The SU3 model of Elliott [1] provides a microscopic description of rotors that exhibit spectra in $J(J+1)$. For sufficiently low J, or sufficiently large representations they became perfect in the sense of having a constant intrinsic quadrupole moment $Q_0 = Q_0(J)$, where

$$Q_0(J) = \frac{(J+1)(2J+3)}{3K^2 - J(J+1)} < J J [3z^2 - r^2] J J >,$$

as postulated in the strong coupling limit of the unified model of Bohr and Mottelson [2].

Since the quadrupole force that appears in the SU3 Casimir operator is also an important part of the nuclear interaction [3,4], we expect it to play a determinant role in the onset of rotational motion in real nuclei - the problem we want to address. A direct approach would demand, in general, diagonalizations in spaces of two major shells in neutrons and protons as first proposed by Kumar and Baranger [5]. Dimensionalities are then of order 10^{49}, exceeding by far what is possible at present (10)

Therefore, it is necessary to develop a computational strategy, and our starting point will consist in learning to ensure strict SU3 symmetry. We know of several examples where the corresponding m-scheme dimensionalities

\begin{align*}
(p\!f)\!^9T & = 0 ; (2 \times 10^5), \\
(g\!d\!s)\!^9T & = 0 ; (6 \times 10^4), \\
(g\!d\!s)\!^9 (p\!f)\!^5 & = (1.9 \times 10^5), \\
(g\!d\!s)\!^9 (h\!f\!p)\!^4 & = (1.9 \times 10^5),
\end{align*}

against

\begin{align*}
(p\!f)\!^9T & = 0 ; (2 \times 10^5), \\
(p\!f)\!^5 (s\!d\!g)\!^5 & = (10^7), \\
(s\!d\!g)\!^9T & = 0 ; (5 \times 10^7), \\
(s\!d\!g)\!^5 (p\!f\!h)\!^4 & = (1.9 \times 10^8).
\end{align*}

The relevance of these results to rotors in medium and heavy nuclei will be explained in III.
We shall compare the results obtained with the KLS interaction [12] and with a pure quadrupole force using $\hbar \omega = 9 \text{ MeV}$ with a uniform single particle spacing $\varepsilon = 1 \text{ MeV}$, corresponding to the standard $-\mathcal{H} \cdot \mathbf{s}$ splitting ($\beta \approx 20A^{-2/3} \text{ MeV}$ and $\hbar \omega \approx 40A^{-1/3}$) [13].

It has been shown in [4] that for one shell the quadrupole component of a general realistic interaction has the form $-e_2 \tilde{q}_p \tilde{q}_p$, where e_2 goes as $A^{-1/3}$ and, $\tilde{q}_p = q_p / N_j^{(2)}$ is the quadrupole operator q_p in shell p, normalized by $N_j^{(2)}$ - the square root of the sum of the squares of the matrix elements of q_p - which goes as $(p + 3/2)^2$. For two contiguous shells the force is $-e_2 (\tilde{q}_p + \tilde{q}_{p+1}) (\tilde{q}_p + \tilde{q}_{p+1})$, with the same e_2 coupling, and it differs markedly from the traditional $\chi (q_p + q_{p+1}) (q_p + q_{p+1})$, with $\chi = O(A^{-1/3})$ [3].

Fig. 1 shows the yrast bands in the four spaces. Rotational behaviour is fair to excellent at low J. As expected from the normalization property of the realistic quadrupole force the moments of inertia in the rotational region go as $p + 3/2)^2 (p' + 3/2)^2$, i.e. if we multiply all the E_x values by this factor the lines become parallel. The Q_6 values are constant to within 5% up to a critical J value at which the bands bendback.

Since all the spaces behave in the same way we specialize to $(gds)^8$ in what follows. Fig. 2 shows the results of diagonalizing $e_2 \tilde{q}_p \tilde{q}_p (p = 4)$. At $e_2 = 9.6$ the ε splittings are overwhelmed and we have a nearly perfect rotor. The value of Q_6 stays practically constant up to $J = 16 - 18$ and then decreases slowly. At $e_2 = 4.8, 3.2$ and 2.4 the rotational behaviour remains very good below $J = 14$. Then there is a break and the upper values are again aligned. At $e_2 = 3.2$ the overlap of each state with the one obtained with the full KLS interaction is always better than 0.95^2, which suggests that

$$< \mid \hbar \mid \hbar \rangle > \approx q \mid q \rangle \langle q | J > J,$$

where $\mid \hbar \rangle$ and $\mid q \rangle$ are the eigenstates of the full Hamiltonian \mathcal{H} and the quadrupole force $(e_2 = 3.2)$ respectively. Fig. 3 shows that this is the case indeed. It means that the observed backbending pattern is obtained by doing first order perturbation theory on $\mid q \rangle$ - the spectrum changes but not the structure (i.e. the wavefunctions). A similar situation is found when comparing the full $(pJf)^8$ calculation with a renormalized interaction and $\varepsilon = 2$ (Fig. 10 of ref. [14]) and the $(fJp)^8$ result in fig. 1: the backbend occurs at the same J and the Q_6 values are very close in spite of a much larger slope (i.e. smaller moment of inertia) in the bigger calculation. Here again perturbation theory should operate well.

To gain some insight into the backbending phenomenon we examine the evolution of the wavefunctions and quadrupole moments. In fig. 4 we find that for $e_2 = 9.6$ the percentage of the g^8 configuration in the full eigenstate is very small and nicely correlated with the Q_6 values. This is what we expect from a good rotor, for which the amplitudes of any configuration (not only g^8) must be J-independent (since all states must be projections of the same intrinsic state). For the KLS results and their $e_2 = 3.2$ counterparts $Q_6 (J)$ decreases abruptly above $J = 14$, while the g^8 configuration increases its amplitude and becomes dominant in the region where $Q_6 (J)$ reaches a plateau. It is clear that at the backbend the notion of intrinsic state loses - or changes - its meaning, and the idea of a band crossing suggested by fig. 2 becomes questionable. Work remains to be done to understand the connection of our results with the mean field ones [14].

II. Quasi-SU3. That the build up of quadrupole coherence needs only the lower $\Delta J = 2$ sequence of the full shell can be understood by examining table 1 where we list the matrix elements of $q^{20} = r^2 C^{20} = \frac{1}{2} (3z^2 - r^2)$, in jj and LS coupling. It is seen that the $\Delta J = 1$ matrix elements are small, both for m small (prolate shapes) and m large (oblate). If we simply neglect them, diagonalizing the $\Delta J = 2$ matrix in jj scheme is very much equivalent to diagonalizing the exact q^{20} operator in LS scheme. This amounts to saying that the sequence $j = 1/2, 5/2, 9/2, \ldots$ (or $j = 3/2, 7/2, 11/2, \ldots$) must behave very much as an $l = 0, 2, 4, \ldots$ (or $l = 1, 3, 5, \ldots$) one. Therefore we introduce a new operator (the 'quasi' q^{20}), defined in the $\Delta J = 2$ space via the following replacements in the LS matrix elements of q^{20}: $l \rightarrow j, p \rightarrow p + 1/2, m \rightarrow m + 1/2$ and $-m \rightarrow -m - 1/2$ ($m > 0$).

In fig. 5 we draw the low to the spectrum of the full q^{20} operator (in fact $2q^{20}$), i.e., the SU3 Nilsson orbits. The band-heads come at $2(p + 3/4 - 3/2)[m]$. To the right we have plotted the spectrum of the 'quasi' $2q^{20}$ operator. Now the band-heads are at $2(p + 1/2 - 3/2)[m]$; that is, the exact LS values, except for $m = \pm 1/2$, where the one to one correspondence between the 'quasi' q^{20} and the exact q^{20} in LS scheme breaks down. The corresponding 'quasi-SU3' symmetry cannot be exact because of this mismatch. Notice however that the mismatch is very small ($< 1\%$). The spectrum of the true q^{20} operator in the $\Delta J = 2$ space is extremely close to the one in fig. 5, and it is clear that the amount of quadrupole coherence obtained by filling the m (or K) = $1/2$ and $3/2$ orbits is almost as large as for the SU3 orbits. For the eight particle blocks we are interested in, the intrinsic Q_6 would be

$$Q_6 = 8 [e_2 (p_2 - 1) + e_2 (p_2 - 1)]$$

For $p_T = 5, p_e = 6$ and effective charges $e_x = 1.5, e_y = 0.5$, we have $Q_6 = 68$ (in dimensionless oscillator coordinates, i.e., $r \rightarrow r/b$ with $b \approx A^{-1/6} \text{ fm}$), which is related to the $E2$ transition probability from the ground state by
$B(E2) \uparrow 10^{-5}A^{3/2}Q_0^2 = 1.4 \, \varepsilon^2b^2$ for $A = 166$. We shall see soon the relevance of this number. The Q_0 values obtained in I with the $q \cdot q$ interaction at $\varepsilon_2 = 9.6$ saturate the value predicted by eq.2 within 2% while at $\varepsilon_2 = 2.4$ we still have 80% of this limit.

III. The onset of rotation.

Fig.6 proposes a schematic view of the single particle order expected around $Z = 50$, $N = 82$ closure. *Mutatis-mutandis*, the same scheme applies to the $Z = 28$, $N = 50$ and $Z = 82$, $N = 126$ closures. For the lower shells we have a conventional sequence, and for the upper (empty) ones we have assumed a spin orbit splitting, which may be naive, but it is correct in the light nuclei and consistent with the (scarce) available data in the heavier ones.

Nilsson diagrams [15,16] predict that when nuclei acquire a stable deformation, two orbits $K = 1/2$ and $3/2$ - originating in the upper shells of fig. 5 - become occupied. This result is common to different calculations and provides a strong clue that we turn upside down when translating it into spherical language: *Rotational motion sets in when δ particles are promoted to the $(pfh)^2(sdg)^0$ configuration, suggesting that the calculations we have presented may be the first step in implementing a shell model view of real rotors.* The $BE2$ estimate at the end of the previous section is a factor four smaller than the largest observed values in the region [17]. It means that Q_0 is only a factor two too small. Therefore the lower orbits should supply the missing half, which is very plausible because their potential quadrupole coherence is high. The reason is that the r_p groups in fig. 6 are pseudo-oscillator shells with $l' = p - 1$ and the pseudo-SU3 symmetry of Arima, Draayer, Harvey and Hedd (and hence the left part of fig. 5) would provide the relevant coupling scheme (ref. [18] contains a recent survey of pseudo-SU3). It should be noted that the quadrupole coherence in the upper(u) and lower(l) spaces is mutually reinforced through coupling terms of the form $-e_s \delta Q_0 \delta q$.

Conclusions. The zeroth order approximation we are proposing for rotational nuclei is very similar to the weak coupling explanation of the famous $4p-4h$ low lying states in 18O and 40Ca. The differences are that in the heavier nuclei they become ground states, as in 89Zr, and most probably $8p-8h$ excitations are necessary to ensure the observed quadrupole coherence. The fact that the calculations naturally produce backbending in the upper configurations (which are the driving ones, as in light nuclei) indicates that we are closer to real rotors than to idealized constructions. The tendency of quadrupole forces of Elliott type to produce clustering in the excited states [19,20] will probably lead to significant differences of interpretation between the spherical and deformed formulations for large quadrupole moments.

This work is supported in part by the IN2P3 (France)-CICYT (Spain) agreements an by grant DGICYT PB93-263 (Spain).

[18] J.P. Draayer in Future Directions in Nuclear Physics with 3γ Detectors (J.Dudek and B. Haas eds A.I.P. 1992)
| $< p| r^2 | p >$ | $p + 3/2$ |
|----------------|
| $< j m| C_2 | j m >$ | $j(j + 1) - 3m^2$ |
| $2j(2j + 2)$ |
| $< j m| C_2 | j + 1 m >$ | $-3m[(j + 1)^2 - m^2]^{1/2}$ |
| $2j + 4(2j + 2)(2j)$ |
| $< j m| C_2 | j + 2 m >$ | $3/2 \left\{ \frac{(j + 2)^2 - m^2}{(2j + 2)(2j + 4)} \left[(j + 1)^2 - m^2 \right] \right\}^{1/2}$ |
| $< lm| C_2 | l m >$ | $n(l + 1) - 3m^2$ |
| $2l + 3(2l - 1)$ |
| $< p| r^2 | p + 2 >$ | $- \frac{1}{(p - l)(p + l + 3)}$ |
| $1/2$ |
FIG. 1. yrast transition energies $E_\gamma = E(J+2) - E(J)$ for different configurations, KLS interaction.

FIG. 2. yrast transition energies $E_\gamma = E(J+2) - E(J)$ for the $(gds)^6$ configuration with an $-\epsilon_2 \hat{\Omega} \cdot \hat{q}$ force.
FIG. 3. $<\hat{H}\hat{a}> = (g_{ds})^2$ in fig. 3; $<q|qq|q>$ = 3.2 in fig. 4 compared with $<q|\hat{H}|q>$. See text.

FIG. 4. $Q_0(J)/Q_0(2)$ (full lines) and $g_{qs} = <q^8|(g_{ds})^8>^2$ (dashed lines). Wavefunctions calculated with $-e_2\hat{q} \cdot \hat{q}$ (crosses $e_2 = 9.6$, squares $e_2 = 3.2$) and KLS (diamonds).
FIG. 5. Nilsson orbits for SU3 \((k = 2p)\) and quasi-SU3 \((k = 2p - 1/2)\).

FIG. 6. Schematic single particle spectrum above \(^{132}\)Sn.