non-relativistic limit,

\[H = Gm_{\Lambda}^{2} \left[A + B \frac{\sigma \cdot q}{2M_{N}} \right] \phi_{\Lambda}^{(-)}(q;\tau_{\Lambda}), \]

where $Gm_{\Lambda}^{2} = 0.2211 \times 10^{-6}$, $A = 1.06$ and $B = -7.10$. which were determined by analysis of a free Λ-decay and the emitted proton angular distribution4. q is the momentum of the emitted pion and M_{N} is the nucleon mass. The first term is the parity-violating interaction while the second term is the parity-conserving interaction.

In the relativistic theory the interaction should be Lorentz invariant, but in the non-relativistic theory, the interaction should have a translationally invariant form. Since the lambda particle has a momentum in the coordinates fixed at the center-of-mass of the lambda hypernucleus, the interaction1 should be modified to satisfy the translational invariance. Nevertheless, all previous calculations5-9 without exception ignored the translational invariance. Its contribution may be negligibly small to certain physical quantities. However, it is not always true. In this paper, we will show an example revealing importance of the translational invariance.

II. TRANSLATIONALLY INVARIANT INTERACTION

Starting from the General form of interaction Lagrangian describing weak decay of lambda particle,

\[L_{\text{NA}} = Gm_{\Lambda}^{2} \Psi_{N}(A + B\gamma_{5}) \tau \cdot \phi_{\Lambda} \Psi_{\Lambda} + h.c., \]

we can perform the non-relativistic reduction to obtain the translationally invariant interaction as
\[H_A = GM_n^2 \left[A + B \left(\frac{\sigma \cdot p_n}{2M_n} - \frac{\sigma \cdot p_M}{2M_M} \right) \right] \phi_{-}^{1,-}(q_1, \tau_1). \] (3)

The translational invariance of this form of interaction is obvious because the second term is actually proportional to a difference of velocities, \(v_A - v_n \). By the momentum conservation \(p_A = p_N + q \), it can be rewritten as

\[H_A = GM_n^2 \left[A + B \left(\frac{M_N}{M_A} \frac{\sigma \cdot q}{2M_N} - \frac{M_A}{M_N} \frac{\sigma \cdot p_M}{2M_N} \right) \right] \phi_{-}^{1,-}(q_1, \tau_1). \] (4)

The term proportional to \(p_n \) was completely ignored in the previous works. Of course, the interaction (1) for a free lambda particle decay can be reduced from the present interaction form (4) by a relation \(p_A = p_n + q = 0 \). Taking the Jacobi coordinates for final states, \(^3He + \pi^- \) and \(^3H + \pi^0 \), we have \(q = k_{\pi} \) and \(p_N = p_r - [M_N/(M_r + M_n + M_N)] k_{\pi} \approx p_r - \frac{1}{2} k_{\pi} \). Then, the translationally invariant interaction is found in the form

\[H_A = \left\{ s_r - i\frac{p_r}{q_0} \sigma \cdot \nabla_{\pi} + i\frac{p_r}{q_0} \sigma \cdot \nabla_{\pi}^N \right\} \phi_{-}^{1,-}(k_{\pi}; r_{\pi}). \] (5)

where \(q_0 = 100.4 \text{ MeV/c} \) and

\[
\begin{align*}
s_r &= -\sqrt{2} s_{-r} = 3.31 \times 10^{-7}, \\
p_{-r} &= \sqrt{2} p_{-r} = \sqrt{2GM_n^2} q_0 \left(\frac{B'}{3} \right) = -1.19 \times 10^{-7}, \\
p'_{-r} &= \sqrt{2GM_n^2} \left(\frac{q_0}{2M_p} B'' \right) = -0.190 \times 10^{-7}
\end{align*}
\]

with \(B' = \frac{M_n}{M_A} B, B'' = B - B', B'' = -5.97 \) and \(B'' = -1.13 \). Here, \(m_n \) and \(M_N \) denote \(m_{\pi^-} \) and \(M_A \) for \(\pi^- \) emission while \(m_r \) and \(M_n \) for \(\pi^0 \) emission.

A. Lifetime of \(^3H \) hypernucleus

In order to examine a role of the nucleon recoil term, i.e. basically the last term in eq. (4) or eq. (5), let us first analyze the decay width for \(^3H \to ^3He + \pi^- \). For the wave function of \(^3H \), we use the S-state wave function as

\[
\psi_A(r_{12}, r_{23}) = \frac{N_A \chi_A^c(1, 2, 3)}{\sqrt{2}} f_A(r_{12}, r_{23}, r_{31})
\] (9)

where the lambda particle is located at \(r_3 \). The spatial wave function is taken from the Downs and Dalitz's 6-parameter function[11] as

\[
f_A(r_{12}, r_{23}, r_{31}) = [\exp(-a_1 r_{31}) + \exp(-a_2 r_{23})][\exp(-a_1 r_{31}) + \exp(-a_2 r_{31})]
\]

\[
[\exp(-b_1 r_{12}) + \exp(-b_2 r_{12})],
\] (10)

totally mixed symmetric spin-isospin function \(\chi_A^c(1, 2, 3) \) is antisymmetrized for the two nucleons located at \(r_1 \) and \(r_2 \), and \(\chi_A^c \) is the angular part of the wave function[11].

And the final state is described as

\[
\psi_A(r_{12}, r_{23}, r_{31}) = \frac{N_A \chi_A^c(1, 2, 3)}{\sqrt{2}} \psi_A(r_{12}, r_{23}, r_{31})
\] (11)

where the spatial wave function is described by a Gaussian-type wave function as

\[
f_A(r_{12}, r_{23}, r_{31}) = \exp\left[-\frac{\zeta^2}{2} (r_{12}^2 + r_{23}^2 + r_{31}^2) \right],
\] (12)

the spin-isospin function \(\chi_A^c(1, 2, 3) \) is totally antisymmetrized. The normalization constant factor was calculated as, \(N_A^2 = 0.003561 \) with \(a_1 = 0.126, a_2 = 1.26, b_1 = 0.382, b_2 = 1.13, \alpha = 2.13 \) and \(y = 2.23 \) which are obtained for the binding energy \(B_A = 0.13 \text{MeV} \) by interpolating the parameters given for \(B_A = 0.0, 0.25 \) and \(1.0 \text{MeV} \)

with the intrinsic range of 0.8411fm in the \(\Lambda \)-nucleon potential[11]. And \(N_A^2 = 0.04243 \) is obtained with \(\zeta = 0.384 \text{fm}^{-1} \). When these wave functions, (9) and (11), are applied, the differential operators, \(\nabla_{\pi} \) and \(\nabla_{\pi}^N \), in eq. (5) should be replaced by \(\frac{1}{2} \nabla_{\pi} \) and \(\nabla_{\pi}^N - \nabla_{\pi}^N, \) respectively and \(\frac{1}{2} \nabla_{\pi} \) takes place for \(\nabla_{\pi} \). Then, the decay width can be calculated as

\[
\Gamma_{\pi^-} = \frac{1}{2J_1 + 1} \frac{1}{8\pi^2} \frac{k_{\pi}}{1 + (\omega_{\pi}/M_A)} \int \left| \langle A |H_{\Lambda H}^R | H \rangle \right|^2 d\Omega_{\pi},
\] (13)

where
\begin{equation}
(A|\hat{H}_p|A)_s = (s_s-) + (p_s-) + (p_s'), \label{14}
\end{equation}

\begin{equation}
(s_s-) = s_s- \int_D \psi^4 A_s(r_1, r_2, r_3) \psi^4 (-k_{\mu} \frac{2}{3} r_3) \psi_A(r_1, r_2, r_3) \, dr, \label{15}
\end{equation}

\begin{equation}
(p_s-) = -i \frac{p_s-}{q_0} \int_D \psi^4 A_s(r_1, r_2, r_3) \sigma \cdot \left[\frac{2}{3} \nabla_{31} \psi^4 (-k_{\mu} \frac{2}{3} r_3) \right] \psi_A(r_1, r_2, r_3) \, dr, \label{16}
\end{equation}

and

\begin{equation}
(p_s') = 2i \frac{p_s'}{q_0} \int_D \left[-\sigma \cdot \nabla_{31} \psi^4 A_s(r_1, r_2, r_3) \right] \psi^4 (-k_{\mu} \frac{2}{3} r_3) \psi_A(r_1, r_2, r_3) \, dr, \label{17}
\end{equation}

where M_A is the mass of 3He, $d\tau = dr_1dr_2dr_3$ and D is the domain $r_1 + r_2 \geq r_3$, $r_2 + r_3 \geq r_1$, $r_1 + r_3 \geq r_2$, and $r_1 + r_2 \geq r_3$ in the triangular coordinates. The pion wave function, $\phi_p^{(i/-)}(k_{\mu}; \frac{2}{3} r_3) = \phi_p^{(i/-)}(-k_{\mu}; \frac{2}{3} r_3)$ can be obtained by solving the Klein-Gordon equation with an optical potential. We use here the Landau optical potential between the emitted pions and the residual nuclei, 3He and 3H.

The pion wave function obtained with a Coulomb cut-off $R_{cut} = 6$ fm is complex, i.e. possessing both real and imaginary parts, and has been examined by analysis of $^3He(\pi^-, \pi^-)^3He$ at $T_{\pi} = 45.1$ MeV[14] as shown in Fig.1. The numerical values of decay rates can be calculated as $\Gamma(\lambda \rightarrow ^3He + \pi^-) = 0.5089$ μeV and for $\lambda \rightarrow ^3H + \pi^0$ channel, $\Gamma(\lambda \rightarrow ^3H + \pi^0) = 0.2854$ μeV with the similar method above. Since the branching ratio of $\lambda \rightarrow ^3He + \pi^- $ channel i.e. $R_{\pi^-} = \Gamma(\lambda \rightarrow ^3He + \pi^-)/\Gamma(all \ \pi^-)$ is known as 0.3[14], we can find the lifetime to be 0.265 ns assuming $R_{\pi^0} = \Gamma(\lambda \rightarrow ^3H + \pi^0)/\Gamma(all \ \pi^0) = 0.3$. The measured value is $0.246^{+0.009}_{-0.045}$ ns[14] and $0.240^{+0.019}_{-0.010}$ ns[14]. Our result is in good agreement with the experimental data. In this analysis, we found that contributions from p_{s-} and $p_{s'}$ terms in eq.(5) were only 1.2 percent. Since the decay rate is yielded almost by the s_s- term alone, the importance of the translational invariance cannot be visible in this process. However, it does not mean unimportance of the nucleon recoil effect.

Therefore, in order to examine the importance of the translational invariance, one has to investigate some characteristic processes where the p-channel is comparatively enhanced. One of such processes is asymmetry of angular distribution of the negative pion emitted in the two-body decay of the polarized hypernucleus.

\section*{B. Asymmetry of pion angular distribution}

Let us investigate the decay process, $\lambda \rightarrow ^3He + \pi^-$. After some mathematical procedures, one can easily find the angular distribution of the emitted pion in the form

\begin{equation}
\frac{d\sigma(\theta_\pi)}{d\Omega_{\pi\pi}} = \frac{1}{4\pi}[1 + aP(\lambda|H)\cos \theta_\pi], \label{18}
\end{equation}

where $P(\lambda|H)$ is the polarization of λ, θ_π is the angle of π^- emission relative to this λ polarization and the decay asymmetry parameter α is defined as

\begin{equation}
\alpha = \frac{2Re[(s_s-)*\cdot (p_s-)]}{(|s_s-|^2 + |p_s-|^2)^{1/2}}. \label{19}
\end{equation}

The numerical value of α can be obtained as

\begin{equation}
\alpha = 0.215. \label{20}
\end{equation}

If the proton recoil term is ignored, for eq.(1) we find

\begin{equation}
\alpha_0 = 0.264. \label{21}
\end{equation}

Therefore, the contribution from the proton recoil term is

\begin{equation}
\frac{\alpha - \alpha_0}{\alpha_0} = -0.186, \label{22}
\end{equation}

i.e. 18.6%. This amount of modification may be observed by a slight improvement of precision in present asymmetry measurement. The experimental values of α_λ for a free lambda particle were $0.45 \pm 0.05[17]$, $0.62 \pm 0.07[4]$ and $0.642 \pm 0.013[18]$. Our present calculation shows that the value of asymmetry parameter reduces drastically in the nucleus.
III. SUMMARY

Our present investigation for $^3\Lambda H \rightarrow ^3He + \pi^-$ decay clarifies importance of the translational invariance, particularly for asymmetry in the angular distribution of the emitted pion. It has been found that the value of asymmetry parameter in $^3\Lambda H \rightarrow ^3He + \pi^-$ decay could be reduced by 18.1 percent by the translationally invariant term. This fact does not depend very much on the wave function of 3He. The result obtained with the Irving-Gunn wave function with $\bar{a} = 0.7704\text{fm}^{-1/2}$ is 18.4 percent. And the lifetime is 0.256 ns.

As is mentioned in the introduction, contribution of the translational invariance can only be observed in the cases of hypernuclei. The translationally invariant term plays an important role not only in the asymmetry of pion angular distribution but also in the processes where the daughter proton is excited to the state different from the initial state of lambda.

Therefore, an accurate measurement of the π^- angular distribution for $^3\Lambda H \rightarrow ^3He + \pi^-$ is highly requested to confirm our prediction.

ACKNOWLEDGEMENT

This work was supported by the Korean Ministry of Education (Project no. BSRI-94-2425 and 93 project) and the Seoul Foundation. One of the authors (I.T.C.) would like to thank Prof. T. Yamazaki and Prof. Y. Akaishi for warm hospitality at Institute for Nuclear Study, University of Tokyo. And also our thanks go to Prof. K. Kubo, Prof. H. Toki and Prof. H. Yabu for their kind hospitality at Tokyo Metropolitan university.
Fig. 1. The differential cross section for $^3He(\pi^-,\pi^-)^3He$ at $T_{\pi}^{lab} = 45.1$ MeV. The solid curve was calculated by the Landau program (ref. [13]) with the Thomas potential plus exact Coulomb effect. The cut-off $R_{cut} = 6$ fm was used. The experimental data were taken from ref. [14].