1/M Corrections to Baryonic Form Factors in the Quark Model

Hai-Yang Cheng and B. Tseng
Institute of Physics, Academia Sinica
Taipei, Taiwan 11529, Republic of China

Abstract

Weak current-induced baryonic form factors at zero recoil are evaluated in the rest frame of the heavy parent baryon using the nonrelativistic quark model. The heavy quark effective theory predictions for the $1/m_Q$ corrections to antitriplet-antitriplet heavy baryon transitions at the symmetric point $v \cdot v' = 1$ are reproduced. However, the quark model approach has the advantage that it is applicable to any heavy-heavy and heavy-light baryonic transitions at maximum q^2. Assuming a dipole q^2 behavior, we have applied the quark model form factors to nonleptonic, semileptonic and weak radiative decays of the heavy baryons. It is emphasized that the flavor suppression factor occurring in many heavy-light baryonic transitions is very crucial towards an agreement between theory and experiment for the semileptonic decay $\Lambda_c \to \Lambda e^+\nu_e$. Predictions for the decay modes $\Lambda_b \to J/\psi\Lambda$, $\Lambda_c \to p\phi$, $\Lambda_b \to \Lambda\gamma$, $\Xi_b \to \Xi\gamma$, and for the semileptonic decays of Λ_b, $\Xi_{b,c}$ and Ω_b are presented.
I. Introduction

In the heavy quark effective theory (HQET), there are two different types of $1/m_Q$ corrections to the hadronic form factors: one from the $1/m_Q$ correction to the current operators, and the other from the presence of higher dimensional operators in the effective Lagrangian [1]. The latter amounts to the hadronic wave-function modifications. In general, the predictive power of HQET for $1/m_Q$ effects is very limited by the fact that we do not know how to carry out first-principles calculations for the hadronic matrix elements in which higher dimensional kinetic and chromo-magnetic operators O_1 and O_2 are inserted. Consequently, several new unknown functions are necessarily introduced besides the leading Isgur-Wise functions. For example, to order Λ_{QCD}/m_\ast, there are four new subleading Isgur-Wise functions $\eta(\omega), \chi_1(\omega), \chi_2(\omega)$ and $\chi_3(\omega)$ for $B \to D$ transition, whose normalizations are not determined except that χ_1 and χ_3 vanish at the zero-recoil point $\omega \equiv v \cdot v' = 1$ [2]. Since the Isgur-Wise functions are not calculable from perturbative QCD or HQET, a calculation of them should be resorted to some models. It is known that the Isgur-Wise functions have some simple expressions in the quark model. Denoting the heavy meson wave function by

$$\psi = \psi_0 + \psi_{\text{kin}} + \psi_{\text{mag}} + \cdots,$$

where ψ_0 is the wave function in the heavy quark limit, ψ_{kin} and ψ_{mag} are the $1/m_Q$ corrections to the wave function due to the operators O_1 and O_2 respectively, the Isgur-Wise function $\xi(v \cdot v')$ simply measures the degree of overlap between the wave functions $\psi_0(v)$ and $\psi_0(v')$, while χ_1 (χ_3) can be expressed as the overlap integral of ψ_{kin} (ψ_{mag}) and ψ_0 [3].

In the heavy baryon case, there exist three Isgur-Wise functions in the heavy quark limit: $\zeta(\omega)$ for antitriplet-antitriplet transition, and $\xi_1(\omega), \xi_2(\omega)$ for sextet-sextet transition. In principle, these functions are also calculable in the quark model though they are more complicated. However, a tremendous simplification occurs in the antitriplet-antitriplet heavy baryon transition, e.g. $\Lambda_b \to \Lambda_c$: $1/m_Q$ corrections only amount to renormalizing the function $\zeta(\omega)$ and no further new function is needed [4]. This simplification stems from the fact that the chromo-magnetic operator does not contribute to $\Lambda_b \to \Lambda_c$ and that the diquark of the antitriplet heavy baryon is a spin singlet. Therefore, $1/m_b$ and $1/m_c$ corrections to $\Lambda_b \to \Lambda_c$ form factors are predictable in HQET and certain heavy quark symmetry relations among baryonic form factors remain intact. Since HQET is a theory, its prediction is model independent. To our knowledge, there are two quark-model calculations in the literature

\[\footnote{We follow the notation of Ref.[1] for subleading Isgur-Wise functions. The new function $\eta(\omega)$ arises from the matrix element of the $1/m_Q$-expanded current operator.}\]
for the $1/m_Q$ effects on baryonic form factors [5,6]. Since the quark-model wave function best resembles the hadronic state in the rest frame, form factors ought to be first evaluated at the zero recoil point. Unfortunately, none of the calculations presented in [5,6] is in agreement with HQET predictions. Moreover, several heavy quark symmetry relations for baryonic form factors are not even respected in Ref.[5]. While this discrepancy is resolved in Ref.[6], the $1/m_Q$ corrections obtained in this reference are still inconsistent with HQET in magnitude.

The purpose of the present paper is to demonstrate that the $1/m_Q$ HQET predictions for $\Lambda_b \rightarrow \Lambda_c$ form factors are reproducible in the nonrelativistic quark model. Since the quark model is most reliable when the hadron is at rest, we will thus confine ourselves to the zero recoil kinetic point. Instead of evaluating the baryonic Isgur-Wise functions, we will make the conventional pole dominance assumption for the q^2 dependence to extrapolate the form factors from maximum q^2 to the desired q^2 point. Since corrections to the form factors due to the modified wave functions vanish at zero recoil (see Sec. II), the nonrelativistic quark model applies equally well to the sextet-sextet heavy baryon transition, e.g. $\Omega_b \rightarrow \Omega_c$ at the symmetric point $v \cdot v' = 1$. Moreover, it becomes meaningful to consider in this model the $1/m_s$ corrections to, for example, $\Lambda_Q \rightarrow \Lambda$ and $\Xi_Q \rightarrow \Xi$ form factors at maximum q^2 so long as the recoil momentum is smaller than the m_s scale.

The layout of the present paper is as follows. In Sec. II we will derive, within the framework of the nonrelativistic quark model, the $1/m_Q$ and $1/m_s$ corrections, coming from the current operator, to the baryonic form factors at zero recoil. The $1/m_Q$ HQET predictions for $\Lambda_b \rightarrow \Lambda_c$ are reproduced in this quark-model calculation. Assuming a pole behavior for the q^2 dependence of the form factors, we will apply in Sec. III the quark-model results for baryonic form factors to nonleptonic weak decays, semileptonic decays and weak radiative decays. Sec. IV comes to our conclusion.

II. Baryonic Form Factors in the Nonrelativistic Quark Model

The general expression for the baryonic transition $B_i \rightarrow B_j$ reads

$$\langle B_j(p_f)|V_\mu - A_\mu|B_i(p_i)\rangle = \bar{u}_f f_1(q^2)\gamma_\mu + i f_2(q^2)\sigma_{\mu \nu} q^\nu + f_3(q^2)q_\mu$$

$$- (g_1(q^2)\gamma_\mu + i g_2(q^2)\sigma_{\mu \nu} q^\nu + g_3(q^2)q_\mu)\gamma_5 u_i, \quad (2)$$

where $q = p_i - p_f$. When both baryons are heavy, it is also convenient to parametrize the
matrix element in terms of the velocities v and v':

$$\langle B_f(v')|V_\mu - A_\mu|B_i(v)\rangle = \tilde{u}_f[F_1(\omega)\gamma_\mu + F_2(\omega)v_\mu + F_3(\omega)v'_\mu - (G_1(\omega)\gamma_\mu + G_2(\omega)v_\mu + G_3(\omega)v'_\mu)\gamma_5]u_i;$$ \hspace{1cm} (3)

with $\omega \equiv v \cdot v'$. The form factors F_i and G_i are related to f_i and g_i via

\begin{align*}
f_1 &= F_1 + \frac{1}{2}(m_i + m_f) \left(\frac{F_2}{m_i} + \frac{F_3}{m_f} \right), \\
f_2 &= \frac{1}{2} \left(\frac{F_2}{m_i} + \frac{F_3}{m_f} \right), \\
f_3 &= \frac{1}{2} \left(\frac{F_2}{m_i} - \frac{F_3}{m_f} \right), \\
g_1 &= G_1 - \frac{1}{2}(m_i - m_f) \left(\frac{G_2}{m_i} + \frac{G_3}{m_f} \right), \\
g_2 &= \frac{1}{2} \left(\frac{G_2}{m_i} + \frac{G_3}{m_f} \right), \\
g_3 &= \frac{1}{2} \left(\frac{G_2}{m_i} - \frac{G_3}{m_f} \right),
\end{align*} \hspace{1cm} (4)

where m_i (m_f) is the mass of B_i (B_f). Since the quark model is most trustworthy when the baryon is static, we will thus evaluate the form factors at zero recoil $q = 0$ (or $q^2 = (m_i - m_f)^2$) in the rest frame of the parent baryon B_i. Note that in order to determine the form factors $f_{2,3}$ and $g_{2,3}$, we need to keep the small recoil momentum q in Eq.(2) when recasting the 4-component Dirac spinors in terms of the 2-component Pauli spinors.

In order to calculate the form factors using the nonrelativistic quark model, we write [5]

\begin{align*}
\langle B_f|V_0|B_i\rangle &= \chi^\dagger_f V_0(q^2)\chi_i, \\
\langle B_f|A_0|B_i\rangle &= \chi_f \tilde{\sigma} \cdot \tilde{q} A_0(q^2)\chi_i, \\
\langle B_f|\tilde{V}|B_i\rangle &= \chi_f \left[q\tilde{V}_V(q^2) + i\tilde{\sigma} \times \tilde{q}\tilde{V}_M(q^2) \right]\chi_i, \\
\langle B_f|\tilde{A}|B_i\rangle &= \chi_f \left[\tilde{\sigma} \tilde{A}_S(q^2) + \tilde{q}(\tilde{\sigma} \cdot \tilde{q})\tilde{A}_T(q^2) \right]\chi_i, \hspace{1cm} (5)
\end{align*}

where χ is a Pauli spinor. In the rest frame of B_i, we find from Eqs.(2) and (5) that the scalar coefficients \tilde{V} and \tilde{A} at maximum q^2 are given by

\begin{align*}
\tilde{V}_0(q^2_{m_i}) &= f_1 + \Delta m f_3, \\
\tilde{V}_V(q^2_{m_i}) &= \frac{1}{2m_f}(-f_1 + \Delta m f_2) + f_3, \\
\tilde{V}_M(q^2_{m_i}) &= \frac{1}{2m_f}[-f_1 + (m_i + m_f)f_2],
\end{align*}

where $\Delta m = m_f - m_i$. The contributions to the baryon mass and charge are given by [5]

\begin{align*}
M_{B_i} &= \frac{1}{2} \left(m_i + m_f \right), \\
Q_{B_i} &= \frac{1}{2} \left(m_i - m_f \right) \left(\frac{G_2}{m_i} + \frac{G_3}{m_f} \right),
\end{align*}
\[
\tilde{A}_0(q_m^2) = \frac{1}{2m_f}(-g_1 + \Delta m g_3) + g_2, \tag{6}
\]
\[
\tilde{A}_S(q_m^2) = g_1 + \Delta m g_2, \quad \tilde{A}_T(q_m^2) = \frac{1}{2m_f}(-g_2 + g_3),
\]
where \(q_m^2 \equiv q_{max}^2 = (\Delta m)^2\) and \(\Delta m = m_i - m_f\). Inverting the above equations gives

\[
f_1(q_m^2) = \left(1 - \frac{\Delta m}{2m_i}\right)V_0 - \frac{\Delta m(m_i + m_f)}{2m_i}V_V + \frac{(\Delta m)^2}{2m_i}V_M, \tag{7}
\]
\[
f_2(q_m^2) = \frac{1}{2m_i}V_0 - \frac{\Delta m}{2m_i}V_V + \frac{m_i + m_f}{2m_i}V_M,
\]
\[
f_3(q_m^2) = \frac{1}{2m_i}V_0 + \frac{m_i + m_f}{2m_i}V_V - \frac{\Delta m}{2m_i}V_M,
\]
\[
g_1(q_m^2) = \left(1 - \frac{\Delta m}{2m_i}\right)\tilde{A}_S - \frac{m_f\Delta m}{m_i}\tilde{A}_0 + \frac{m_f(\Delta m)^2}{m_i}\tilde{A}_T,
\]
\[
g_2(q_m^2) = \frac{1}{2m_i}\tilde{A}_S + \frac{m_f}{m_i}\tilde{A}_0 - \frac{m_f\Delta m}{m_i}\tilde{A}_T,
\]
\[
g_3(q_m^2) = \frac{1}{2m_i}\tilde{A}_S + \frac{m_f}{m_i}\tilde{A}_0 + \frac{m_f(m_i + m_f)}{m_i}\tilde{A}_T.
\]

Our next task is to employ the nonrelativistic quark model to evaluate the coefficients \(\tilde{V}\) and \(\tilde{A}\) at \(q^2 = q_m^2\). We will follow closely Ref.[6] for this task. Suppose that the parent baryon \(B_i\) contains a heavy quark \(Q\) and two light quarks \(q_1\) and \(q_2\) behaving as a spectator diquark, and that the final baryon \(B_f\) is composed of the quark \(q\) (being a heavy quark \(Q')\) or a \(s\) quark) and the same light diquark as in \(B_i\). Denoting the spatial coordinates of the three quarks in \(B_i\) by \(\vec{r}_Q, \vec{r}_1, \text{ and } \vec{r}_2\), we define the relative coordinates

\[
\vec{R} = \frac{\sum m_j \vec{r}_j}{m_i}, \quad \vec{r}_{12} = \vec{r}_2 - \vec{r}_1, \quad \vec{r}_i = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2} - \vec{r}_Q, \tag{8}
\]
where \(\vec{m}_i = m_Q + m_1 + m_2\), which is in practice close to \(m_i\), so that \(\vec{r}_{12}\) is the relative coordinate of the two light quarks, and \(\vec{r}_i\) is the relative coordinate of \(Q\) and the c.m. of the diquark. It is easily shown that the corresponding relative momenta are [6]

\[
\vec{P} = \vec{p}_1 + \vec{p}_2 + \vec{p}_3,
\]
\[
\vec{p}_{12} = \frac{m_1}{m_1 + m_2} \vec{p}_2 - \frac{m_2}{m_1 + m_2} \vec{p}_1,
\]
\[
\vec{\ell} = \frac{m_Q}{m_i} (\vec{p}_1 + \vec{p}_2) - \frac{m_1 + m_2}{m_i} \vec{p}_Q.
\]
In the rest frame of the parent baryon, the momenta \(Q\) and \(q\) are related to the relative momentum \(\vec{\ell}\) via

\[
\vec{p}_Q = -\vec{\ell}, \quad \vec{p}_q = -\vec{q} - \vec{\ell}, \tag{10}
\]

\[5\]
and the relative momenta of the quarks in the baryon B_f denoted with primes are related to that in B_i by

$$\vec{p}'_{12} = \vec{p}_{12}, \quad \vec{\ell}' = \vec{\ell} + \frac{m_1 + m_2}{m_f} \vec{q},$$

(11)

with $m_f = m_q + m_1 + m_2$. Note that the recoil momentum of the daughter baryon B_f is $-\vec{q}$.

The baryon state is represented in the nonrelativistic quark model by

$$|B_i(\vec{P}, s)\rangle = \int d^3\vec{p}_{12} d^3\vec{\ell} \phi(\vec{p}_{12}, \vec{\ell}) \sum_{s_1, s_2, s_Q} C^s_{s_1, s_2, s_Q} |Q(\vec{p}_Q, s_Q), q_1(\vec{p}_1, s_1), q_2(\vec{p}_2, s_2)\rangle,$$

(12)

where $C^s_{s_1, s_2, s_Q}$ is the Clebsch-Gordan coefficient for the combination of three constituent quarks into a spin-$\frac{1}{2}$ baryon with the spin component s along the z direction, and $\phi(\vec{p}_{12}, \vec{\ell})$ is the momentum wave function satisfying the normalization condition:

$$\int d^3\vec{p}_{12} d^3\vec{\ell} |\phi(\vec{p}_{12}, \vec{\ell})|^2 = 1.$$

We shall see that the form factors to be evaluated at zero recoil do not depend on the explicit detail of $\phi(\vec{p}_{12}, \vec{\ell})$. Consider the weak current $J_\mu = \bar{q}\gamma_\mu(1 - \gamma_5)Q$. In the quark model the hadronic matrix element in (2) becomes

$$\langle B_f(\vec{P}' = -\vec{q}, s')|J_\mu|B_i(\vec{P} = 0, s)\rangle = \int d^3\vec{p}'_{12} d^3\vec{\ell}' d^3\vec{p}_{12} d^3\vec{\ell}$$

$$\times \delta^3(\vec{p}'_{12} - \vec{p}_{12}) \delta^3(\vec{\ell}' - \vec{\ell} - \frac{m_1 + m_2}{m_f} \vec{q}) \phi_f(\vec{p}'_{12}, \vec{\ell}') \phi_i(\vec{p}_{12}, \vec{\ell}) \langle s'|J_\mu|s\rangle,$$

(14)

with

$$\langle s'|J_\mu|s\rangle = \sum_{s_1', s_2', s_Q'} C^s'_{s_1', s_2', s_Q'} C^s_{s_1, s_2, s_Q} q(\vec{p}_Q, s_Q) \gamma_\mu(1 - \gamma_5)Q(\vec{p}_Q, s_Q).$$

(15)

It will become clear shortly that it makes difference to choose $(\vec{p}'_{12}, \vec{\ell}')$ or $(\vec{p}_{12}, \vec{\ell})$ as the integration variables after integrating over the δ-functions. We thus take the average 2

$$\langle B_f(-\vec{q}, s')|J_\mu|B_i(\vec{0}, s)\rangle = \frac{1}{2} \left[\int d^3\vec{p}'_{12} d^3\vec{\ell} + \int d^3\vec{p}_{12} d^3\vec{\ell} \right] \phi_f(\vec{p}'_{12}, \vec{\ell}') \phi_i(\vec{p}_{12}, \vec{\ell}) \langle s'|J_\mu|s\rangle.$$

(16)

2Eq.(16) is to be compared with the expression

$$\langle B_f(-\vec{q}, s')|J_\mu|B_i(\vec{0}, s)\rangle = \left(\frac{m_i}{m_f} \right)^3 \int d^3\vec{p}_{12} d^3\vec{\ell} \phi_f(\vec{p}_{12}, \vec{\ell}') \phi_i(\vec{p}_{12}, \vec{\ell}) \langle s'|J_\mu|s\rangle,$$

obtained by Singleton [6]. He noticed that there would be a factor of $(m_Q/\hat{m}_i)^3$ instead if $(\vec{p}_{12}, \vec{\ell})$ were integrated over. These factors do not appear in our Eq.(16).
In the nonrelativistic limit, the Dirac spinors in (15) read

$$\bar{\chi}(\vec{p}_q, s_q) = \chi^\dagger \left(1, -\frac{\vec{\sigma} \cdot \vec{p}_q}{2m_q} \right), \quad Q(\vec{p}_Q, s_Q) = \left(\frac{1}{2m_{QQ}} \right) \chi^\dagger.$$

(17)

Note that $\vec{p}_q = - (\vec{q} + \vec{L})$, $\vec{p}_Q = - \vec{L}$ when (\vec{p}_{12}, \vec{L}) are chosen to be the integration variables, and $\vec{p}_q = - (m_q/\bar{m}_j)\vec{q} - \vec{L}$, $\vec{p}_Q = \vec{q}(m_1 + m_2)/\bar{m}_j - \vec{L}$ for the integration variables $(\vec{p}_{12}', \vec{L}')$. Obviously, the integration over (\vec{p}_{12}, \vec{L}) is in general different from that over $(\vec{p}_{12}', \vec{L}')$.

Substituting (17) into (16) and noting that terms linear in $\vec{L} (\vec{L}')$ make no contribution after integrating over $\vec{L} (\vec{L}')$, we find after some manipulation that the scalar coefficients \bar{V} and \bar{A} evaluated at $\vec{q} = 0$ are

$$\bar{V}_0(q_m^2)/N_{fi} = 1,$$
$$\bar{V}_V(q_m^2)/N_{fi} = - \frac{1}{2m_q} \left(1 - \frac{\bar{\Lambda}}{2m_j} \right) + \frac{\bar{\Lambda}}{4m_j m_Q},$$
$$\bar{V}_M(q_m^2)/N'_{fi} = - \frac{1}{2m_q} \left(1 - \frac{\bar{\Lambda}}{2m_j} \right) - \frac{\bar{\Lambda}}{4m_j m_Q},$$
$$\bar{A}_0(q_m^2)/N'_{fi} = - \frac{1}{2m_q} \left(1 - \frac{\bar{\Lambda}}{2m_j} \right) + \frac{\bar{\Lambda}}{4m_j m_Q},$$
$$\bar{A}_S(q_m^2)/N'_{fi} = 1,$$
$$\bar{A}_T(q_m^2)/N'_{fi} = - \frac{\bar{\Lambda}}{4m_j m_Q},$$

(18)

where use of the approximation $\bar{m}_j \approx m_j$ has been made, $\bar{\Lambda} \equiv m_j - m_q$, and

$$N_{fi} = \text{flavor-spin} \langle B_f | b_i^\dagger q | B_i \rangle \text{flavor-spin}, \quad N'_{fi} = \text{flavor-spin} \langle B_f | b_i^\dagger q \sigma_2^Q | B_i \rangle \text{flavor-spin},$$

(19)

with σ_Q acting on the heavy quark Q. In deriving Eq. (18) we have applied the normalization condition (13) for the momentum wave function by assuming flavor independence, $\phi_f = \phi_i$. Since

$$\langle \chi_s | \sigma_2^Z | \chi_s \rangle = - \frac{1}{3}, \quad \langle \chi_A | \sigma_2^Z | \chi_A \rangle = 1,$$

(20)

where $\chi_s = (2 \uparrow \uparrow \downarrow - \uparrow \downarrow \downarrow - \downarrow \uparrow \uparrow)/\sqrt{6}$ is the spin wave function for the sextet heavy baryon and $\chi_A = (\uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow)/\sqrt{2}$ for the antitriplet heavy baryon, it is clear that [6]

$$\eta = \frac{N'_{fi}}{N_{fi}} = \left\{ \begin{array}{ll}
1 & \text{for antitriplet baryon } B_i, \\
-\frac{1}{3} & \text{for sextet baryon } B_i.
\end{array} \right.$$
It follows from Eqs.(18) and (7) that the form factors at zero recoil are given by

\[
\begin{align*}
 f_1(q^2_m)/N_{fi} &= 1 - \frac{\Delta m}{2m_i} + \frac{\Delta m}{4m_im_q} \left(1 - \frac{\bar{\Lambda}}{2m_f}\right) (m_i + m_f - \eta \Delta m) \\
 &\quad - \frac{\Delta m}{8m_im_fm_Q} (m_i + m_f + \eta \Delta m), \\
 f_2(q^2_m)/N_{fi} &= \frac{1}{2m_i} + \frac{1}{4m_im_q} \left(1 - \frac{\bar{\Lambda}}{2m_f}\right) [\Delta m - (m_i + m_f)\eta] \\
 &\quad - \frac{\bar{\Lambda}}{8m_im_fm_Q} [\Delta m + (m_i + m_f)\eta], \\
 f_3(q^2_m)/N_{fi} &= \frac{1}{2m_i} - \frac{1}{4m_im_q} \left(1 - \frac{\bar{\Lambda}}{2m_f}\right) (m_i + m_f + \eta \Delta m) \\
 &\quad + \frac{\bar{\Lambda}}{8m_im_fm_Q} (m_i + m_f + \eta \Delta m), \\
 g_1(q^2_m)/N_{fi} &= \eta + \frac{\Delta m\bar{\Lambda}}{4} \left(\frac{1}{m_im_q} - \frac{1}{m_fm_Q}\right) \eta, \\
 g_2(q^2_m)/N_{fi} &= -\frac{\bar{\Lambda}}{4} \left(\frac{1}{m_im_q} - \frac{1}{m_fm_Q}\right) \eta, \\
 g_3(q^2_m)/N_{fi} &= -\frac{\bar{\Lambda}}{4} \left(\frac{1}{m_im_q} + \frac{1}{m_fm_Q}\right) \eta,
\end{align*}
\]

with \(\bar{\Lambda} = m_f - \mu_q\). When both baryons are heavy, the form factors defined in Eq.(3) have the following expressions at \(\omega = 1\):

\[
\begin{align*}
 F_1(1)/N_{fi} &= \left[1 + \frac{\bar{\Lambda}}{2} \left(\frac{1}{m_q} + \frac{1}{m_Q}\right)\right] \eta, \\
 F_2(1)/N_{fi} &= \frac{1}{2}(1 - \eta) - \frac{\bar{\Lambda}}{2m_q} + \frac{\bar{\Lambda}}{4} \left(\frac{1}{m_q} - \frac{1}{m_Q}\right) (1 - \eta), \\
 F_3(1)/N_{fi} &= \frac{1}{2}(1 - \eta) - \frac{\bar{\Lambda}}{2m_Q} + \frac{\bar{\Lambda}}{4} \left(\frac{1}{m_q} + \frac{1}{m_Q}\right) (1 - \eta), \\
 G_1(1)/N_{fi} &= \eta, \quad G_2(1)/N_{fi} = -\frac{\bar{\Lambda}}{2m_q} \eta, \quad G_3(1)/N_{fi} = \frac{\bar{\Lambda}}{2m_Q} \eta,
\end{align*}
\]

obtained from Eqs.(4) and (22). For \(\Lambda_i \to \Lambda_c\) transition, \(N_{fi} = 1, \eta = 1\), so we have

\[
\begin{align*}
 F_1^{\Lambda_i\Lambda_c}(1) &= 1 + \frac{\bar{\Lambda}}{2} \left(\frac{1}{m_c} + \frac{1}{m_b}\right), \quad G_1^{\Lambda_i\Lambda_c}(1) = 1, \\
 F_2^{\Lambda_i\Lambda_c}(1) &= G_2^{\Lambda_i\Lambda_c}(1) = -\frac{\bar{\Lambda}}{2m_c}, \\
 F_3^{\Lambda_i\Lambda_c}(1) &= -G_3^{\Lambda_i\Lambda_c}(1) = -\frac{\bar{\Lambda}}{2m_b},
\end{align*}
\]

8
and
\[f_{1}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = g_{1}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = 1 + \frac{\Delta m}{4} \frac{\bar{\Lambda}}{m_{\Lambda_{k}^{i}} m_{\Lambda_{c}}}, \]
\[f_{2}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = g_{3}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = \frac{\bar{\Lambda}}{4} \left(\frac{1}{m_{\Lambda_{k}^{i}} m_{\Lambda_{c}}} \right), \]
\[f_{3}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = g_{2}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = \frac{\bar{\Lambda}}{4} \left(\frac{1}{m_{\Lambda_{k}^{i}} m_{\Lambda_{c}}} \right). \]

Therefore, there is only one independent \(\Lambda_{k} \rightarrow \Lambda_{c} \) form factor in the heavy quark limit. The relevant HQET predictions to the zeroth order of \(\alpha_{s} \) are [4]
\[F_{1}^{\Lambda_{k}^{i},\Lambda_{c}}(\omega) = 1 + \frac{\bar{\Lambda}}{2} \left(\frac{1}{m_{c}} + \frac{1}{m_{b}} \right), \]
\[F_{2}^{\Lambda_{k}^{i},\Lambda_{c}}(\omega) = G_{2}^{\Lambda_{k}^{i},\Lambda_{c}}(\omega) = -\frac{\bar{\Lambda}}{m_{c}} \frac{1}{1 + \omega}, \]
\[F_{3}^{\Lambda_{k}^{i},\Lambda_{c}}(\omega) = -G_{3}^{\Lambda_{k}^{i},\Lambda_{c}}(\omega) = -\frac{\bar{\Lambda}}{2m_{b}} \frac{1}{1 + \omega}, \]
\[G_{1}^{\Lambda_{k}^{i},\Lambda_{c}}(\omega) = 1 - \frac{\bar{\Lambda}}{2} \left(\frac{1}{m_{c}} + \frac{1}{m_{b}} \right) \frac{1 - \omega}{1 + \omega}. \]

We see that the nonrelativistic quark model predictions for \(\Lambda_{k} \rightarrow \Lambda_{c} \) form factors at the symmetric point \(\omega = 1 \) are in agreement with HQET, as it should be.

We now make a comparison with the quark model calculations in Refs.[5,6]. Quark- and bag-model wave functions in the coordinate space are used to evaluate the baryonic form factors by Pérez-Marcial et al. [5]. However, their results (11a-11f), \(^3\) when applied to \(\Lambda_{k} \rightarrow \Lambda_{c} \), are in disagreement with HQET. In fact, the heavy quark symmetry relations \(f_{1} = g_{1}, f_{2} = g_{3} \) and \(f_{3} = g_{2} \) for \(\Lambda_{k} \rightarrow \Lambda_{c} \) transition implied by HQET are not respected by Ref.[5]. Moreover, the dimensionless \(\Lambda_{k} \rightarrow \Lambda_{c} \) form factors \(m_{\Lambda_{k}} f_{23} \) and \(m_{\Lambda_{c}} g_{23} \) vanish in the heavy quark limit according to HQET. The reader can check that the form factors obtained in Ref.[5] do not satisfy this feature of heavy quark symmetry.

Our evaluation of baryonic form factors is quite close to that of Singleton [6] except for Eq.(16), in which we have taken the average of the integrations over \(\vec{p}_{1}, \vec{p}_{2} \) and \(\vec{p}'_{1}, \vec{p}'_{2} \) (see the footnote there). Besides the \(1/m_{q} \) corrections we have also included \(1/m_{Q} \) effects. Recasting (3.48)-(3.51) of Ref.[6] into the form factors used here gives
\[f_{1}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = g_{1}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = 1 + \frac{\Delta m}{2m_{\Lambda_{k}^{i}} m_{\Lambda_{c}}}, \]
\[f_{2}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = f_{3}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = g_{2}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = g_{3}^{\Lambda_{k}^{i},\Lambda_{c}}(q_{m}^{2}) = -\frac{\bar{\Lambda}}{2m_{c}} \frac{1}{m_{\Lambda_{k}^{i}}}, \]
\(^3\)The parameters \(\alpha_{1} \) and \(\alpha_{2} \) defined in Eq.(12) of Ref.[5] correspond to our \(N_{fi} \) and \(N'_{fi} \), respectively.
for \(\Lambda_i \rightarrow \Lambda_c \) transition. Comparing with (25), it is evident that the \(1/m_c \) corrections in (27) are too large by a factor of 2; that is, the quark model calculations by Singleton do satisfy the aforementioned heavy quark symmetry relations, but are still not consistent with HQET in magnitude.

The \(B_i \rightarrow B_f \) baryonic form factors at maximum \(q^2 \) (22) obtained in the nonrelativistic quark model are the main results in the present paper. The \(1/m_Q \) and \(1/m_q \) effects in (22) arise from the modification to the current operator. Although as far as \(\Lambda_Q \rightarrow \Lambda_Q \) and \(\Xi_Q \rightarrow \Xi_Q \) are concerned, the nonrelativistic quark model predictions for the form factors at \(\omega = 1 \) are in accordance with HQET, the two approaches differ in two main aspects: (i) HQET provides a systematic \(\Lambda_{QCD}/m_Q \) expansion. This expansion can be treated perturbatively if \(m_Q \gg \Lambda_{QCD} \). Apart from the trivial relativistic \((k/m_Q)^2 \) expansion, \(1/m_Q \) effects are basically treated nonperturbatively in the nonrelativistic quark model. Near zero recoil in the rest frame of the parent baryon, the quark model result for \(1/m_q \) corrections is trustworthy since \(|\vec{q}|/m_q \ll 1 \), where \(-\vec{q}\) is the recoil momentum of the daughter baryon. Consequently, contrary to HQET, \(1/m_q \) modifications to the form factors near \(v \cdot v' = 1 \) become meaningful in the quark model. (ii) Going beyond the antitriplet-antitriplet heavy baryon transition, the predictive power of HQET for form factors is lost owing to the fact that \(1/m_Q \) corrections due to wave function modifications arising from \(O_1 \) and especially \(O_2 \) are not calculable by perturbative QCD. However, such corrections are expected to vanish at zero recoil in the quark model.

Experimentally, the only information available so far is the form-factor ratio measured in the semileptonic decay \(\Lambda_c \rightarrow \Lambda e \bar{\nu} \). In the heavy \(c \)-quark limit, there are two independent form factors in \(\Lambda_c \rightarrow \Lambda \) transition [7]

\[
\langle \Lambda(p) | \bar{\psi}_c (1 - \gamma_5) c | \Lambda_c (v) \rangle = \bar{u}_\Lambda \left(F_1^{\Lambda \rightarrow \bar{\Lambda}} (v \cdot p) + \frac{i}{2} F_2^{\Lambda \rightarrow \bar{\Lambda}} (v \cdot p) \right) \gamma_\mu (1 - \gamma_5) u_{\Lambda_c} .
\]

Assuming a dipole \(q^2 \) behavior for the form factor, the ratio \(R = \frac{F_1^{\Lambda \rightarrow \bar{\Lambda}}}{F_2^{\Lambda \rightarrow \bar{\Lambda}}} \) is measured by

4This is known to be true in the meson case. Among the four subleading Isgur-Wise functions \(\eta(\omega), \chi_{1,2,3}(\omega) \) (see the Introduction), we know that \(\chi_1 \) and \(\chi_3 \) vanish at \(\omega = 1 \) and that \(\eta(\omega) = \chi_2(\omega) = 0 \) in the quark model [3].
The form factors $\tilde{F}_{1,2}$ are related to f's and g's by
\[
f_1 = g_1 = \tilde{F}_1 + \frac{m_f}{m_i} \tilde{F}_2, \quad f_2 = f_3 = g_2 = g_3 = \frac{\tilde{F}_2}{m_i}.
\]
Since R is independent of q^2 if \tilde{F}_1 and \tilde{F}_2 have the same q^2 dependence, we can apply the quark model (22) to get
\[
\tilde{F}_1(q_m^2) = 1 + \frac{\Lambda}{4m_s}, \quad \tilde{F}_2(q_m^2) = -\frac{\Lambda}{4m_s},
\]
which lead to
\[
R = -\left(1 + \frac{4m_s}{\Lambda}\right)^{-1} = -0.24
\]
for $m_s = 500$ MeV. This is consistent with experiment (29), but it should be kept in mind that $1/m_s$ corrections, which are potentially important, have not been included in (29) and (32).

III. Applications

In this section we will apply the baryonic form factors obtained in the nonrelativistic quark model to various physical processes. Since the form factors in (22) are evaluated at zero recoil, we will assume pole dominance for their q^2 dependence:
\[
f(q^2) = \frac{f(0)}{\left(1 - \frac{q^2}{m_V^2}\right)^n}, \quad g(q^2) = \frac{g(0)}{\left(1 - \frac{q^2}{m_A^2}\right)^n},
\]
where m_V (m_A) is the pole mass of the vector (axial-vector) meson with the same quantum number as the current under consideration. In practice, either monopole ($n = 1$) or dipole ($n = 2$) q^2 dependence are adopted in the literature. For definiteness, we will choose the dipole behavior suggested by the following argument. Considering the function
\[
G(q^2) = \left(\frac{1 - q_m^2/m_s^2}{1 - q^2/m_s^2}\right)^n,
\]
with m_s being the pole mass, it is clear that $G(q^2)$ plays the role of the Isgur-Wise function $\zeta(\nu \cdot \nu')$ in $\Lambda_Q \rightarrow \Lambda_Q'$ transition, namely $G = 1$ at $q^2 = q_m^2$. The function $\zeta(\omega)$ has been calculated in two different models:
\[
\zeta(\omega) = \begin{cases}
0.99 \exp[-1.3(\omega-1)], & \text{soliton model [9];} \\
\left(\frac{2}{\omega+1}\right)^{3.5+1.2/\omega}, & \text{MIT bag model [10].}
\end{cases}
\]
Using the pole masses $m_V = 6.34 \text{ GeV}$ and $m_A = 6.73 \text{ GeV}$ for the transition $\Lambda_b \to \Lambda_c$, we find that $G(q^2)$ is compatible with $\zeta(\omega)$ only if $n = 2$.

3.1 Semileptonic decay

We shall study in this subsection the decay rate for the semileptonic transition $\frac{1}{2}^+ \to \frac{1}{2}^+ + e + \bar{\nu}_e$. Take the semileptonic decay $\Lambda_c^+ \to \Lambda e^+ \nu_e$ as an example. Since $\eta = 1$, $m_V = m_{D_s(1^+)} = 2.11 \text{ GeV}$, $m_A = m_{D_s(1^+)} = 2.536 \text{ GeV}$ [11], the form factors at $q^2 = 0$ are obtained from (22) and (33) to be

$$
\begin{align*}
 f_1^{\Lambda_A}(0) &= 0.50 N_{\Lambda_A}, \\
 f_2^{\Lambda_A}(0) &= -0.25 N_{\Lambda_A}/m_{\Lambda_c}, \\
 f_3^{\Lambda_A}(0) &= -0.05 N_{\Lambda_A}/m_{\Lambda_c}, \\
 g_1^{\Lambda_A}(0) &= 0.65 N_{\Lambda_A}, \\
 g_2^{\Lambda_A}(0) &= -0.06 N_{\Lambda_A}/m_{\Lambda_c}, \\
 g_3^{\Lambda_A}(0) &= -0.32 N_{\Lambda_A}/m_{\Lambda_c},
\end{align*}
$$

where uses of $m_c = 1.5 \text{ GeV}$ and $m_s = 500 \text{ MeV}$ have been made. From the flavor-spin wave function of Λ_c and Λ with a positive helicity along the z direction

$$
\begin{align*}
 |\Lambda_c \uparrow\rangle_{\text{flavor-spin}} &= \frac{1}{\sqrt{2}} (ud - du) c_{\chi\Lambda}, \\
 |\Lambda \uparrow\rangle_{\text{flavor-spin}} &= \frac{1}{\sqrt{6}} [(ud - du) s_{\chi\Lambda} + (13) + (23)],
\end{align*}
$$

where (ij) means permutation for the quark in place i with the quark in place j, we get

$$
N_{\Lambda_c \Lambda} = \langle \Lambda \uparrow \mid \bar{b}_i^j b_j \mid \Lambda_c \uparrow \rangle_{\text{flavor-spin}} = \frac{1}{\sqrt{3}}.
$$

The computation of the baryon semileptonic decay rate is straightforward; for an analytic expression of the decay rate, see for example Ref.[12]. We obtain

$$
\Gamma(\Lambda_c \to \Lambda e^+ \nu_e) = (N_{\Lambda_c \Lambda})^2 \times 2.21 \times 10^{11} \text{s}^{-1} = 7.4 \times 10^{10} \text{s}^{-1},
$$

which is in excellent agreement with experiment [11]

$$
\Gamma(\Lambda_c \to \Lambda e^+ \nu_e)_{\text{expt}} = (7.0 \pm 2.5) \times 10^{10} \text{s}^{-1}.
$$

It must be stressed that the flavor factor $N_{\Lambda_c \Lambda} = 1/\sqrt{3}$, which was already noticed in [6,13,14], is very crucial for an agreement between theory and experiment. In the literature it is customary to replace the s quark in the baryon Λ by the heavy quark Q to obtain the wave function of the Λ_Q. However, this amounts to assuming SU(4) or SU(5) flavor symmetry. Since SU(N)-flavor symmetry with $N > 3$ is badly broken, the flavor factor $N_{\Lambda_Q \Lambda}$ is no longer unity (of course, $N_{\Lambda_Q \Lambda' \Lambda} = 1$). Indeed, if $N_{\Lambda_c \Lambda}$ were equal to one, the predicted rate for $\Lambda_c \to \Lambda e^+ \nu_e$ would have been too large by a factor of 3!
For completeness, the nonrelativistic quark model predictions for the decay rates of semileptonic decays of heavy baryons are summarized in Table I. We will not consider the case of sextet heavy baryons as they are dominated by strong or electromagnetic decays (except for Ω_Q). Two remarks are in order. (i) We have used $|V_{cb}| = 0.040$ [15], $m_V = 6.34$ GeV and $m_A = 6.73$ GeV for the process of $B_b \to B_c e \bar{\nu}$, (ii) The parameter $\bar{\Lambda}$ is process dependent; for example, it can be as large as 1.21 GeV for $\Omega_b \to \Omega_c e \bar{\nu}$, whereas it is only 0.62 GeV for $\Lambda_c \to \Lambda e^+ \nu_e$.

Table I. Decay rates, spin and flavor factors for various semileptonic decays $\frac{1}{2}^+ \to \frac{1}{2}^+ + e + \bar{\nu}_e$.

<table>
<thead>
<tr>
<th>process</th>
<th>η</th>
<th>N_{fi}</th>
<th>$\Gamma(10^{10} s^{-1})_{\text{theory}}$</th>
<th>$\Gamma(10^{10} s^{-1})_{\text{expt}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$</td>
<td>1</td>
<td>$\overline{\frac{1}{\sqrt{3}}}$</td>
<td>7.4</td>
<td>7.0 \pm 2.5</td>
</tr>
<tr>
<td>$\Xi_c^0 \to \Xi^{-} e^+ \nu_e$</td>
<td>1</td>
<td>$\overline{\frac{1}{\sqrt{3}}}$</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>$\Lambda_b^0 \to \Lambda^+_c e^- \bar{\nu}_e$</td>
<td>1</td>
<td>1</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>$\Xi_b^0 \to \Xi^+_c e^- \bar{\nu}_e$</td>
<td>1</td>
<td>1</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>$\Omega_b^- \to \Omega^0_c e^- \bar{\nu}_e$</td>
<td>$-\frac{1}{3}$</td>
<td>1</td>
<td>2.3</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Nonleptonic decay

At the quark level, the nonleptonic weak decays of the baryon usually receive contributions from external W-emission, internal W-emission and W-exchange diagrams. At the hadronic level, these contributions manifest as factorizable and pole diagrams. It is known that, contrary to the meson case, the non spectator W-exchange effects in charmed baryon decays are of comparable importance as the spectator diagrams [16]. Unfortunately, in general it is difficult to estimate the pole diagrams. Nevertheless, there exist some decay modes of heavy baryons which proceed only through the internal or external W-emission diagram. Examples are

internal W-emission: $\Lambda_b \to J/\psi \Lambda$, $\Xi_b \to J/\psi \Xi$, $\Omega_b \to J/\psi \Omega$, $\Lambda_c \to p \phi, \cdots$

external W-emission: $\Omega_b \to \Omega_c \pi$, $\Omega_c \to \Omega \pi$.

(41)

Consequently, the above decay modes are free of non spectator effects and their theoretical calculations are relatively clean.

In this subsection we shall study two of the decay modes displayed in (41), namely $\Lambda_b \to J/\psi \Lambda$ and $\Lambda_c \to p \phi$. The general amplitude of $\Lambda_b \to J/\psi \Lambda$ has the form

$$A(\Lambda_b \to J/\psi \Lambda) = i \bar{u}_\Lambda(p_\Lambda)\gamma^\mu [A_1 \gamma_\mu + A_2(p_\Lambda)\gamma_\mu + B_1 \gamma_\mu + B_2(p_\Lambda)\gamma_\mu] u_\Lambda(p_\Lambda),$$

(42)
where ε_μ is the polarization vector of the J/ψ. Under factorization assumption, the internal W-emission contribution reads

$$A(\Lambda_b \rightarrow J/\psi \Lambda) = \frac{G_F}{\sqrt{2}} V_{cb} V_{cb}^* A_2(J/\psi) \bar{\varepsilon} \gamma_\mu (1 - \gamma_5) \varepsilon \langle 0 \mid \Lambda \mid S \bar{\gamma}_\mu (1 - \gamma_5) \Lambda_b \rangle,$$ \hspace{1cm} (43)

where A_2 is an unknown parameter introduced in Ref.[17]. It follows from (42) and (43) that

$$A_1 = -\lambda [g_1^{A_b}(m_{J/\psi}') + g_2^{A_b}(m_{J/\psi}')(m_{\Lambda_b} - m_\Lambda)],$$

$$A_2 = -2\lambda g_2^{A_b}(m_{J/\psi}'),$$

$$B_1 = \lambda [f_1^{A_b}(m_{J/\psi}') - f_2^{A_b}(m_{J/\psi}')(m_{\Lambda_b} + m_\Lambda)],$$

$$B_2 = 2\lambda f_2^{A_b}(m_{J/\psi}'),$$

with $\lambda = \frac{G_F}{\sqrt{2}} V_{cb} V_{cb}^* A_2 f_{J/\psi} m_{J/\psi}$. Since $\eta = 1$, $N_{\Lambda_b} = \frac{1}{\sqrt{2}}$, $m_V = m_{B_s(1-)} \simeq 5.42 \text{ GeV}$ and $m_\Lambda = m_{B_s(1+)} \simeq 5.86 \text{ GeV}$, we find from Eqs.(22) and (33) that

$$f_1^{A_b}(m_{J/\psi}') = 0.131, \quad f_2^{A_b}(m_{J/\psi}') = -0.054/m_\Lambda,$$

$$g_1^{A_b}(m_{J/\psi}') = 0.203, \quad g_2^{A_b}(m_{J/\psi}') = -0.036/m_\Lambda.$$

The decay rate reads [18]

$$\Gamma(\Lambda_b \rightarrow J/\psi \Lambda) = \frac{p_c E_{J/\psi} + m_{J/\psi}}{m_{\Lambda_b}} \left[2(|S|^2 + |P|^2) + \frac{E_{J/\psi}^2}{m_{J/\psi}^2} (|S + D|^2 + |P|^2) \right],$$

(46)

with the S, P and D waves given by

$$S = -A_1,$$

$$P_1 = -\frac{p_c}{E_{J/\psi}} \left(\frac{m_{\Lambda_b} + m_\Lambda}{E_\Lambda + m_\Lambda} B_1 + m_{\Lambda_b} B_2 \right),$$

$$P_2 = \frac{p_c}{E_\Lambda + m_\Lambda} B_1,$$

$$D = -\frac{p_c^2}{E_{J/\psi}(E_\Lambda + m_\Lambda)} (A_1 - m_{\Lambda_b} A_2),$$

(47)

where p_c is the c.m. momentum. Using $|V_{cb}| = 0.040$ [15], $\tau(\Lambda_b) = 1.07 \times 10^{-12} \text{ s}$ [11], $a_2 \sim 0.23$ [19], and $f_{J/\psi} = 395 \text{ MeV}$ extracted from the observed $J/\psi \rightarrow e^+e^-$ rate, $\Gamma(J/\psi \rightarrow e^+e^-) = (5.27 \pm 0.37) \text{ keV}$ [11], we find

$$B(\Lambda_b \rightarrow J/\psi \Lambda) = 2.1 \times 10^{-4}. \hspace{1cm} (48)$$

When anisotropy in angular distribution is produced in a polarized Λ_b decay, it is governed by the asymmetry parameter α given by [18]

$$\alpha = \frac{4 m_{J/\psi}^2 Re(S^* P_2) + 2 E_{J/\psi}^2 Re(S + D)^* P_1}{2 m_{J/\psi}^2 (|S|^2 + |P|^2) + E_{J/\psi}^2 (|S + D|^2 + |P|^2)}. \hspace{1cm} (49)$$
Numerically, it reads \(^5\)

\[
\alpha(\Lambda_b \rightarrow J/\psi \Lambda) = -0.11 , \quad (50)
\]

where the negative sign of \(\alpha\) reflects the \(V-A\) structure of the current.

The \(\Lambda_b \rightarrow J/\psi \Lambda\) decay was originally reported by the UA1 Collaboration [21] with the result

\[
F(\Lambda_b)B(\Lambda_b \rightarrow J/\psi \Lambda) = (1.8 \pm 0.6 \pm 0.9) \times 10^{-3} , \quad (51)
\]

where \(F(\Lambda_b)\) is the fraction of \(b\) quarks fragmenting into \(\Lambda_b\). Assuming \(F(\Lambda_b) = 10\%\) [21], this leads to

\[
B(\Lambda_b \rightarrow J/\psi \Lambda) = (1.8 \pm 1.1)\% . \quad (52)
\]

However, both CDF [22] and LEP [23] did not see any evidence for this decay. For example, based on the signal claimed by UA1, CDF should have reconstructed \(30 \pm 23\) \(\Lambda_b \rightarrow J/\psi \Lambda\) events. Instead CDF found not more than 2 events and concluded that

\[
F(\Lambda_b)B(\Lambda_b \rightarrow J/\psi \Lambda) < 0.50 \times 10^{-3} . \quad (53)
\]

The limit set by OPAL is [23]

\[
F(\Lambda_b)B(\Lambda_b \rightarrow J/\psi \Lambda) < 1.1 \times 10^{-3} . \quad (54)
\]

Hence, a theoretical study of this decay mode would be quite helpful to clarify the issue. The prediction (48) indicates that the branching ratio we obtained is two orders of magnitude smaller than what expected from UA1 (52).

We next turn to the Cabibbo-suppressed decay \(\Lambda_c \rightarrow p \phi\). As emphasized in Ref.[16], this decay mode is of particular interest because it provides a direct test of the large-\(N_c\) approach in the charmed baryon sector, though this approach is known to work well for the nonleptonic weak decays of charmed mesons. From the flavor-spin wave function of the \(\Lambda_c\) (37) and the proton

\[
[p \uparrow]_{\text{flavor-spin}} = \frac{1}{\sqrt{3}}[uud\chi_s + (13) + (23)] , \quad (55)
\]

Our previous study on \(\Lambda_b \rightarrow J/\psi \Lambda\) [20] has a vital sign error in Eq.(14) for the expression of the \(D\)-wave amplitude, which affects the magnitude of the decay rate and the sign of decay asymmetry. Moreover, the important flavor factor \(N_{\Lambda_c \Lambda} = 1/\sqrt{3}\) is not taken into account there.
we get

$$N_{A,v} = \frac{1}{\sqrt{2}}.$$ \hspace{1cm} (56)

Since the calculation is very similar to that of $\Lambda_c \to J/\psi \Lambda$, we simply write down the results:

$$B(\Lambda_c \to p\phi) = (c_2)^2 \times 2.26 \times 10^{-3}, \quad \alpha(\Lambda_c \to p\phi) = -0.10,$$ \hspace{1cm} (57)

where we have applied $f_\phi = 237 \text{ MeV}$, $m_{D(1^-)} = 2.01 \text{ GeV}$ and $m_{D(1^+)} = 2.42 \text{ GeV}$. As the Wilson coefficient c_2 is expected to be of order -0.56 in the large-N_c approach, it follows that

$$B(\Lambda_c \to p\phi) = 7.1 \times 10^{-4}.$$ \hspace{1cm} (58)

Therefore, in order to test $1/N_c$ expansion and the nonrelativistic quark model for the form factors, the experimental accuracy should be reached at the level of a few 10^{-4}. Experimentally, the branching ratio is measured to be

$$B(\Lambda_c \to p\phi) = \begin{cases}
(1.8 \pm 1.2) \times 10^{-3}, & \text{ACCMOR [24];} \\
< 1.7 \times 10^{-3}, & \text{E687 [25].}
\end{cases}$$ \hspace{1cm} (59)

Finally, it is worth remarking that it is important to take into account the effect of the flavor-suppression factor (e.g. $N_{A,A}$) on the factorizable contributions to the nonleptonic two-body decays of charmed baryons; such effects thus far have not been considered in the literature [16,26].

3.3 Weak radiative decay

Recently the weak radiative decays of B mesons and bottom baryons have been systematically studied in Ref.[27]. At the quark level, there are two essential mechanisms responsible for weak radiative decays: electromagnetic penguin mechanism and W-exchange (or W-annihilation) bremsstrahlung. The two-body decays of the bottom baryons proceeding through the short-distance electromagnetic penguin diagrams are:

$$\Lambda_b^0 \to \Sigma^0 \gamma, \quad \Lambda^0 \gamma, \quad \Xi_b^0 \to \Xi^0 \gamma, \quad \Xi^- \to \Xi^- \gamma, \quad \Omega^- \to \Omega^- \gamma.$$ \hspace{1cm} (60)

In this subsection, we shall study the above weak radiative decay modes using the nonrelativistic quark model in conjunction with the heavy b-quark symmetry.
To begin with, the electromagnetic penguin-induced radiative decay amplitude is [27]

\[A(B_i \rightarrow B_f + \gamma) = i \frac{G_F}{\sqrt{2}} \frac{e}{8\pi^2} F_2(x_t) V_{tb} V_{ts}^* m_b \varepsilon^\mu q^\nu \times \langle B_f | \bar{\psi} \gamma_{\mu} [(1 + \gamma_5) + \frac{m_s}{m_b}(1 - \gamma_5)] b | B_i \rangle, \] (61)

where \(q \) is the photon momentum, \(F_2 \) is a smooth function of \(x_t \equiv m_t^2/M_W^2 \) [28] and it is numerically equal to 0.65 for \(\Lambda_{QCD} = 200 \text{ MeV} \) and \(m_t = 174 \text{ GeV} \). In order to evaluate the tensor matrix elements in (61), we consider the static heavy quark symmetry relation so that

\[\langle B_f | \bar{\psi} \sigma_{\mu\nu} (1 + \gamma_5) b | B_i \rangle = \langle B_f | \bar{\psi} \gamma_{\mu} (1 - \gamma_5) b | B_i \rangle. \] (62)

Hence,

\[\langle B_f | \bar{\psi} \sigma_{\mu\nu} (1 + \gamma_5) b | B_i \rangle \varepsilon^0 q^i = \frac{1}{2} \langle B_f | \bar{\psi} \gamma_i (1 - \gamma_5) b | B_i \rangle (\varepsilon^0 q^i - \varepsilon^i q^0) \]

\[= \bar{u}_f i \sigma_{\mu\nu} \varepsilon^0 q^i [f_1 - f_2(m_i + m_f) + g_1 \gamma_5 + g_2(m_i - m_f) \gamma_5] u_i. \] (63)

It follows from (61) and (63) that

\[A(B_i \rightarrow B_f + \gamma) = i \bar{u}_f (a + b \gamma_5) \sigma_{\mu\nu} \varepsilon^\mu q^\nu u_i; \] (64)

with

\[a = \frac{G_F}{\sqrt{2}} \frac{e}{8\pi^2} F_2(x_t) m_b V_{tb} V_{ts}^* [f_1(0) - f_2(0)(m_i + m_f)], \]

\[b = \frac{G_F}{\sqrt{2}} \frac{e}{8\pi^2} F_2(x_t) m_b V_{tb} V_{ts}^* [g_1(0) + g_2(0)(m_i - m_f)], \] (65)

being parity-conserving and -violating amplitudes, respectively. The decay rate is

\[\Gamma(B_i \rightarrow B_f + \gamma) = \frac{1}{8\pi} \left(\frac{m_i^2 - m_f^2}{m_i} \right)^3 (|a|^2 + |b|^2). \] (66)

In order to apply the heavy quark symmetry relation (62), we shall neglect \(1/m_b \) corrections to the form factors given in (22). To the leading order in \(1/m_b \), we obtain

\[\Gamma(\Lambda_b \rightarrow \Lambda \gamma) = 1.6 \times 10^{-18} \text{ GeV}, \]

\[\Gamma(\Xi_b \rightarrow \Xi \gamma) = 2.2 \times 10^{-18} \text{ GeV}, \] (67)

and a prohibited \(\Lambda_b \rightarrow \Sigma \gamma \), where uses of \(N_{\Lambda_b \Lambda} = N_{\Xi_b \Xi} = \frac{1}{\sqrt{3}} \) and \(V_{tb} V_{ts}^* \approx -V_{cb} V_{cs}^* \) have been made. Therefore,

\[\mathcal{B}(\Lambda_b \rightarrow \Lambda \gamma) = 2.7 \times 10^{-6}, \] (68)
for $\tau(\Lambda_b) = 1.07 \times 10^{-12}\text{s}$ [11]. In Ref.[27] two different methods, namely the heavy s-quark approach and the MIT bag model, have been employed to estimate the decay rate of $\Lambda_b \to \Lambda\gamma$. Our present result (68) is somewhat smaller than the prediction given in [27] owing to the presence of the flavor-suppression factor of $1/\sqrt{3}$ in the amplitude.

IV. Conclusion

Current-induced $1/m_Q$ corrections and the presence of higher dimensional operators in the effective Lagrangian are the two sources of $1/m_Q$ effects on the hadronic form factors. In the present paper, we have employed the nonrelativistic quark model to evaluate the weak current-induced baryonic form factors at zero recoil in the rest frame of the heavy parent baryon, where the quark model is most trustworthy. Contrary to previous attempts along this line, we have shown that the HQET predictions for antitriplet-antipriplet heavy baryon transitions at $v \cdot v' = 1$ are reproducible in the nonrelativistic quark model. However, the latter approach has two eminent features. First, it becomes meaningful to consider $1/m_s$ corrections so long as the recoil momentum is smaller than the m_s scale. Second, $1/m_Q$ effects arising from wave-function modifications vanish at zero recoil in the quark model. Consequently, the nonrelativistic quark model results for the form factors evaluated at maximum q^2 are applicable to any heavy-heavy and heavy-light baryonic transitions.

We have applied our main results (22) in this paper to various decays of heavy baryons. It turns out that it is inevitable to include a flavor suppression factor, which occurs in most of heavy to light baryonic transitions, to explain the experimental observation of the semileptonic decay $\Lambda_c \to \Lambda e^+\nu_e$. The presence of this flavor factor will of course affect the predictions on the decay rates of many decay modes involving a transition from heavy to light baryons. It is conceivable that some of our predictions can be tested soon in the near future. Examples are $\Xi^0_c \to \Xi^- e^+\nu_e$, $\Lambda_b \to \Lambda e^-\bar{\nu}_e$, $\Lambda_b \to J/\psi\Lambda$, $\Lambda_c \to p\phi$ and $\Lambda_b \to \Lambda\gamma$.

ACKNOWLEDGMENT

This work was supported in part by the National Science Council of ROC under Contract No. NSC84-2112-M-001-014.
REFERENCES

