Fig. 1a

$D^{NLO}(x, Q^2)$

$Q^2 = 100 \ GeV^2$
$Q^2 = 100 \text{ GeV}^2$
$Q^2 = 100 \text{ GeV}^2$

Fig. 1c
Fig. 1d

$Q^2 = 100 \text{ GeV}^2$
Fig. 2
\[
\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma}{dz} (e^+ e^- \to K^\pm + X)
\]

Fig. 3
Fig. 4
\[
\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma^{\text{L}}}{dx}(e^- + e^+ \to h^+ + X)
\]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
$d^2\sigma \over dpt d\theta$ ($ep \rightarrow h^\pm + X$) [nb/GeV$^{-2}$] vs p_T [GeV]

Fig. 9
The figure shows the differential cross section $\frac{d^2\sigma}{dp_T^2 dp} (e^+ p \rightarrow h^\pm + X)$ in units of $[\mu b/GeV^2]$ as a function of p_T in GeV. The graph demonstrates the decay rate for a specific process, with different curves indicating various theoretical predictions or data sets. The x-axis represents the p_T in GeV, while the y-axis shows the differential cross section on a logarithmic scale from 10^{-5} to 100. Fig. 10