THE SOLAR NEUTRINO PROBLEM: PRESENT STATUS AND POSSIBLE NEUTRINO PHYSICS SOLUTIONS

S.T. Petcov *
Scuola Internazionale Superiore di Studi Avanzati,
and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste,
I-34014 Trieste, Italy

Abstract

The current status of the solar neutrino problem and of its vacuum oscillation and MSW solutions is reviewed.

Ref. SISSA 12/95/EP

† Also at: Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria.
The Solar Neutrino Problem: Present Status and Possible Neutrino Physics Solutions

S.T. Petcova b

aScuola Internazionale Superiore di Studi Avanzati, and INFN (Trieste), I–34013 Trieste, Italy.
bInst. of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria.

The current status of the solar neutrino problem and of its vacuum oscillation and MSW solutions is reviewed.

1. INTRODUCTION

It has been realized as early as in 1967 [1] that the measurements of the flux of electron neutrinos emitted by the Sun can provide unique information not only about the physical conditions and the nuclear reactions taking place in the central part of the Sun, but also about the neutrino intrinsic properties. The solar neutrino problem emerged in the 70's as a discrepancy between the results of the first experiment aimed at detection of the solar ν_e flux -- the epic Davis et al. experiment [2], and the theoretical predictions for the signal in this experiment [3], based on detailed solar model calculations. The hypothesis of unconventional behavior of the solar ν_e on their way to the Earth (vacuum oscillations [4], $\nu_e \leftrightarrow \nu_{\mu(e)}$ and/or $\nu_e \leftrightarrow \nu_x$, ν_x being a sterile neutrino, MSW transitions [5] $\nu_e \leftrightarrow \nu_{\mu(e)}$ and/or $\nu_x \leftrightarrow \nu_x$, etc.) provided a natural explanation of the deficiency of solar neutrinos reported by Davis et al. However, as the fraction of the solar ν_e flux to which the experiment of Davis et al. is sensitive (neutrinos with energy $E \geq 0.814$ MeV) was known [3] i) to be produced in a chain of nuclear reactions (representing a branch of the pp cycle) which play a minor role in the physics of the Sun and whose cross-sections cannot all be measured directly in the relevant energy range on Earth, and ii) to be extremely sensitive to the predicted value of the central temperature, T_c, in the Sun (scaling as T_c^{n}), the possibility of an alternative (astrophysics, nuclear physics) explanation of the Davis et al. results could not be excluded.

In 1986 an independent measurement of the high energy part ($E \geq 7.5$ MeV) of the flux of solar ν_e was successfully undertaken by the Kamiokande II collaboration using a completely different experimental technique; in 1990 the measurements were continued (they are still going on) by the Kamiokande III group with an improved version of the Kamiokande II detector [6]. At the beginning of the 90's two new experiments, SAGE [7] and GALLEX [8], sensitive to the low energy part ($E \geq 0.233$ MeV) of the solar neutrino flux, began to operate and to provide qualitatively new data. At the same time considerable efforts were also made to understand better the potential sources and the possible magnitude of the uncertainties in the theoretical predictions for the signals in the indicated solar neutrino detectors, and to develop improved, physically more precise solar models on the basis of which the predictions are obtained [9–14]. With the accumulation of more data and the developments in the theory certain aspects of the solar neutrino problem changed and new aspects appeared.

In the present article we shall review the present day status of the solar neutrino problem. We shall review also the status of the neutrino physics solutions of the problem based on the hypotheses of vacuum oscillations or of MSW transitions of solar neutrinos.

2. THE DATA AND THE SOLAR MODEL PREDICTIONS

We begin with a brief summary of the solar model predictions and of the solar neutrino data. According to the existing models of the Sun [3,9–
14], the solar ν_e flux consists of several components, six of which are relevant to our discussion: i) the least energetic pp neutrons ($E \leq 0.420$ MeV, average energy $\bar{E} = 0.265$ MeV), ii) the intermediate energy monoenergetic ^{7}Be neutrinos ($E=0.862$ MeV (89.7% of the flux), 0.384 MeV (10.3% of the flux)), iii) the higher energy ^8B neutrinos ($E \leq 14.40$ MeV, $\bar{E} = 6.71$ MeV), and three additional intermediate energy components, namely, iv) the monoenergetic pep neutrinos ($E=1.442$ MeV), and the continuous spectrum CNO neutrinos produced in the β^+-decays of ^{13}N ($E \leq 1.199$ MeV, $\bar{E} = 0.707$ MeV), and vi) of ^{15}O ($E \leq 1.732$ MeV, $\bar{E} = 0.997$ MeV).

Three different methods of solar neutrino detection have been and are being used in the five solar neutrino experiments [2,6,7,8] that have provided data so far: the radiochemical Cl-Ar method proposed by Pontecorvo in 1946 [15] — in the experiment of Davis et al. [2], the $\nu - e^+$ elastic scattering reaction — in the Kamiokande experiments [6], and the radiochemical Ga-Ge method — in SAGE [7] and GALLEX [8] experiments. The threshold energy of the reaction $\nu_e + ^{37}\text{Cl} \rightarrow e^+ + ^{37}\text{Ar}$ on which the Cl-Ar method is based, is $E_{th} = 0.814$ MeV. Consequently, the pp neutrinos do not give a contribution in the signal in the Davis et al. detector. Inspecting the predictions of all presently discussed in the literature solar models one finds that the major contribution to the signal in the Cl-Ar experiment, between 66% and 77%, should be due to the ^8B neutrinos; the ^{7}Be neutrinos are predicted to generate between 22% and 14% of the total signal, and the pep and the CNO neutrinos — between 13% and 9%. With a threshold neutrino energy, $E_{th}(K)$, first of 9.5 MeV and subsequently reduced to 7.5 MeV and further to 7.3 MeV, the Kamiokande experiments can detect only the higher energy ^8B component of the solar ν_e flux. Having the lowest threshold energy $E_{th}(\text{Ga}) = 0.233$ MeV, the Ga-Ge detectors GALLEX and SAGE are sensitive to all six components of the flux indicated above. Moreover, the major part of the signal in these detectors, between 54% and 60%, is predicted to be produced by the pp neutrinos; the ^{7}Be neutrinos are expected to generate between 27% and 24% of the total signal, the ^8B neutrinos — between 10% and 6%, and the CNO neutrinos — between 8% and 12%. The above analysis implies that the Cl-Ar and Kamiokande experiments on one side, and the Ga-Ge experiments on the other, are most sensitive to very different components of the solar neutrino flux: the former — to the ^8B neutrinos, and the latter — to the pp neutrinos. The ^{7}Be neutrinos are predicted to give the second largest (and non-negligible) contributions to the signals in both Cl-Ar and Ga-Ge experiments.

Let us turn next to the data. The average rate of ^{37}Ar production by solar neutrinos, $\bar{R}(\text{Ar})$, observed in the experiment of Davis et al. in the period 1971–1993 (altogether ~ 800 solar ν_e induced events registered, the experiment continues to collect data) is [2]

$$\bar{R}(\text{Ar}) = (2.55 \pm 0.25) \text{ SNU}. \quad (1)$$

Here (and in the experimental results we quote further) the error represents the added in quadratures statistical (1 s.d.) and systematical errors. The flux of ^8B neutrinos, Φ_B, measured by the Kamiokande experiments reads [3]

$$\Phi_B = (2.89 \pm 0.42) \times 10^6 \text{ cm}^{-2}\text{sec}^{-1}. \quad (2)$$

The result is based on a statistics of 439 events accumulated by the two experiments in 1557 days of measurements in the period 1986–1993.

The GALLEX and SAGE experiments began to collect data in 1991 and 1990, respectively. So far the GALLEX group has registered 136, and the SAGE group about 76 solar neutrino induced events. The average rates of ^{71}Ge production by solar neutrinos, $\bar{R}(\text{Ge})$, measured by the two collaborations are [6,7]

$$\bar{R}_{\text{GALLEX}}(\text{Ge}) = (79 \pm 12) \text{ SNU}, \quad (3)$$
$$\bar{R}_{\text{SAGE}}(\text{Ge}) = (69 \pm 13) \text{ SNU}. \quad (4)$$

Obviously, the results of the two experiments are compatible. Combining them (i.e., taking the weighted average) one finds

$$\bar{R}_{\text{exp}}(\text{Ge}) = (76 \pm 9) \text{ SNU}. \quad (5)$$

Recently the GALLEX collaboration has successfully completed a very important (and rather
spectacular) calibration experiment with an artificially prepared powerful 51Cr source of monoenergetic ν_e (four lines: $E = 746$ keV (81%), 751 keV (9%), 426 keV (9%) and 431 keV (1%)) of known intensity [16]. At the beginning of the exposure the signal due to the 51Cr neutrinos was approximately 12 times bigger than the signal due to the solar neutrinos. The results of the experiment showed, in particular, that the efficiency of extraction of the 71Ge, produced by neutrinos, from the tank of the detector coincides (within the 10% error) with the calculated one. They demonstrated that the GALEX detector is capable of detecting both the low energy pp and the intermediate energy 7Be neutrinos with a high efficiency and represent a solid proof that the data on the solar neutrinos provided by the GALEX experiment are correct. They also represent the first real proof of the feasibility of the radiochemical method invented by Pontecorvo [15] for detection and quantitative study of solar neutrinos. Let us add that at present GALEX is the only calibrated solar neutrino detector.

The results of the solar neutrino experiments have to be compared with the corresponding theoretical predictions. Many authors have worked (and many continue to work) in the field of solar modelling and have produced predictions for the values of the pp, 7Be, 8B, pep and CNO neutrino fluxes, and for the signals in the solar neutrino detectors: a rather detailed review of the results obtained by different authors prior 1992 and the corresponding references can be found in ref. [9]. Most persistently solar models with increasing sophistication and precision, aiming to account for and/or reproduce with sufficient accuracy the physical conditions and the possible processes taking place in the inner parts of the Sun have been developed starting from 1964 by Bahcall and his collaborators.

We shall present here the results obtained in four models [9–12] which can be characterized by their predictions for the total flux of 8B neutrinos as "high flux" [9,11], "intermediate flux" [10] and "low flux" [12] models. The predictions for the 8B neutrino flux and for the signals in the solar neutrino detectors in these models determine the corresponding intervals in which the results of all currently discussed in the literature solar models lie (see, e.g., refs. [13–14]). Thus, they give an idea about the dispersion and the possible uncertainties in the predictions. Let us note also that the four models as models of the solar interior differ, in particular, in one important aspect, namely, in the way the possible diffusion of the light and heavy elements in the Sun is accounted for: the model [10] is without diffusion, in [9] for the first time the 4He diffusion was taken into account, while in the more recent models [11] and [12] the diffusion of the elements heavier than 4He was also included in the calculations.

In Table I we have collected the results of the models of Bahcall- Pinsonneault (BP) [9], Turck-Chièze and Lopes (TL) [10], Proffitt [11] and of Dar and Shaviv (DS) [12] for the values of the fluxes of the pp, 7Be, 8B, pep and CNO neutrinos at the Earth surface. We have included also the estimated 1 s.d. uncertainties in the predictions for the fluxes made by Bahcall and Pinsonneault, and for some of the fluxes – by Dar and Shaviv, for their respective models. In Tables II and III we give the predictions for the contributions of each of the indicated six fluxes to the signals in the Cl–Ar [2] and the Ga–Ge [7,8] experiments, respectively, and quote the predictions for the total signals in these experiments (including the estimated 1 s.d. uncertainty in the predictions whenever it is given by the authors).

A comparison between the experimental results (1)–(5) and the corresponding predictions given in Tables II and III leads to the conclusion that none of the solar models proposed so far provides a satisfactory description of the solar neutrino data: the predictions typically exceed the observations. This is one of the current aspects of the solar neutrino problem.

Taking into account the estimated uncertainties in the theoretical predictions and the experimental errors in (1)–(5) one finds that the differences between the predictions and the observations are largest for the "high flux" models: the measured values of R(Ar), Φ(B) and R(Ge) in the Cl–Ar, Kamiokande and Ga–Ge experiments are at least by (3.5–4.0) s.d. smaller than the predicted ones in [9,11]. The "low flux" model of Dar and Shaviv reproduces the result of the Kamio-
Table 1
Solar neutrino fluxes at the Earth surface (in units of cm$^{-2}$sec$^{-1}$) predicted by the solar models [9-12].

<table>
<thead>
<tr>
<th>Flux</th>
<th>BP</th>
<th>Proffitt</th>
<th>TL</th>
<th>DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi_{pp} \times 10^{-13}$</td>
<td>6.00 ± 0.04</td>
<td>5.91</td>
<td>6.03</td>
<td>6.03</td>
</tr>
<tr>
<td>$\Phi_{\text{pep}} \times 10^{-8}$</td>
<td>1.43 ± 0.02</td>
<td>1.39</td>
<td>4.34</td>
<td>4.31 ± 0.55</td>
</tr>
<tr>
<td>$\Phi_{\text{Be}} \times 10^{-9}$</td>
<td>4.89 ± 0.29</td>
<td>5.18</td>
<td>2.87</td>
<td>0.72</td>
</tr>
<tr>
<td>$\Phi_{\text{B}} \times 10^{-8}$</td>
<td>5.69 ± 0.82</td>
<td>6.48</td>
<td>4.43</td>
<td>1.1</td>
</tr>
<tr>
<td>$\Phi_{\text{N}} \times 10^{-8}$</td>
<td>4.92 ± 0.84</td>
<td>6.40</td>
<td>3.83</td>
<td>4.15</td>
</tr>
<tr>
<td>$\Phi_{\text{O}} \times 10^{-8}$</td>
<td>4.26 ± 0.82</td>
<td>5.57</td>
<td>3.18</td>
<td>4.13</td>
</tr>
</tbody>
</table>

Table 2
Signals (in SNU) in Cl–Ar detectors due to the solar neutrinos, predicted by the solar models [9-12].

<table>
<thead>
<tr>
<th>Type of neutrinos</th>
<th>BP</th>
<th>Proffitt</th>
<th>TL</th>
<th>DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>pep</td>
<td>0.23</td>
<td>0.22</td>
<td>0.22</td>
<td>0.20</td>
</tr>
<tr>
<td>7Be</td>
<td>1.17</td>
<td>1.26</td>
<td>1.10</td>
<td>1.06</td>
</tr>
<tr>
<td>8B</td>
<td>6.20</td>
<td>7.06</td>
<td>4.63</td>
<td>3.10</td>
</tr>
<tr>
<td>13N</td>
<td>0.10</td>
<td>0.12</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>15O</td>
<td>0.30</td>
<td>0.38</td>
<td>0.21</td>
<td>0.29</td>
</tr>
<tr>
<td>Total:</td>
<td>8.0 ± 0.1</td>
<td>9.0</td>
<td>6.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Let us discuss in somewhat greater detail the results of the four representative models [9-12] for the fluxes of the pp, pep, 7Be, 8B and CNO neutrinos shown in Table 1. The predictions for the values of the pp and pep neutrino fluxes are remarkably coherent: they vary from model to model at most by 2% and 3.5%, respectively. Actually, the two fluxes are related [17]: Φ_{pep} is proportional to Φ_{pp} and the coefficient of proportionality is practically solar model independent, being determined by the ratio of the cross-sections of the reactions $p + e^- + p \rightarrow D + \nu_e$ and $p + p \rightarrow D + e^+ + \nu_e$ in which the pep and pp neutrinos are produced in the Sun. One has [17, 9-14]

$$\Phi_{\text{pep}} = (2.3 - 2.4) \times 10^{-3} \Phi_{pp}. \quad (6)$$

The value of the pp flux is constrained by the existing rather precise data on the solar luminosity, L_\odot. Indeed, the solar luminosity is determined by the thermal energy released in the Sun in the two well known cycles of nuclear reactions, the pp and the CNO cycles (see, e.g., ref. [17]), in which 4 protons are converted into 4He with emission of 2 neutrinos. From the point of view of the energy effectively generated, the indicated hydrogen burning reactions can be written as

$$4p + 2e^- \rightarrow ^4\text{He} + 2\nu_e. \quad (7)$$

Depending on the cycle, the two emitted neutrinos can be both of the pp or pep type, or a pp (pep) and a 7Be, a pp (pep) and a 8B (pp cycle), and a 13O and/or 15N (CNO cycle) neutrinos [17]. The thermal energy released per one produced pp, pep, 7Be and 8B neutrino is equal to $(Q - E_j)$, where $Q = 26.732$ MeV is the Q-value of the reaction (7), and E_j is the average energy of the neutrino of the type j ($j = \text{pp}$, ...). The energy
Table 3
Signals (in SNU) in Ga–Ge detectors due to the solar neutrinos, predicted by the solar models [9–12].

<table>
<thead>
<tr>
<th>Type of neutrinos</th>
<th>BP</th>
<th>Profitt</th>
<th>TL</th>
<th>DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>70.8</td>
<td>70.0</td>
<td>71.1</td>
<td>71.6</td>
</tr>
<tr>
<td>pep</td>
<td>3.1</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>7Be</td>
<td>35.8</td>
<td>37.9</td>
<td>30.9</td>
<td>30.7</td>
</tr>
<tr>
<td>8B</td>
<td>13.8</td>
<td>15.7</td>
<td>10.8</td>
<td>7.0</td>
</tr>
<tr>
<td>13N</td>
<td>3.0</td>
<td>3.9</td>
<td>2.4</td>
<td>2.55</td>
</tr>
<tr>
<td>15O</td>
<td>4.9</td>
<td>6.4</td>
<td>3.7</td>
<td>4.76</td>
</tr>
<tr>
<td>Total:</td>
<td>131.5</td>
<td>137</td>
<td>122.5 ± 7.0</td>
<td>119.6 ± 7.0</td>
</tr>
</tbody>
</table>

released per one 15O and/or one 13N neutrino, as can be shown (taking into account, in particular, the discussion of the rates of the different reactions of the CNO cycle given in [17]) is equal with a high precision to the difference $(Q/2 - (E_{^7B} + E_{^8O})/2)$. Obviously, the values of Q and E_i are solar physics (and therefore solar model) independent. Given the average energies E_i carried away by the pp, pep, 7Be, 8B and CNO neutrinos (they are listed at the beginning of Section 2, $E_{^7B} = 0.813$ MeV), and knowing that the energy emission by the Sun is quasistationary (steady state), it is possible to relate $L_{^7B}$ with the pp, pep, 7Be, 8B and CNO neutrino luminosities of the Sun. One finds in this way the following constraint on the solar neutrino fluxes:

$$\Phi_{pp} + 0.958\Phi_{^7B} + 0.955\Phi_{CNO} + 0.910\Phi_{pep} =$$

$$= (6.517 \pm 0.02) \times 10^{10} \text{ cm}^{-2} \text{sec}^{-1},$$

(8)

where $\Phi_{CNO} = \Phi_N + \Phi_O$, we have used $L_{^7B} = (3.846 \pm 0.010) \times 10^{33} \text{ erg sec}^{-1}$ [18] and have neglected the terms proportional to $\Phi_{^7B}$ and to $(\Phi_N - \Phi_O)$ in the left hand side of the equation, which are predicted to be smaller than $2 \times 10^{10} \text{ cm}^{-2} \text{sec}^{-1}$. The fluxes Φ_B and $(\Phi_N - \Phi_O)$ have to be more than 60 and 3 times bigger than the largest ("high flux") model predictions [11] and [9], respectively, in order for these terms to exceed the indicated value. The coefficient multiplying the $\Phi_{^7B}$ term in eq. (8) is just the ratio of the thermal energies produced per one 7Be and one pp neutrino, $(Q/2 - E_{^7B})/(Q/2 - E_{pep})$, etc. Since, as Table 1 shows, $\Phi_{^7B}$ and Φ_{CNO} are smaller than Φ_{pp} at least by the factors 0.09 and 0.02, respectively, and Φ_{pep} is even smaller (see eq. (6)), eq. (8) limits primarily the pp neutrino flux.

Comparing the experimental results (3) – (5) with the solar model predictions given in Table 3 one notices, in particular, that the rate of 71Ge production due only to the pp neutrinos, $R_{pp}(Ge) = (70 - 72)$ SNU, is very close to the rates observed in the Gallex and SAGE experiments. This suggests that a large fraction of, or all pp (electron) neutrinos emitted by the Sun reach the Earth intact and are detected.

The relative spread in the predictions for the 7Be neutrino flux $\Phi_{^7B}$ and for the signals due to the 7Be neutrinos in the Cl–Ar and Ga–Ge experiments, as it follows from Tables 1–3, do not exceed 21%. The largest (1 s.d.) uncertainty in the prediction for $\Phi_{^7B}$ is quoted by Dar and Shawiv and is 13%.

3. THE 8B NEUTRINO PROBLEM

A further inspection of the results collected in Table 1 reveals that the differences (and the estimated uncertainties) in the predictions of the solar models for the total flux of 8B neutrinos is the largest: the value of Φ_B in the "high flux" model [11] is by more than a factor of 2 larger than the value obtained in the "low flux" model [12]. The 8B neutrinos are born in the Sun in the 7Be decay, 8B $\rightarrow ^7$Be$^* + e^+ + \nu_e$, of the 8B nucleus which is produced in the reaction

$$p + ^7\text{Be} \rightarrow ^8\text{B} + \gamma$$

(9)

initiated by ~ 20 keV protons. Obviously, Φ_B is
proportional to the rate of the process (9) taking place in the solar plasma environment, which in turn is to large extent determined by the cross-section of (9), \(\sigma_{17}(E_p) \). The latter is usually represented in the form [17]

\[
\sigma_{17}(E_p) = \frac{S_{17}(E_p)}{E_p} \exp(-8\pi e^2/\nu),
\]

(10)

where \(E_p \) and \(\nu \) are the \(p - ^7\text{Be} \) c.m. kinetic energy and relative velocity, and \(\exp(-8\pi e^2/\nu) \) is the Gamow penetration factor. The largely different values of the astrophysical factor \(S_{17} \), \(S_{17} \equiv S_{17}(E_p \sim 20\text{keV}) \), adopted by the authors of refs. [9,11] and of ref. [12] is the major source of the large spread in the predictions for \(\Phi_B \). Because of background problems it is impossible to measure the cross-section \(\sigma_{17}(E_p) \) directly at the low energies of the incident protons, which are of astrophysical interest. The experimental studies of the process (9) were performed at energies \(110 \text{ keV} \leq E_p \leq 2000 \text{ keV} \). They are technically rather difficult because of the instability of the \(^7\text{Be} \) serving as a target. The results obtained in the indicated higher energy domain are extrapolated to \(E_p \sim 20 \text{ keV} \) using a theoretical model describing the data (and the process (9) in the entire energy range \(20 \text{ keV} \leq E_p \leq 2000 \text{ keV} \)) and taking into account the possible solar plasma screening effects. Obviously, there are at least two major sources of uncertainties in the determination of \(S_{17} \) inherent to the indicated approach: the uncertainties associated with the data at \(E_p \geq 110 \text{ keV} \), and those associated with the extrapolation procedure exploited. Altogether six experiments have provided data on the \(p - ^7\text{Be} \) cross-section \(\sigma_{17}(E_p) \) so far. The results of the four most accurate of them [19,20] can be grouped in two distinct pairs, [19] and [20], which agree on the energy dependence of \(S_{17}(E_p) \), but disagree systematically by \(\sim (20-25)\% \) \(\sim (2-3) \) s.d.) on the absolute values of \(S_{17}(E_p) \). The authors of refs. [9] and [11] used in their calculations the value \(S_{17} = (22.4 \pm 2.1) \text{ eV} \cdot \text{b} \) derived by extrapolation in ref. [21] on the basis of the data from all six experiments.

A new method of experimental determination of \(S_{17} \) was proposed recently in ref. [22]. It is based on the idea of measuring the cross-section of the inverse reaction, \(\gamma + ^8\text{B} \rightarrow ^7\text{Be} + p \), by studying the dissociation of \(^8\text{B} \) into \(p + ^7\text{Be} \) in the Coulomb field of a heavy nucleus, chosen to be \(^{208}\text{Pb} \). The time-reversal symmetry guarantees that the cross-sections of (9) and of the inverse reaction should be equal. The extraction of the values of \(\sigma_{17}(E_p) \) (and of \(S_{17}(E_p) \)) from the data on the process \(^8\text{B} + ^{208}\text{Pb} \rightarrow p + ^7\text{Be} + ^{208}\text{Pb} \) is not straightforward and is associated with certain subtleties (see, e.g., ref. [23]).

Using the first results of the experiment of Motobayashi et al. [22] on the reaction \(^8\text{B} + ^{208}\text{Pb} \rightarrow p + ^7\text{Be} + ^{208}\text{Pb} \) to determine \(\sigma_{17}(E_p) \) for \(E_p \) in the interval \(500 \text{ keV} \leq E_p \leq 2000 \text{ keV} \), the results of the most recent of the experiments on (9) of Filippone et al. [20] in the interval \((110 - 500) \text{ keV} \), and a new extrapolation model developed by them, the authors of ref. [12] obtain \(S_{17} \equiv 17 \pm 2 \text{ eV} \cdot \text{b} \).

Let us add that in ref. [10] the value of \(S_{17} \) derived in [21] and adopted in refs. [9,11] was also used, but with a larger systematical error, \(S_{17} = (22.4 \pm 1.3 \pm 3.0) \text{ eV} \cdot \text{b} \), introduced to account for the (systematical) difference between the data on \(\sigma_{17}(E_p) \) from the experiments [19] and [20]. The results of ref. [10], apart from minor differences, are in a good agreement with the results of the version of the BP model [9] without \(^4\text{He} \) diffusion.

The theoretical predictions for \(\Phi_B \) can be affected by a change in the solar opacities used in the respective solar model calculations in [9–14] due to possible unaccounted for delicate collective plasma effects [24]. The latter can lead to a somewhat lower (by 1%-3%) value of the central temperature \(T_c \) in the Sun (in comparison with the values obtained in the current solar model calculations), and thus to a lower \(^8\text{B} \) neutrino flux as \(\Phi_B \sim T_c^{18} \)[17].

4. THE MISSING \(^7\text{Be} \) NEUTRINOS

Even if one accepts that that \(\Phi_B \) has the low value suggested in [12] (a view not shared by all experts in the field of solar modelling, see, e.g., the polemic in refs. [25] and [26]), or that there are large uncertainties in the predictions for the flux of \(^8\text{B} \) neutrinos and in all analyses one should rather use for \(\Phi_B \) the value implied by the Kami-
Figure 1. The normalized to one E-distributions of the signals due to the 8B neutrinos in the Cl–Ar, Kamiokande and Ga–Ge detectors (from ref. [30]).

Kam (perfect resolution)
Kam (exp. resolution)
γ_{Ga}

dNB_i(E)/dE = α dNB_K(E)/dE + β(E), \hspace{1cm} (11)

where α is a positive constant close to 1 and β(E) is a "small" (real) function of E. Searching for a maximal value of α under the condition β(E) \geq 0, the authors of ref. [30] find: max α = 0.93. This implies

$$\frac{\Phi^B_{SM}(E) \sigma_{Cl}(E)}{R^B_{SM(Cl)}} \geq 0.93 \frac{\Phi^B_{SM}(E) \sigma_{K}(E)}{R^B_{SM(K)}}$$ \hspace{1cm} (12)

where Φ^B_{SM} is the total flux of 8B neutrinos in a given reference solar model, n(E) is the normalized to 1 spectrum of 8B neutrinos, and $\sigma_{Cl}(E)$ is the cross-section of the Pontecorvo–Davis reaction ν_e + 37Cl \rightarrow e$^- + ^{37}$Ar, $\sigma_{K}(E)$ is the ν_e - e^- elastic scattering cross-section for 8B neutrinos with energy E, in which the recoil e$^-$ detection efficiency and energy resolution functions of the Kamiokande detector should be included (the authors of ref. [30] did not include in $\sigma_{K}(E)$ the detector's recoil e$^-$ detection efficiency which, however, makes more conservative the conclusions we are going to reach), and

$$R^B_{SM(Cl)} = \Phi^B_{SM} \int_{E_{th(Cl)}}^{14.4 \text{ MeV}} n(E) \sigma_{Cl}(E) dE, \hspace{1cm} (13)$$

and

$$R^B_{SM(K)} = \Phi^B_{SM} \int_{E_{th(K)}}^{14.4 \text{ MeV}} n(E) \sigma_{K}(E) dE, \hspace{1cm} (14)$$

are the rate of 37Ar production due to the 8B neutrinos in the Cl–Ar experiment and the event rate in the Kamiokande detectors, respectively, predicted in the reference solar model. We have just used the explicit expressions for dN$^B_{Cl,K}$(E)/dE in terms of the 8B neutrino flux, spectrum n(E) and the corresponding cross-sections in writing (12). Note that eq. (11) and inequality (12), as it follows from (13) and (14), do not depend on Φ^B_{SM}, and therefore are solar model independent.

Suppose that the 8B neutrino flux predicted in the reference solar model (chosen by us to describe the data) differs due to unaccounted for astrophysical, and/or nuclear physics (and/or other) effects from the actual flux reaching the surface of the Earth. In all cases of practical interest the indicated effects can be parameterized by a real function F(E) \geq 0, such
that \(\int \Phi_B^{SM}(E) \frac{n(E)}{E} \sigma_C(E) F(E) dE \equiv R^B(\text{Ar}) \)

is the real contribution of \(^8\text{B}\) neutrinos in \(R(\text{Ar})\), and \(\int \Phi_B^{SM}(E) \frac{n(E)}{E} \sigma_K(E) F(E) dE \equiv R_{\text{obs}}(K) \) is the event rate observed in the Kamiokande experiments. Multiplying both sides of inequality (12) by \(F(E)\) and integrating them over \(E\) we get: \(R^B(\text{Ar})/R_{SM}^{B}(\text{Ar}) \geq 0.93 \) \(R_{\text{obs}}(K)/R_{SM}(K)\). Choosing for concreteness as a reference model the BP model \([9]\) in which \(\Phi_B^{BP} = 5.69 \times 10^{-9} \frac{\nu_e}{\text{cm}^2/\text{sec}}\) and \(R_B^{BP}(\text{Ar}) = 6.2 \) SNU, and using the experimental result of the Kamiokande collaborations, eq. (2), we get:

\[
R^B(\text{Ar}) \geq (2.94 \pm 0.40) \text{ SNU}. \tag{15}
\]

The above inequality provides a lower bound on the contribution of \(^8\text{B}\) neutrinos to the signal in the Davis et al. experiment following from the Kamiokande data. Subtracting the minimal value of \(R^B(\text{Ar}) \), determined by (15), from the total rate of \(^{37}\text{Ar}\) production \([1]\) observed by Davis et al., one finds for the contribution due to the \((^{7}\text{Be} + \text{pp} + \text{CNO})\) neutrinos to the signal in the Cl–Ar experiment:

\[
R_{\text{Be+pp+CNO}}^B(\text{Ar}) \leq (-0.39 \pm 0.47) \text{ SNU}. \tag{16}
\]

Given the solar model independent relation (6) between \(\Phi_{\text{pp}}\) and \(\Phi_{\text{pp}}\), and that \(\Phi_{\text{pp}}\) is rather tightly constrained by the data on the solar luminosity, we can consider as rather reliable (and weakly model dependent) the solar model predictions for \(R_{SM}^{pp}(\text{Ar}) = (0.20 - 0.23)\) SNU. Taking \(R_{\text{pp}}(\text{Ar}) = 0.20\) SNU one obtains from (16):

\[
R_{\text{Be}}^B(\text{Ar}) \leq (-0.59 \pm 0.47) \text{ SNU}. \tag{17}
\]

At 99.73% C.L. (3 s.d.) this implies \(R_{\text{Be}}^B(\text{Ar}) \leq 0.82\) SNU, which is smaller than the predictions of all current solar models, \(R_{SM}^B(\text{Ar}) = (1.1 - 1.3)\) SNU \([9-14]\).

Relation similar to (11) can be written also for \(dN_{\text{Be}}^{B}(E)/dE\) and \(dN_{\text{K}}^{B}(E)/dE\) (see Fig. 1), introducing another real constant \(\alpha'\) (the analog of \(\alpha\)) and "small" (real) function \(\beta'(E)\) (the analog of \(\beta(E)\)). In this case imposing the condition \(\beta'(E) \geq 0\) the authors of ref. \([30]\) find max \(\alpha' = 0.81\). Starting from this result and performing an analysis analogous to the one described above, we can utilize the Kamiokande data (2) to derive a solar model independent lower bound on the contribution of \(^8\text{B}\) neutrinos to the signal in the Ga–Ge experiments, \(R^B(\text{Ge})\). We find: \(R^B(\text{Ge}) \geq (5.7 \pm 7.0)\) SNU, where the errors are determined by the uncertainties in the cross-section of the Ga–Ge reaction \(\nu_e + ^{71}\text{Ga} \rightarrow e^- + ^{74}\text{Ge}\) induced by the \(^8\text{B}\) neutrinos \([31]\). Taking into account the predictions of the solar models for the contribution in \(R(\text{Ge})\) generated by the \((\text{pp} + \text{pep})\) neutrinos, \(R_{\text{pp+pep}}^B(\text{Ge}) = (73 - 75)\) SNU, and the data from, e.g., the GALLEX collaboration (3), we get the following upper limit on the contribution of the \(^{7}\text{Be}\) neutrinos to \(R(\text{Ge})\):

\[
R_{\text{Be}}^B(\text{Ge}) \leq (0.3 \pm 1.0) \text{ SNU}. \tag{18}
\]

Thus, at 95% C.L. (2 s.d.) we have \(R_{\text{Be}}^B(\text{Ge}) \leq 28.3\) SNU, while all solar model predictions lie in the interval (31 – 38) SNU. The discrepancy is larger (at least 3 s.d.) if one utilizes the SAGE data (4), or the combined GALLEX–SAGE value (5) for \(R(\text{Ge})\).

Similar results have been obtained in refs. \([28]\). Quantitatively stronger conclusions about the incompatibility of the solar model predictions and the data on \(\Phi_{\text{Be}}\) have been reached in ref. \([31]\) using a somewhat different approach (as a starting point of the analysis the Kamiokande data on \(\Phi_B\) and the relevant Cl–Ar and Ga–Ge reaction cross-sections are utilized to determine the \(^8\text{B}\) neutrino contribution in \(R(\text{Ar})\) and \(R(\text{Ge})\)) and in ref. \([29]\) on the basis of a \(\chi^2\)–analysis of the solar model description of the data, in which the total pp, pep, \(^{7}\text{Be}\), \(^8\text{B}\) and CNO neutrino fluxes are treated as free parameters subject only to the luminosity constraint (8), while the spectra of solar neutrinos were assumed to coincide with the predicted ones in the absence of unconventional neutrino behaviour (as oscillations in vacuum, etc.).

Thus, there are very strong indications from the already existing solar neutrino data that the flux of \(^{7}\text{Be}\) (electron) neutrinos is considerably smaller than the flux obtained in the current solar models. Given the results of the GALLEX calibration experiment, we can conclude that both
the Davis et al. and the Kamiokande data (2) and (3) have to be incorrect in order for the above conclusion to be not valid. The discrepancy between the value of Φ_{Be} suggested by the analyses of the existing solar neutrino data and the solar model predictions for Φ_{Be} represents the major new aspect of the solar neutrino problem. No astrophysical and/or nuclear physics explanation of this discrepancy has been proposed so far.

5. 7B AND 7Be NEUTRINO FLUXES AND THE VACUUM OSCILLATION AND MSW SOLUTIONS

We have seen that there can be large uncertainties in the solar model predictions for the total flux of 8B neutrinos and that the predictions for the 7Be neutrino flux vary by \sim20%. The next question we would like to discuss briefly is how stable are the well known vacuum oscillation and MSW solutions of the solar neutrino problem (see Figs. 2 and 3 and refs. [33] and [34]) with respect to Φ_B and Φ_{Be} variations. A rather comprehensive answer to this question for the MSW solution with solar ν_e transitions into an active neutrino, $\nu_e \rightarrow \nu_{\mu(r)}$, was given in ref. [35] (see also refs. [36]), and for the vacuum oscillation solution (for both cases of $\nu_e \leftrightarrow \nu_{\mu(r)}$ and $\nu_e \leftrightarrow \nu_{\tau}$ oscillations), as well as for the MSW solution with ν_e transitions into a sterile neutrino, $\nu_e \rightarrow \nu_s$, in ref. [37]. The behaviour of the solution based on the $\nu_e \leftrightarrow \nu_{\mu(r)}$ oscillation hypothesis with respect to changes of Φ_B and Φ_{Be} in certain intervals around the values in the reference model [9] was studied also in ref. [38].

It is convenient to introduce the parameters

$$f_B \equiv \frac{\Phi_B}{\Phi_{BP}} \geq 0, \quad f_{Be} \equiv \frac{\Phi_{Be}}{\Phi_{BP}} \geq 0, \quad (19)$$

in terms of which we shall describe the possible variations of Φ_B and Φ_{Be}, where Φ_{BP} and Φ_{BP} are the two fluxes in the reference BP model [9].

The Kamiokande data, evidently, imposes limits on the values Φ_B (and f_B) can possibly have. The expression for the predicted event rate in the Kamiokande detector if the 8B (electron) neutrinos undergo two-neutrino transitions into an active neutrino $\nu_{\mu(r)}$ (due to vacuum oscillations $\nu_e \leftrightarrow \nu_{\mu(r)}$ or MSW transitions $\nu_e \leftrightarrow \nu_{\mu(r)}$), or $\nu_{\mu(r)}$ (due to spin-flavour conversion $\nu_e \rightarrow \nu_{\mu(r)}$) on their way to the Earth has the form:

$$R(K) = f_B \Phi_{BP} \int n(E) \sigma_K(E) \left[P(E) + 0.16(1 - P(E)) \right] dE,$$ (20)
where $P(E)$ is the probability of survival of the ^8B ν_e having energy E, $0 \leq P(E) \leq 1$, $(1 - P(E))$ is the probability of the $\nu_e \to \nu_{\mu(\tau)}$ transition due to vacuum oscillations or the MSW effect, or of the $\nu_e \to \bar{\nu}_{\mu(\tau)}$ conversion, and we have used the fact that $\sigma_{\nu_{\mu(\tau)}(E)/\nu_{\mu(\tau)}}(E) \equiv \sigma_{\nu_e(\mu(\tau))}(E)/\sigma_{\nu_e(\mu(\tau))}(E) \equiv 0.16$ in the energy range of interest, $\sigma_{\nu_e(\mu(\tau))}(E)$ and $\sigma_{\nu_e(\mu(\tau))}(E)$, $\lambda = e, \mu, \tau$, being the ν_e and $\bar{\nu}_e$ elastic scattering cross-sections. In the case of $\nu_e \leftrightarrow \nu_\mu$ oscillations or $\nu_e \to \nu_\tau$ transitions the term with the coefficient 0.16 is absent from the expression in the right hand side of eq. (20).

Given $R(K)$, Φ_B, $n(E)$ and $\sigma_K(E)$, the minimal allowed value of f_B, as it follows from (20), is determined by the maximal possible value of $[P(E) + 0.16 (1 - P(E))]$, which is 1 and is reached when $P(E) = 1$. Thus, we have $f_B \geq R(K)/R_{BP}(K) = (0.51 \pm 0.07)$, where $R_{BP}(K)$ is the event rate predicted in the BP model [9], and we have used the result of the Kamiokande experiment. At 99.73% (95%) C.L. this implies

$$f_B \geq 0.30 \ (0.37).$$

It is trivial to convince oneself that the above lower limit on f_B holds also in the case of solar ν_e two-neutrino oscillations or transitions into sterile neutrino ν_s, as well as for oscillations or transitions involving more than two neutrinos (sterile and/or active). The limit (21) is universal: it does not depend on the type of possible transitions, and on the specific mechanism responsible for them.

Similarly, the maximal allowed value of f_B by the Kamiokande data corresponds to $\min \{P(E) + 0.16 (1 - P(E))\} = 0.16$. We have then: $f_B \leq R(K)/(0.16 R_{BP}(K)) = (3.2 \pm 0.44)$, which gives at 99.73% (95%) C.L.

$$f_B \leq 4.5 \ (4.1).$$

Note that inequality (22) is universal for two-neutrino solar ν_e transitions into active neutrino $\nu_{\mu(\tau)}$ or $\bar{\nu}_{\mu(\tau)}$: it does not depend on the transition mechanism.

Contrary to the lower limit (21), the upper limit (22) is not valid for two-neutrino $\nu_e \leftrightarrow \nu_s$ ($\nu_e \to \nu_s$) oscillations (transitions) or ν_s oscillations (transitions) involving more than two neutrinos. In the first case, for instance, the maximal value of f_B would correspond to the min $P(E)$, and the use of the general property of the probability $P(E)$, min $P(E) = 0$, does not allow one to derive a useful upper limit on f_B from the Kamiokande data.

Owing to the specific dependence of the MSW two-neutrino transition probability on the neutrino energy E, however, which for certain intervals of values of E (in the case of adiabatic solar ν_e transitions) satisfies [5] $\min \{P_{\text{MSW}}(E) \equiv \sin^2 \theta\}$, where θ is the neutrino mixing angle in vacuum (one of the two parameters characterizing the two-neutrino vacuum oscillations and MSW transitions, see refs. [4, 5, 33, 34]), it is possible to derive a somewhat constraining upper bound on f_B in the case of $\nu_e \to \nu_s$, MSW transitions [37]:

$$\text{MSW}, \ \nu_e \to \nu_s : \ f_B \leq 90 \ (80).$$

It corresponds to $\min \{P(E) \equiv \sin^2 \theta \equiv 8.1 \times 10^{-3}\}$, and represents the 99.73% (95\%) C.L. limit. For values of $\sin^2 \theta$ different from the indicated one the suppression (due to $P_{\text{MSW}}(E)$) of the integral entering into the expression for $R(K)$, as can be shown, is weaker and the upper bound on f_B one gets is not an absolute upper bound.

Obviously, the minimal value of f_B for which a given solar ν_e transition mechanism provides a description of the solar neutrino data at 99.73% (95\%) C.L. may be larger than the absolute minimum value in (21). Similar remark is valid for the maximal value of f_B in the relevant cases of neutrino physics solutions and the absolute maxima in eqs. (22) and (23).

Let us add that the fluxes Φ_B and Φ_{Be} in the models [9]–[12] correspond, respectively, to $f_B = 1.0; 0.78; 1.14; 0.50$, and $f_{\text{Be}} = 1.0; 0.89; 1.06; 0.88$.

The studies performed in refs. [34, 40] have shown that the MSW solution of the solar neutrino problem exists for each of the four specific models [9–12] discussed by us. Analyses based on the models [9] and [10] demonstrated that the solar ν_e oscillations $\nu_e \leftrightarrow \nu_{\mu(\tau)}$ also provide a solution (in the framework of the indicated solar models) [33], while the $\nu_e \leftrightarrow \nu_s$ oscillations were shown to be excluded (at 99\% C.L.) as a possible solution of the solar neutrino problem by the
Figure 3. Regions of values of the parameters Δm^2 and $\sin^2 2\theta$ for which the solar neutrino data can be described at 95% C.L. in terms of $\nu_e \leftrightarrow \nu_\mu(r)$ oscillations of solar ν_e for $f_{\text{Be}} = 1.0$ (from ref. [37]).

(means event rate) solar neutrino data (1) - (4) (see the last two articles quoted in ref. [33]).

In the studies of the stability of the vacuum oscillation and the MSW solutions with respect to Φ_B and Φ_{Be} variations performed in refs. [35,37] the following approach was adopted. The fluxes of the pp, pep and the CNO neutrinos were kept fixed and their values were taken from ref. [9]. The fluxes of the ^8B and ^7Be neutrinos, and correspondingly, f_8 and f_{Be}, were treated as fixed parameters, which, however, were allowed to take any values within certain intervals. In the case of Φ_{Be}, the interval chosen corresponds to $0.7 \leq f_{\text{Be}} \leq 1.3$, while for Φ_B values in intervals slightly narrower the those determined (depending on the case) by the inequalities (21) and (22), or (21) and (23), were considered. The searches for a $\nu_e \leftrightarrow \nu_\mu$ oscillation solution were performed for $0.3 \leq f_8 \leq 4.0$. The indicated choices were motivated by the fact that the contributions of the CNO neutrinos to the signals in all three types of detectors [2,6-8] are relatively small, and that the spreads in the predictions for the fluxes Φ_B and Φ_{Be} are the largest. Some of the values of Φ_{Be} used in the analyses, as those corresponding to $f_{\text{Be}} = 0.7$ and 1.3, for instance, are obviously incompatible with the luminosity constraint (8). However, a 20% - 30% change in Φ_{Be} with respect to Φ_{Be}^{BP} is required by (8) to be balanced by only a few percent change of the pp neutrino flux, and the latter will have a small effect on the predictions for the signal in the Ga-Ge experiments. Besides, the aim of the studies was, in particular, to determine the ranges of values of Φ_B and Φ_{Be} for which the possibilities of vacuum oscillations and MSW transitions of solar neutrinos cannot be excluded by the existing solar neutrino data.

In the analyses performed in refs. [35,37] the χ^2-method was utilized. It was found that at 95% C.L. the two-neutrino vacuum oscillations $\nu_e \leftrightarrow \nu_\mu(r)$, or the MSW transitions $\nu_e \leftrightarrow \nu_\mu(r)$ or $\nu_e \leftrightarrow \nu_\tau$, of the solar ν_e allow one to describe the solar neutrino data for rather large intervals of values of f_8 for $0.7 \leq f_{\text{Be}} \leq 1.3$. These intervals depend somewhat on the value of f_{Be} chosen. Below we list only the overlapping parts of the intervals of the allowed values of f_{Be} corresponding to the all different values of f_{Be} considered:

\[
\nu_e \leftrightarrow \nu_\mu(r) : \quad 0.60 \leq f_8 \leq 3.3 \quad [37], \tag{24}
\]

\[
\nu_e \leftrightarrow \nu_\mu(r) : \quad f_{\text{Be}} \cong 1.0, \quad 0.35 \leq f_8 \leq 0.40, \quad [37] \tag{25}
\]

\[
\nu_e \rightarrow \nu_\mu(r) : \quad 0.38 \leq f_8 \leq 3.3 \quad [35], \tag{26}
\]

\[
\nu_e \rightarrow \nu_\mu(r) : \quad 0.38 \leq f_8 \leq 60 \quad [37]. \tag{27}
\]

In the case of $\nu_e \leftrightarrow \nu_\mu(r)$ oscillations, for instance, a description of the data exists for $0.43 \leq f_8 \leq 3.3$ if $f_{\text{Be}} \cong 0.7$ (to be compared with eq. (24)). The regions of values of the two parameters Δm^2 and $\sin^2 2\theta$ characterizing the $\nu_e \leftrightarrow \nu_\mu(r)$ ($\nu_e \leftrightarrow \nu_\tau$) oscillations and the $\nu_\mu \leftrightarrow \nu_\mu(r)$ ($\nu_e \rightarrow \nu_\mu$) MSW transitions, corresponding to the values of f_8 and f_{Be} for which one finds a description of the solar neutrino data, were also determined. Some examples of these regions corresponding to the
Figure 4. Regions of values of the parameters Δm^2 and $\sin^2 2\theta$ for which the solar neutrino data can be described at 95% C.L. in terms of $\nu_e \leftrightarrow \nu_{\mu(\tau)}$ oscillations of solar ν_e for $f_{Be} = 0.7$ (from ref. [37]).

The general conclusion the results (24) – (27) lead to is that the vacuum oscillation and the MSW solutions of the solar neutrino problem are remarkably stable with respect to changes of the predictions for the 8B and 7Be neutrino fluxes.

6. OUTLOOK

After being with us for \sim20 years the solar neutrino problem still remains unsolved. With the accumulation of the quantitatively new data provided by the Ga\-Ge experiments the problem acquired a novel aspect: the constraints on the 7Be neutrino flux following from the data imply a considerably smaller value of Φ_{Be} than is predicted by the solar models. The data of both Davis et al. and Kamiokande experiments have to be incorrect in order for the indicated conclusion to be not valid. The vacuum oscillations and MSW transitions of the solar neutrinos continue to be viable and very attractive solutions of the problem.

Our hopes for finding the cause of the solar neutrino problem are associated at present with the future second generation solar neutrino experiments: SNO [41], Super Kamiokande [42], BOREXINO [43], ICARUS [44], HELLAZ [45] and other. Two of these detectors – SNO and Super Kamiokande, are under construction and are planned to begin to take data in 1996; BOREXINO and ICARUS are at the stage of prototype construction and/or testing, and the possibilities to build HELLAZ are being studied. All these are planned to be high statistics, i.e., high precision, experiments (typically \sim3000 events/year) with real time event detection. The SNO and Super Kamiokande detectors will be sensitive to the 8B component of the solar neutrino flux. In the SNO experiment the 8B neutrinos will be detected via the charged current and the neutral current reactions on deuterium: $\nu_e + D \rightarrow e^- + p + p$, and $\nu + D \rightarrow \nu + p + n$; the measurement of the kinetic energy of the electron in the first reaction will permit to reconstruct the energy of the ν_e and thus to measure the spectrum of 8B neutrinos for $E \geq 6.44$ MeV. Information about the spectrum of 8B neutrinos at $E \geq 5$ MeV will be obtained also in the Super Kamiokande experiment in which the energy of the recoil electron from the $\nu - e^-$ elastic scattering reaction will be measured with a rather high accuracy. Ap-
proximately 90% of the signal induced by the solar neutrinos in the BOREXINO detector (~50 events/day according to the reference model [9]) is predicted to be due to the 7Be-neutrinos. The HELLAZ detector would be sensitive to the pp and the 7Be (E = 0.86 MeV) components of the solar neutrino flux. The HELLAZ apparatus is envisaged to have the technical capabilities to measure the spectrum of the pp neutrinos at E \gtrsim 100 keV. The high statistics these experiments will accumulate, the measurement of the spectrum of the 8B neutrinos with the SNO and Super Kamiokande detectors, and of the ratio of the charged current and the neutral current reaction rates with the SNO detector, will make it possible to perform crucial tests of the vacuum oscillation and the MSW [39], as well as of the other possible neutrino physics solutions [46,47] of the solar neutrino problem. We are at the dawn of a major breakthrough in the studies of the solar neutrinos.

REFERENCES

"Solar Neutrino Problem: Astrophysics or Oscillations?", 28 February - 1 March, 1994, Gran Sasso Nat. Lab., Italy.

43. C. Arpesella et al., BOREXINO proposal (eds. G. Bellini, R. Ragghian et al., Univ. di Milano, Milano 1992), vols. 1 and 2.

