A VERSATILE FIVE-INPUT COINCIDENCE UNIT

F. Nanni and H. Verweij
Copyright CERN, Genève, 1969

Propriété littéraire et scientifique réservée pour tous les pays du monde. Ce document ne peut être reproduit ou traduit en tout ou en partie sans l’autorisation écrite du Directeur général du CERN, titulaire du droit d’auteur. Dans les cas appropriés, et s’il s’agit d’utiliser le document à des fins non commerciales, cette autorisation sera volontiers accordée.

Le CERN ne revendique pas la propriété des inventions brevetables et dessins ou modèles susceptibles de dépôt qui pourraient être décrits dans le présent document; ceux-ci peuvent être librement utilisés par les instituts de recherche, les industriels et autres intéressés. Cependant, le CERN se réserve le droit de s’opposer à toute revendication qu’un usager pourrait faire de la propriété scientifique ou industrielle de toute invention et tout dessin ou modèle décrits dans le présent document.

Literary and scientific copyrights reserved in all countries of the world. This report, or any part of it, may not be reprinted or translated without written permission of the copyright holder, the Director-General of CERN. However, permission will be freely granted for appropriate non-commercial use.

If any patentable invention or registrable design is described in the report, CERN makes no claim to property rights in it but offers it for the free use of research institutions, manufacturers and others. CERN, however, may oppose any attempt by a user to claim any proprietary or patent rights in such inventions or designs as may be described in the present document.
A coincidence unit, type N6234, is described which will process up to five independent inputs. It has been designed to operate with standard NIM\textsuperscript{1} signal levels (−800 mV = "1", 0 mV = "0"). A discriminator is incorporated which provides four standardized logic outputs and one standardized complementary logic output. In addition, two time overlap outputs are available. The minimum resolving time is ≤ 2.0 nsec. Proper functioning is guaranteed for rates up to 100 MHz via the discriminator, and up to 200 MHz via the overlap circuit. The unit is part of the CERN-NIM compatible nucleonic instrument range\textsuperscript{2}. 

\textsuperscript{1}NIM: Nuclear Instrumentation Module

\textsuperscript{2}CERN: European Organization for Nuclear Research
CONTENTS

1. INTRODUCTION ........................................... 1

2. CIRCUIT DESCRIPTION .................................. 1
   2.1 The input AND-gate ................................ 1
   2.2 The overlap output channel ......................... 2
   2.3 The discriminator output channel ................. 2

3. PERFORMANCE ........................................... 3

REFERENCES ............................................... 5
1. INTRODUCTION

Coincidence circuits\(^{3-6}\) or AND-gates produce outputs when the activated inputs overlap in time.

A variety of these circuits have been published in recent years\(^{7-18}\).

In the present design, the input and output circuitry has been devised to operate with signals according to the AEC/NIM/ESONE fast logic level specifications\(^1\). This implies that signals from photomultipliers must pass via an amplitude standardizer (limiter, shaper, discriminator, etc.) before being connected to the unit.

The resolving time is equal to the time overlap of the input pulses.

The input AND-gate is d.c. coupled; therefore logic input pulses give coincidence operation and complementary logic input pulses give anticoincidence or veto operation.

The unit will handle up to five inputs, which can be switched "ON" or "OFF" independently from the front panel.

Two independent coincidence overlap outputs of logic amplitude are provided and, in addition, four independent logic outputs and one complementary logic output of preset width. This preset width output has a maximum pulse duty cycle of 100%.

A close-up of the unit is given in Fig. 1, whilst a functional block diagram is shown in Fig. 2.

2. CIRCUIT DESCRIPTION

2.1 The input AND-gate

The gate consists of five matched-diode current switches (\(D_1-D_5\), etc., see Fig. 3), which feed into a tunnel diode d.c. trigger (\(D_{31}\))\(^{19,20}\).

Assume that channel A is in the "ON" state, whilst all other channels are "OFF". Diodes \(D_4\) and \(D_5\) will be conducting \(\sim 4.0\) mA, whilst \(D_{31}\) is in the low state and conducting \(\sim 2.2\) mA (situation indicated in diagram, Fig. 3). A logic signal, applied to channel A, will transfer the current from \(D_4\) into \(D_4\) and raise the current in the tunnel diode \(D_{31}\) by the same amount (\(\sim 4.0\) mA). This causes \(D_{31}\) to go to the high state and a signal will be delivered to the output circuits. Every additional channel that is set to the "ON" state will bias \(D_{31}\) further down by \(\sim 4.0\) mA, and the diode will now only go to the high state during the time when the input signals overlap.

In the absence of a pulse, a complementary logic input holds the current from \(D_5\) in \(D_4\), and thus also holds the current in the tunnel diode \(D_{31}\) high. During the pulse, these currents are released and so the tunnel diode is biased down. If complementary logic pulses are applied to one or more inputs, whilst to some others logic pulses are connected, then the tunnel diode will be in the low state when there exists an overlap between the logic input pulses and any of the complementary logic input pulses.

In Fig. 4 examples are given of some input conditions and resulting waveforms in various points of the circuit.

The diode pair standardizes the current that is switched into the tunnel diode, whilst it also disconnects the input from the circuit when switched in the "OFF" state.
The diodes are hot carrier diodes with very short reverse recovery-time\textsuperscript{21}). They considerably improve the fan-in properties of the gate.

A more detailed understanding of the operation can be obtained from Fig. 5, in which the tunnel diode characteristic of $D_{31}$ with a number of loadlines has been drawn. These loadlines are determined by calculating the current that is absorbed by $R_{27}$ and the input circuit(s) as function of the voltage across tunnel diode $D_{31}$. The equivalent circuit, which has been used for this calculation, is given in Fig. 6. (The small difference between the indicated diode currents in Fig. 3 and Fig. 6 is caused by the fact that in Fig. 3 nothing is connected to the input $A$, while in Fig. 6 a generator with $50 \, \Omega$ source impedance is connected.) $P_1$, $P_2$, $P_3$, $P_4$, $P_5$ (Fig. 5) are steady-state operating points or intermediate operating points when the input signals at the activated inputs do not coincide. All loadlines converge in point $L_0$, which represents the theoretical case where the voltage across $D_{31}$ has gone so far positive that the current in $D_5$ and equivalent has been cut. When coinciding logic input signals are present at the activated inputs, the operating point is $H$, and all loadlines will move to the right (by $800 + 4 \times 30 = 920 \, \text{mV}$) such that the converging point is now $L_1$.

The bias current of $D_{31}$ (through $R_{26}$) passes via the ON/OFF switches. If all channels are "OFF" then $D_{31}$ does not have any bias current, so that it will stay in the low-state and thus the outputs will stay at the steady-state level. (The logic outputs at "0" level and the complementary logic output at "1" level.)

The input impedance consists of $75 \, \Omega (R_1)$ in parallel with the diode current switch ($D_4, D_5$) and subsequent circuitry. This impedance is very non-linear but gives adequate $50 \, \Omega$ matching over the signal amplitude range of interest. In the "OFF" state, a resistance of $150 \, \Omega (R_2)$ is switched in parallel to $R_1$ so that good impedance matching is also maintained in that situation.

The diodes $D_1$, $D_2$, $D_3$ and others in identical positions are input protection diodes.

2.2 The overlap output channel

The signal from the AND-gate tunnel diode ($D_{31}$) is fed, via buffer emitter follower $T_1$, to the amplifier $T_{15}$. The amplification of $T_{15}$ is ~2~. This amplified signal (~1.0 V) is the input to the output fan-out\textsuperscript{22}), which consists of two transistor-diode current switches ($T_{17}$-$D_{52}$, $T_{18}$-$D_{66}$). These current switches produce outputs of logic amplitude and of a width equal to the overlap time.

The diodes $D_{59}$, $D_{60}$, $D_{61}$, and $D_{63}$, $D_{64}$, $D_{65}$, are output clamping (when unloaded) and protection diodes.

2.3 The discriminator output channel

The signal from emitter follower $T_1$ also drives the differentiator $T_{2}$\textsuperscript{23}). This differentiator shortens the effective drive to the following discriminator, so that no multiple pulsing occurs for long overlap times.

The discriminator is a modified version of the trigger circuit as used in the pulse-shaper described in Ref. 23. The difference lies in the way the reset signal is derived and also the maximum output pulse duty cycle has been made 100\% (a trigger circuit with this output property is sometimes erroneously said to be dead-timeless).
The signal from the differentiator $T_2$ drives tunnel diode $D_{14}$ to the high state. $D_{24}$ switches current into tunnel diode $D_{35}$ via back diode $D_{33}$ so that also this diode goes to the high state. The current in back diode $D_{72}$ is transferred to transistor $T_3$, producing a positive excursion at the collector of $T_3$, the base of $T_5$, and the collector of $T_6$.

The positive signal at the base of $T_4$ transfers the current from $D_{37}$ into $T_5$ causing a negative excursion at the collector of $T_5$. This information is sent to the base of $T_4$, via the 1 nsec timing cable, where it turns on $T_4$ which resets $D_{35}$ and $D_{24}$. $T_3$ and $T_5$ are then cut off, whilst the first positive excursion at the collector of $T_6$ ends.

The reset signal on the base of $T_4$ is transmitted, via 1.5 nsec delay, to the base of $T_7$. This will turn on this transistor, and a positive current pulse is added to the disappearing original positive excursion at the collector of $T_6$ ($D_{14}$ has been reset). The duration of this second pulse covers the dead-time (= reset loop propagation delay) of the trigger circuit, thus covering the period during which $T_4$ holds down $D_{35}$, which means that the maximum obtainable pulse duty cycle in the collector of $T_6$ has become 100% (see Fig. 4); the resolving time of the trigger circuit has not, however, been affected.

The signal at the collector of the $T_6$ drives the output fan-out 22, consisting of buffer emitter follower $T_9$ and three transistor-diode-current switches ($T_{18}$-$D_{32}$, $T_{11}$-$D_{46}$, $T_{12}$-$D_{52}$), and one transistor-diode-transistor current switch ($T_{15}$-$D_{68}$-$T_{14}$). The diodes $D_{39}$, $D_{40}$, $D_{41}$ (and others in identical positions) are output protection and clamping diodes.

3. PERFORMANCE

The performance of the instrument is summarized by the specifications as outlined in Fig. 7.

The operation is illustrated by the waveforms shown in Fig. 8. Two channels are switched on. The inputs to the two channels have a slightly different frequency, so that periodically an overlap occurs.

Details of the standardized output signal (OUT and OUT) at a low frequency are shown in Fig. 9. The width of this signal has been chosen to be 9.0 nsec in the design. Other widths can be obtained by inserting different lengths of the "timing" and "delay" cables (see Fig. 3). The signal is independent of the number of activated inputs and their overlap. The output signal at the maximum "pulse rate" (see Fig. 7) is given in Fig. 10a (77 MHz for this unit). In Fig. 10b the unit is operating at a frequency corresponding to the maximum duty cycle (110 MHz for this unit; the baseline of the oscilloscope is at one division from the top for Fig. 10b).

The overlap output (LIN) is shown in Fig. 11 for a single input and for a double coincidence. The width, basically equal to the input width or overlap time, decreases somewhat with the number of inputs (see Specs. Fig. 7). The rise-time, the fall-time, and the amplitude (provided the overlap is $\geq$ 2.0 nsec) are independent of the number of inputs. The operation at the maximum repetition rate ($\geq$ 200 MHz) is shown in Fig. 12.

The minimum resolving-time for a double coincidence via the overlap output is demonstrated by Fig. 13, which is 1.25 nsec for this unit (specified $\leq$ 2.0 nsec).
Timing curves obtained in a recent experiment\textsuperscript{24}), using the set-up of Fig. 14, are shown in Fig. 15. The curves exhibit flat tops and steep skirt slopes. The slopes change very little with the number of coincident inputs, thus proving the good operation of the system. The steepness of these slopes is determined by the scintillator and photomultiplier time dispersion, the time slewing in the shapers, and the noise in the photomultiplier, the shaper, and the coincidence unit.

The instrument has been designed to operate over the ambient temperature range 0-60$^\circ$C.

The results of an extensive series of tests on two randomly selected production units are described elsewhere\textsuperscript{25}).

* * *
REFERENCES


2) H. Verweij, Proc. Int. Symposium on Nuclear Electronics, Versailles, 10-13 September 1968, Tome 1, 60.1 to 60.15.


19) See, for example, RCA Tunnel Diode Manual, TD-30 (1963), p. 44.


Fig. 1: View of the front panel and of the inside
Fig. 2: Functional block diagram
Valid from Ser. No.85 and Ser. No.1085 onwards.

Fig. 3 : Circuit diagram
Fig. 4: Waveforms in various points of the circuit for some input conditions:

a) two logic inputs;
b) two logic and one complementary logic input (anti);
c) two logic and two complementary logic inputs, of which only one has a pulse overlapping the logic inputs;
d) inputs as (c) but now both complementary logic inputs have pulses overlapping the logic inputs.
Fig. 5: Characteristic of AND-gate tunnel diode (D31) and loadlines, for various conditions:

a) Loadline when only one channel is "ON"
b) Loadline when two channels are "ON"
c) Loadline when three channels are "ON"
d) Loadline when four channels are "ON"
e) Loadline when five channels are "ON"
f) High-state loadline
Fig. 6 : Equivalent circuits used for the calculation of the loadlines:

a) Complete
b) Reduced
INPUT

Number: 5
Impedance: 50 Ω
Reflections: In "On" State: < 20% (capacitive)
In "Off" State: < 15% (inductive)
Voltage: Logic, -800 mV for coincidence.
Complementary logic for anticoincidence.
Width: Minimum width or overlap (at minimum input "1" level = -12 mA) to produce outputs.
LIN: For singles ≤ 2.0 nsec
      For 5-fold ≤ 2.0 nsec
OUT and OUT: For singles ≤ 1.5 nsec
             For 5-fold ≤ 1.25 nsec
Maximum Rate: Determined by output specifications.

OUTPUT

LIN: (Overlap Output)
Number: 2 logic
Impedance: High, current source, unused outputs need not be terminated.
Rise-time: and
          t_{r1} ≤ 1.8 nsec
          t_{f1} ≤ 2.0 nsec
Width: Equal to input width or overlap at min input "1" level (-12 mA)
       + ≤ 1.0 nsec for singles
       - ≤ 1.0 nsec for 5-fold
Maximum Rate: ≥ 200 MHz
Propagation Delay: 6.2 ± 0.75 nsec (between min. input and output "1"), for singles. For 5-fold it decreases by ≤ 0.5 nsec.
Feedthrough: for n-1, ≤ |±50| mV
OUT AND OUT: (Standardized output)
Number: 4 logic
        1 complementary
Impedance: High, current source, unused outputs need not be terminated.
Rise-time: and
          Logic: t_{r1} ≤ 1.5 nsec
          Complementary: t_{f1} ≤ 2.0 nsec
          t_{f1} ≤ 2.2 nsec
Width: Logic, 9.0 ± 1 nsec at min input "1" level (-12 mA)
       Complementary, 9.0 ± 1 nsec at max input "0" level (-4 mA).
Maximum Rate: Up to a frequency of ≥ 70 MHz the output consists of pulses, i.e. the level between pulses comes down inside the output "0" band. At a frequency of ≥ 100 MHz the output has become d.c.; when exceeding this rate it turns into pulses again but counts will be lost.
Propagation Delay: 9.5 nsec ± 1.2 nsec (between min input and output "1"), for singles. For 5-fold it decreases by ≤ 0.5 nsec.

POWER CONSUMPTION

-24 V ≤ 260 mA
+24 V ≤ 170 mA

N.B. 1) Rise- (t_{r1}) and fall-times (t_{f1}) are measured between maximum output "0" (-100 mV) and minimum output "1" (-700 mV).
2) All parameters have been determined with input signals having rise- and fall-times of 0.7 nsec.

Fig. 7 : Specifications
Fig. 8: Coincidence operation:

a) Input to one channel
b) Input to another channel
c) Overlap output (LIN)
d) Discriminator, logic output (OUT)
e) Discriminator, complementary logic output (OUT)

Scale: Hor. 16 nsec/div. Vert. 800 mV/div.
Fig. 9: Discriminator output:

a) Logic (OUT)
b) Complementary logic (OUT)

Scale: Hor. 2 nsec/div. Vert. 200 mV/div.
Fig. 10 : Operation of the discriminator channel at high repetition rates:

a) Output (OUT) at maximum pulse rate
b) Output (OUT) at maximum duty cycle

Scale: Hor. 5 nsec/div. Vert. 200 mV/div.
Fig. 11: Overlap output

a) Single input
b) Output (LIN)
c) Two overlapping inputs
d) Output (LIN)

Scale: Hor. 2 nsec/div. Vert. a and c 400 mV/div. b and d 200 mV/div.
Fig. 12: Operation of the overlap channel at high repetition rates:

a) Input
b) Output (LIN) at maximum repetition rate (≥ 200 MHz)

Scale: Hor. 2 nsec/div. Vert. a) 400 mV/div
      b) 200 mV/div.
Fig. 13: Minimum double coincidence resolving-time:

a) Two inputs with minimum overlap
b) Output (LIN)

Scale: Hor. 2 nsec/div. Vert. a) 400 mV/div.
     b) 200 mV/div.
Fig. 14: Counter arrangement as used in a recent CERN experiment (information kindly provided by J.V. Allaby et al.)
\[ x = S_1 \cdot S_5 \cdot S_6 \\
o = S_1 \cdot S_4 \cdot S_5 \cdot S_6 \\
\ast = S_1 \cdot S_3 \cdot S_4 \cdot S_5 \cdot S_6 \\
\bullet = S_1 \cdot S_2 \cdot S_3 \cdot S_4 \cdot S_5 \cdot S_6 \]

Fig. 15 : Timing curves measured with the experimental set-up as shown in Fig. 14.