A General Form of the Constraints in the Path Integral Formula

Taro KASHIWA*

Department of Physics, Kyushu University, Fukuoka 812-81, Japan

May 26, 1995

Abstract

A form of the constraints, specifying a D-dimensional manifold embedded in $D + 1$ dimensional Euclidean space, is discussed in the path integral formula given by a time discretization. Although the mid-point prescription is privileged in the sphere S^D case, it is more involved in generic cases. An interpretation on the validity of the formula is put in terms of the operator formalism. Operators from this path integral formula are also discussed.

*e-mail: taroscp@mbox.nc.kyushu-u.ac.jp
1. Introduction

Dynamical system, constrained on a D-dimensional manifold, M^D, which is now supposed to be given by the equation,

$$f(x) = 0,$$

(1.1)

where $x \equiv (x^1, \ldots, x^{D+1})$ is the $D+1$-dimensional Cartesian coordinate, can be described classically as follows: $f(x)$ is assumed to obey

$$(\nabla_x f(x))^2 \neq 0; \quad \forall x \in M^D,$$

(1.2)

where we have written ∇_x for the usual ∇ vector. The equation of motion in a flat $D + 1$-dimensional space,

$$\ddot{x}^a = -\frac{\partial V(x)}{\partial x^a} \equiv -\partial_a V(x),$$

(1.3)

with $V(x)$ being a potential, is modified to

$$\Pi_{ab}(\nabla_x f)\dot{x}^b = -\Pi_{ab}(\nabla_x f)\partial_b V(x),$$

(1.4)

in M^D, where $\Pi_{ab}(X)$ is a projection operator,

$$\Pi_{ab}(X) \equiv \delta_{ab} - \frac{X^a X^b}{X^2},$$

(1.5)

onto the plane perpendicular to the vector X: $X^a \Pi_{ab}(X) = \Pi_{ab}(X)X^b = 0$. Here and hereafter repeated indices imply summation. The significance of (1.4) is easily grasped; since the motion is restricted on M^D so that any deviation to the direction $\nabla_x f$ must be suppressed.

It is well-known that the Lagrangian,

$$L = \frac{\dot{x}^2}{2} - V(x) - \lambda f(x),$$

(1.6)

with λ being the multiplier, leads to the equations (1.4) and (1.1). Also the canonical formalism can be developed under the guidance of Dirac[1]: regard (1.1) as the (primary) constraint

$$\phi_1(x) \equiv f(x) \quad (= 0; \quad \forall x \in M^D),$$

(1.7)
and consider the consistency condition: a Hamiltonian,

\[H = H(p, x) + \lambda f(x) = \frac{p^2}{2} + V(x), \tag{1.8} \]

gives

\[\dot{\phi}_1 = \{\phi_1, H\} = p \cdot \nabla_x f(x), \tag{1.9} \]

thus to find

\[\phi_2(x) \equiv p \cdot \nabla_x f(x) \quad (= 0; \quad \forall x \in M^D). \tag{1.10} \]

(Here \(\{A, B\} \) designates the Poisson bracket.) They belong to the second class:

\[\{\phi_1(x), \phi_2(x)\} = (\nabla_x f(x))^2 \neq 0, \tag{1.11} \]

on account of (1.2), which enables us to obtain the Dirac bracket,

\[\{A, B\}_D \equiv \{A, B\} + \frac{1}{(\nabla_x f)^2} \left(\{A, \phi_1(x)\}\{\phi_2(x), B\} - (A \leftrightarrow B) \right). \tag{1.12} \]

Therefore we find

\[\begin{align*}
\{x^a, x^b\}_D &= 0, \\
\{x^a, p_b\}_D &= \Pi_{ab}(\nabla_x f) = \delta_{ab} - \frac{\partial_a f \partial_b f}{(\nabla_x f)^2}, \\
\{p_a, p_b\}_D &= p_c \left(\partial_a \Pi_{cb} - \partial_b \Pi_{ca} \right) = p_c \frac{\partial_a \partial_c f \partial_b f - \partial_b \partial_c f \partial_a f}{(\nabla_x f)^2},
\end{align*} \tag{1.13} \]

those which correctly reproduce the equation (1.4).

As for quantum mechanics, a recipe of path integral quantization had been given by Faddeev [2] and later by Senjanovic [3](FS); the FS-formula reads formally

\[\langle \phi | e^{-iTH} | \psi \rangle = \int D\mu \phi^* f(x) \exp \left[i \int_{-T/2}^{T/2} dt \{p \cdot \dot{x} - H(p, x)\} \right] \psi(x), \tag{1.14} \]

with

\[D\mu \equiv Dp Dx |\det \{\phi_1, \phi_2\}|^{1/2}\delta(\phi_1)\delta(\phi_2), \tag{1.15} \]

and \(x_f \equiv x(T/2), x_i \equiv x(-T/2) \). Here \(Dp \) and \(Dx \) are functional measures which must be specified somehow. The issue is then how to define the above functional measure properly.
to confirm the well-defined form of (1.14): the most well-known and primitive approach is to discretize the time, obtaining

$$D_p \mapsto \prod_j dp(j), \quad D_x \mapsto \prod_j dx(j). \quad (1.16)$$

In this approach it was stressed by the present author [4] that the mid-point prescription is privileged in the case of D-dimensional sphere S^D given as

$$x^2 = \rho^2. \quad (1.17)$$

We try to generalize the case in this paper.

In section 2, we review the S^D case. With this in mind, a generic case $f(x) = 0$ is discussed in section 3. The next section 4 deals with operators obtained from the path integral formula, then the final section 5 is devoted to discussion.

2. The case of D-dimensional sphere

The D-dimensional sphere S^D is given, in view of (1.17), by

$$f(x) \equiv \frac{1}{2} \left(x^2 - \rho^2 \right) (= \phi_1). \quad (2.1)$$

The secondary constraint (1.10) is read as

$$\phi_2 \equiv p \cdot \nabla x f(x) = p \cdot x. \quad (2.2)$$

The FS-formula (1.14) and (1.15) in a discretized form is found as

$$\langle \phi | e^{-iTH} | \psi \rangle \equiv \lim_{N \to \infty} \prod_{j=0}^{N} \int d^{D+1} x(j) \delta(\phi_1(x(j)))$$

$$\times \prod_{j=1}^{N} \left(\frac{d^{D+1} p(j)}{(2\pi)^D} \delta(\phi_2(j)) \right) \left| \det \{ \phi_1(x(j)), \phi_2(j) \} \right|^{1/2}$$

$$\times \phi^*(x(N)) \exp \left[i \sum_{j=1}^{N} \left\{ p(j) \cdot \Delta x(j) - \Delta t H(p(j), \pi(j)) \right\} \right] \psi(x(0)), \quad (2.3)$$

with

$$\Delta t \equiv \frac{T}{N}, \quad (2.4)$$
\[\Delta x(j) \equiv x(j) - x(j-1), \quad (2.5) \]

and

\[\overline{x}(j) \equiv \frac{x(j) + x(j-1)}{2}. \quad (2.6) \]

Here we have employed the mid-point prescription (2.6) to the argument of Hamiltonian, which can be interpreted as a consequence of the Weyl ordering [5][6]. The issue is to fix the form of \(\phi_2(j) \): the correct form has been found also as the mid-point type [4]:

\[\phi_2(j) = p(j) \cdot \overline{x}(j). \quad (2.7) \]

The way to (2.7) can be convinced by the following discussion.

Consider \(T = 0 \) case: put \(N = 1 \) in (2.3) to obtain

\[\langle \phi | \psi \rangle = \int d^{D+1}x \, d^{D+1}x' \, \delta \left(\frac{x^2 - \rho^2}{2} \right) \delta \left(\frac{x'^2 - \rho^2}{2} \right) \]
\[\times \int \frac{d^{D+1}p}{(2\pi)^D} \delta \left(p \cdot x^{(\alpha)} \right) \left| x \cdot x^{(\alpha)} \right| \phi^*(x) e^{ip \cdot (x-x')} \psi(x'), \quad (2.8) \]

where we have written \(x, x' \), and \(p \) for \(x(1), x(0) \), and \(p(1) \) respectively and set the form of (2.2) as

\[\phi_2(j = 1) = p \cdot x^{(\alpha)} \equiv p \cdot \left(\frac{1}{2} - \alpha \right) x + \left(\frac{1}{2} + \alpha \right) x', \quad (2.9) \]

with \(\alpha \) being a parameter [6] to be determined. Decompose the \(p \)-vector such that

\[p = p_{\parallel} + p_{\perp}, \quad (2.10) \]

where

\[p_{\parallel} \equiv \frac{p \cdot x^{(\alpha)}}{x^{(\alpha)}}, \]
\[\left(p_{\perp} \right)_a \equiv \Pi_{ab} \left(x^{(\alpha)} \right) p_b, \quad (2.11) \]

are the parallel and the perpendicular components to the vector \(x^{(\alpha)} \). Then perform the \(p \)-integration to find

\[\int \frac{d^{D+1}p}{(2\pi)^D} \delta \left(p \cdot x^{(\alpha)} \right) e^{ip \cdot (x-x')} = \frac{1}{|x^{(\alpha)}|} \delta^D \left(x - x' \right)_{\perp}, \quad (2.12) \]

where

\[(x - x')_{\perp} \equiv \Pi_{ab} \left(x^{(\alpha)} \right) (x - x')^b. \quad (2.13) \]
Therefore the D-dimensional δ-function, in the right hand side of (2.12), implies

$$0 = (x - x')_a^a = (x - x')^a - \frac{x^{(a)} \cdot (x - x')}{(x^{(a)})^2} (x^{(a)})^a, \quad (2.14)$$

with the aid of (1.5). The solution is

$$x = x', \quad \text{for } \alpha = 0, \quad (2.15)$$

since the second term of (2.14) vanishes:

$$x^{(\alpha=0)} \cdot (x - x') = \frac{1}{2} \left(x^2 - x'^2 \right) = 0, \quad (2.16)$$

owing to the constraint (2.1). But an additional point emerges if $\alpha \neq 0$

$$x = -x'. \quad (2.17)$$

Thus in $\alpha \neq 0$ the δ-function in (2.12) is double-valued. To avoid the situation we must take $\alpha = 0$, that is, (2.9) turns out to be (2.7).

3. A path integral formula in generic cases

In this section we wish to generalize the previous result to M^D, given by $f(x) = 0$. Start from (2.3) by putting

$$\phi_2(j) \equiv p(j) \cdot \nabla f(j), \quad (3.1)$$

and study the form of $\nabla f(j)$. The $p(j)$-integral in this case becomes

$$\int \frac{d^{D+1}p(j)}{(2\pi)^D} \delta(p(j) \cdot \nabla f(j)) e^{i\phi(j)\Delta x(j)} = \frac{1}{|\nabla f(j)|} \delta^D(\Delta x_\perp(j)), \quad (3.2)$$

where

$$\Delta x_\perp^a(j) = \Pi_{\perp}(\nabla f(j)) \Delta x_\parallel^a(j) = \Delta x^a(j) - \frac{\Delta x(j) \cdot \nabla f(j)}{\nabla f(j)^2}(\nabla f(j))^a, \quad (3.3)$$

which is again the consequence of the decomposition of p's into the parallel and the perpendicular components with respect to a (still unknown) vector $\nabla f(j)$.

5
According to the foregoing discussion, (2.14) ∼ (2.17), a sufficient condition for a single-valued δ-function on \(M^D \) is read from (3.3)

\[
\Delta x(j) \cdot \nabla f(j) = 0; \quad \forall x \in M^D. \tag{3.4}
\]

A simple solution therefore is

\[
\Delta x(j) \cdot \nabla f(j) = f(x(j)) - f(x(j - 1)). \tag{3.5}
\]

(This would make sense; since a naive continuum limit, defined by \(x(j), p(j) \to x(t), p(t), \)
\(x(j - 1) \to x(t - dt), \) implies \(\nabla f(j) \to \nabla_x f(x), \) yielding the classical result (1.10).

Write

\[
x(j) = \bar{x}(j) + \frac{\Delta x(j)}{2},
\]

\[
x(j - 1) = \bar{x}(j) - \frac{\Delta x(j)}{2}, \tag{3.6}
\]

and expand the right hand side of (3.5) with respect to \(\Delta x(j) \) to obtain

\[
\nabla f(j) = \left\{ \sum_{n=0}^{\infty} \frac{1}{(2n + 1)!} \left(\frac{\Delta x(j) \cdot \nabla \bar{x}}{2} \right)^{2n} \right\} \nabla \bar{x} f(\bar{x}(j)), \tag{3.7}
\]

where \(\nabla \bar{x} \) denotes differentiation with respect to \(\bar{x}(j) \). With this in mind a path integral formula on \(M^D \) is found as

\[
\langle \phi | e^{-iTH} | \psi \rangle \equiv \lim_{N \to \infty} \prod_{j=0}^{N} \int d^{D+1} x(j) \delta(f(x(j)))
\]

\[
\times \prod_{j=1}^{N} \int \frac{d^{D+1} p(j)}{(2\pi)^D} \delta(p(j) \cdot \nabla f(j)) |\nabla_x f(x(j)) \cdot \nabla f(j)|
\]

\[
\times \phi^*(x(N)) \exp \left[i \sum_{j=1}^{N} \{ p(j) \cdot \Delta x(j) - \Delta t H(p(j), \bar{x}(j)) \} \right] \psi(x(0)). \tag{3.8}
\]

Needless to say, (3.1) with (3.7) matches (2.7), the \(S^D \) case, where symmetry is higher so that the mid-point prescription was valid. But as can be recognized from (3.7) there is no privilege of the mid-point prescription in general cases.

Before closing this section let us argue another aspect of the relation (3.2) with (3.7): on \(M^D, x^a \) can be expressed by some coordinate, say, \(\theta^i (i = 1, 2, \cdots, D): \)

\[
x^a = x^a(\theta), \quad \theta \in M^D. \tag{3.9}
\]
There should be an orthonormal as well as complete set, \(Y_n(\theta) \):

\[
\int d^D\theta \sqrt{g(\theta)}Y_n^*(\theta)Y_n(\theta) = \delta_{n,n'},
\]

(3.10)

\[
\sum_n Y_n(\theta)Y_n^*(\theta) = \frac{1}{\sqrt{g(\theta)}} \delta^D(\theta - \theta'),
\]

(3.11)

where \(n \) represents generic labels and \(g(\theta) \) is the determinant of the induced metric,

\[
g_{ij}(\theta) = \sum_{a=1}^{D+1} \frac{\partial x^a}{\partial \theta^i} \frac{\partial x^a}{\partial \theta^j}.
\]

(3.12)

Specifically, \(Y_n(\theta) \) may be an eigenfunction of the Laplace-Beltrami operator:

\[- \left[g^{-1/2} \frac{\partial}{\partial \theta^i} \left(g^{ij} g^{1/2} \right) \frac{\partial}{\partial \theta^j} \right] Y_n(\theta) = h(n)Y_n(\theta),
\]

(3.13)

Suppose that Hamiltonian is given by

\[
\hat{H} = -g^{-1/2} \frac{\partial}{\partial \theta} \left(g^{ij} g^{1/2} \right) \frac{\partial}{\partial \theta} + V(\theta),
\]

(4.14)

where the caret denotes operators, then the Feynman kernel,

\[
K(\theta, \theta'; T) \equiv \langle \theta \rangle e^{-iT\hat{H}}|\theta'\rangle = \lim_{N \to \infty} \langle \theta \rangle \left(I - i\Delta t \hat{H} \right)^N |\theta'\rangle,
\]

(3.15)

can be expressed as “path integral”: by inserting the identities, (3.10) and (3.11), which are now read as

\[
\int d^D\theta \sqrt{g(\theta)} |\theta\rangle \langle \theta| = I,
\]

(3.16)

\[
\sum_n |n\rangle \langle n| = I,
\]

(3.17)

with \(I \) being the identity operator,

\[
\langle \theta | \theta' \rangle = \frac{1}{\sqrt{g(\theta)}} \delta^D(\theta - \theta'),
\]

(3.18)

\[
\langle n| n' \rangle = \delta_{nn'},
\]

and \(\langle \theta | n \rangle \equiv Y_n(\theta), \) (3.15) becomes

\[
K(\theta, \theta'; T) = \lim_{N \to \infty} \left(\prod_{j=1}^{N-1} \int d^D\theta(j) \sqrt{g(\theta(j))} \right) \left(\prod_{j=1}^{N} \sum_{n(j)} \right)
\times Y_{n(j)}(\theta(j)) Y_{n(j)}^*(\theta(j-1)) \exp \left[-i \Delta t \left(h(n(j)) + V(\theta(j)) \right) \right] |\theta(0) = \theta', \theta(1) = \theta \rangle.
\]

(3.19)
However the expression of (3.19) is unsatisfactory as a “path integral” formula if M^D is nontrivial, $g_{ij} \neq \delta_{ij}$; since some of the labels are discrete so that we are left with summation not integration. Moreover $Y_n(\theta)$ is generally far from a plane wave form: in a trivial case, $g_{ij} = \delta_{ij}$, (which is given by an $f(x)$ linear in x,) $Y_n(\theta)$ is read as

$$Y_n(\theta) = \frac{1}{(2\pi)^D/2} e^{ip \cdot x}.$$ \hspace{1cm} (3.20)

(n and θ correspond to P and X respectively.) Therefore we obtain a usual path integral formula:

$$K(X, X'; T) = \lim_{N \to \infty} \left[\prod_{j=1}^{N-1} \int d^D X(j) \prod_{j=1}^{N} \int d^D P(j) \right] \left(\frac{N}{2\pi} \right)^D \exp \left[i \sum_{j=1}^{N} \left\{ P(j) \cdot \Delta X(j) - \Delta t \left(\hat{h}(P(j)) + V(X(j)) \right) \right\} \right]_{X(0)=X', \text{ } X(N)=X}.$$ \hspace{1cm} (3.21)

(It might be natural, however, to think that the situation is same even in the trivial case if we work with the polar coordinate; since in which there arises the spherical harmonics, being far from the plane wave except the S^1 case. But in these cases we can find a desired path integral formula consisting purely of an exponential form as well as integration by means of the canonical transformation \cite{7} from the Cartesian expression (3.21).)

Now it is almost clear that the relation (3.2) with (3.7) cures the above situation for nontrivial cases: according to our discussion, the completeness condition (3.11) can be put into a plane wave type provided solely with integration:

$$\sum_n Y_n(\theta) Y_n^*(\theta') = \frac{1}{\sqrt{g(\theta)}} \delta^D(\theta - \theta') = \left[\nabla f \right] \left[\frac{d^{D+1}p}{(2\pi)^D} \delta(p \cdot \nabla f) e^{ip \cdot (x-x')} \right]_M,$$ \hspace{1cm} (3.22)

where from (3.7)

$$\nabla f \equiv \left\{ \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \left(\frac{\Delta x \cdot \nabla \varphi}{2} \right)^{2n} \right\} \nabla \varphi f(\varphi),$$ \hspace{1cm} (3.23)

and the subscript M designates that x and x' are on M^D. The relation (3.22) thus can be implied as the plane wave representation of the completeness condition on M^D. In other words the FS formula is a rigorous consequence from the operator formalism owing to this completeness condition (3.22).
4. Operators from the path integral formula

A similar consideration as in (2.8) leads us to the observation that an expectation value of some operator $\mathcal{O}(\dot{p}, \dot{x})$ can be given, with the aid of the formula (3.8) with (3.7), by

$$
\langle \mathcal{O}(\dot{p}, \dot{x}) \rangle \equiv \langle \varphi | \mathcal{O}(\dot{p}, \dot{x}) | \psi \rangle \equiv \int d^{D+1}x \int d^{D+1}x' \delta(f(x)) \delta(f(x'))
\times |\nabla_x f(x) \cdot \nabla f| \varphi^*(x) \psi(x') \int \frac{d^{D+1}p}{(2\pi)^D} \delta(p \cdot \nabla f) \mathcal{O}(p, \overline{x}) \ e^{ip \Delta x},
$$

(4.1)

where ∇f is given by (3.23),

$$
\Delta x \equiv x - x',
$$

(4.2)

and

$$
\overline{x} \equiv \frac{x + x'}{2}.
$$

(4.3)

By noting

$$
delta(X)d(Y) = \delta\left(\frac{X+Y}{2}\right) \delta(X - Y),
$$

(4.4)

then using (3.5), (4.1) becomes

$$
\langle \mathcal{O}(\dot{p}, \dot{x}) \rangle = \int d^{D+1}x \int d^{D+1}x' \delta(\overline{f}) \delta(\Delta x \cdot \nabla f) |\nabla_x f(x) \cdot \nabla f| \varphi^*(x) \psi(x')
\times \int \frac{d^{D+1}p}{(2\pi)^D} \delta(p \cdot \nabla f) \mathcal{O}(p, \overline{x}) \ e^{ip \Delta x} = \int d^{D+1}x \int d^{D+1}x'
\times \delta(\overline{f}) \frac{|\nabla_x f(x) \cdot \nabla f|}{(\nabla f)^2} \varphi^*(x) \psi(x') \mathcal{O} \left(-i \frac{\partial}{\partial \Delta x \parallel}, \overline{x} \right) \delta^{D+1}(\Delta x),
$$

(4.5)

where we have introduced the notation,

$$
\overline{f} \equiv \frac{f(x) + f(x')}{2},
$$

(4.6)

and integrated with respect to p’s in a similar manner as before, to find $\delta^D(\Delta x \parallel)$ which is combined with $\delta(\Delta x \cdot \nabla f) \sim \delta\left(\Delta x \parallel \right)$ yielding $\delta^{D+1}(\Delta x)$ finally. Now changing variables (x, x') to $(\overline{x}, \Delta x)$ and performing integration by parts, we find

$$
\langle \mathcal{O}(\dot{p}, \dot{x}) \rangle = \int d^{D+1}\overline{x} \ \mathcal{O} \left(-i \frac{\partial}{\partial \Delta x \parallel}, \overline{x} \right)
\times \left[\delta(\overline{f}) \frac{|\nabla_x f(x) \cdot \nabla f|}{(\nabla f)^2} \varphi^* \left(\overline{x} + \frac{\Delta x}{2} \right) \psi \left(\overline{x} - \frac{\Delta x}{2} \right) \right]_{\Delta x = 0},
$$

(4.7)
where
\[\nabla_x f(x) = \left\{ \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\Delta x \cdot \nabla \pi}{2} \right)^n \right\} \nabla \pi f(\pi), \] (4.8)
and
\[\bar{f} = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \left(\frac{\Delta x \cdot \nabla \pi}{2} \right)^{2n} f(\pi), \] (4.9)
in view of (4.6). (The subscript \(\Delta x = 0 \) designates that \(\Delta x \to 0 \) must be put after all calculations have been done.) Also note that
\[\frac{\nabla_x f(x) \cdot \nabla f}{(\nabla f)^2} = 1 + \frac{1}{(\nabla f(\pi))^2} \nabla f(\pi) \cdot \nabla f \left(\frac{\Delta x \cdot \nabla \pi}{2} \right) f(\pi) \]
\[+ \frac{1}{3(\nabla f(\pi))^2} \nabla f(\pi) \cdot \nabla f \left(\frac{\Delta x \cdot \nabla \pi}{2} \right)^2 f(\pi) + O(\Delta x^3). \] (4.10)

Let us calculate some examples:

- (i) \(\mathcal{O}(\dot{p}, \dot{x}) \equiv F(\dot{x}) \):
 \[\langle F(\dot{x}) \rangle = \int d^{D+1}x \delta(f(x)) \varphi^*(x) F(x) \psi(x), \] (4.11)
 where we have written \(x \) for \(\pi \). This shows
 \[F(\dot{x}) = F(x). \] (4.12)

- (ii) \(\mathcal{O}(\dot{p}, \dot{x}) \equiv \dot{p}_a \):
 \[\langle \dot{p}_a \rangle = \int d^{D+1}x \Pi_{ab}(\nabla_x f) \left\{ -i \frac{\partial}{\partial \Delta x^b} \right\} \left[\delta(\bar{f}) \frac{\nabla_x f(x) \cdot \nabla f}{(\nabla f)^2} \right. \]
 \[\left. \times \varphi^* \left(\frac{\Delta x}{2} \right) \psi \left(\frac{\Delta x}{2} \right) \right] \bigg|_{\Delta x=0} = \int d^{D+1}x \delta(f(x)) \]
 \[\times \Pi_{ab} \left(\nabla_x f \right) \frac{i}{2} \left\{ \partial_b \varphi^* \left(\frac{\Delta x}{2} \right) \psi \left(\frac{\Delta x}{2} \right) - \varphi^* \left(\frac{\Delta x}{2} \right) \partial_b \psi \left(\frac{\Delta x}{2} \right) + \frac{\partial_b \partial_c f \partial_d f}{(\nabla f)^2} \varphi^* \left(\frac{\Delta x}{2} \right) \partial_b \psi \left(\frac{\Delta x}{2} \right) \right\}, \] (4.13)
where again we have put \(\pi \to x \). The third term in the final expression comes from the differentiation to (4.10). (There remains no effect from differentiating the \(\delta \)-function, in view of (4.9).) Finally integrating by parts with respect to the first term, while paying attention to the property of the projection operator, \(\Pi_{ab} \partial_b \delta(f(x)) = 0 \), we obtain
\[\langle \dot{p}_a \rangle = \int d^{D+1}x \delta(f(x)) \varphi^*(x) \left[-i \Pi_{ab}(\nabla_x f) \partial_b \right. \]
\[- \frac{i}{2} \partial_b \Pi_{ab}(\nabla_x f) - \frac{i}{2} \Pi_{ab}(\nabla_x f) \partial_c \Pi_{bc}(\nabla_x f) \bigg] \psi(x). \] (4.14)
Therefore
\[\hat{p}_a = -i \Pi_{ab} \nabla_b f \partial_a - \frac{i}{2} \partial_b \Pi_{ab} \nabla_b f + \frac{i}{2} \Pi_{ab} \nabla_b f \partial_a \Pi_{bc} \nabla_c f \]
\[= -i \Pi_{ab} \nabla_b f \partial_a + \frac{i}{2} \frac{2 \partial_a \partial_b f \partial_c f + \partial_a f \nabla_x^2 f}{(\nabla_x f)^2} - \frac{3i}{2} \frac{\partial_b \partial_c f \partial_a f \partial_c f}{(\nabla_x f)^4}, \]
(4.15)
is the momentum operator. It can be shown by an explicit calculation that \(\hat{p}^2\) satisfies the quantum version of (1.13):
\[
[\hat{\sigma}^a, \hat{\sigma}^b] = 0,
\]
\[
[\hat{\sigma}^a, \hat{p}_b] = i \Pi_{ab} \nabla_b f = i \left(\delta_{ab} - \frac{\partial_a \partial_b f \partial_c f}{(\nabla_x f)^2} \right),
\]
(4.16)
\[
[\hat{p}_a, \hat{p}_b] = \frac{i}{2} \left\{ \left\{ \hat{p}_c, \frac{\partial_a \partial_c f \partial_b f}{(\nabla_x f)^2} \right\} - \left\{ \hat{p}_c, \frac{\partial_b \partial_c f \partial_a f}{(\nabla_x f)^2} \right\} \right\},
\]
where \(\{ \hat{A}, \hat{B} \} = \hat{A} \hat{B} + \hat{B} \hat{A} \).

• (iii) \(\mathcal{O}(\hat{p}, \hat{x}) \equiv \hat{p}^2\): with a similar manner as above, we find
\[
\langle \hat{p}^2 \rangle = \int d^{D+1} x \, \Pi_{ab}(\nabla_x f) \left(-\frac{\partial^2}{\partial \Delta x^a \partial \Delta x^b} \right) \left[\frac{\delta(f(x))}{(\nabla f)^2} \frac{\nabla_x f(x) \cdot \nabla f}{(\nabla f)^2} \right] \phi^* \phi \bigg|_{\Delta x = 0}
\]
\[= \int d^{D+1} x \, \delta(f(x)) \phi^*(x) \left[-\Pi_{ab}(\nabla_x f) \frac{\partial^2}{\partial \Delta x^a \partial \Delta x^b} \right.
\]
\[+ \left(\Pi_{ab}(\nabla_x f) \frac{\partial_a \partial_c f \partial_b f}{(\nabla_x f)^2} - \partial_a \Pi_{ab}(\nabla_x f) \frac{\partial_c f}{\partial x^c} + \frac{1}{2} \partial_b \Pi_{ab}(\nabla_x f) \frac{\partial_a \partial_c f \partial_b f}{(\nabla_x f)^2} \right)
\]
\[- \frac{1}{4} \partial_a \partial_b \Pi_{ab}(\nabla_x f) - \frac{1}{6} \Pi_{ab}(\nabla_x f) \frac{\partial_a \partial_b \partial_c f \partial_d f}{(\nabla_x f)^2} \bigg] \psi(x). \]
From this we obtain

\[\hat{p}^2 = -\Pi_a (\nabla_x f) \frac{\partial^2}{\partial \Delta x^a \partial \Delta x^b} \]

\[+ \left\{ \frac{2\partial_a \partial_b f + \nabla_x^2 f \partial_b f}{(\nabla_x f)^2} - \frac{3\partial_a \partial_c f \partial_b f \partial_b f}{(\nabla_x f)^4} \right\} \frac{\partial}{\partial x^b} \]

\[+ \frac{1}{(\nabla_x f)^2} \left\{ \frac{5}{6} \partial_a \nabla_x^2 f \partial_a f + \frac{1}{4} (\nabla_x^2 f)^2 + \frac{3}{4} \partial_a \partial_b f \partial_a f \partial_b f \right\} \]

\[- \frac{1}{(\nabla_x f)^4} \left\{ \frac{3}{2} \nabla_x^2 f \partial_a f \partial_b f \partial_c f + \frac{7}{2} \partial_a \partial_b f \partial_a f \partial_c f \partial_c f \right\} \]

\[+ \frac{5}{6} \partial_a \partial_b f \partial_a f \partial_b f \partial_c f \partial_c f \partial_d f. \]

(4.18)

It should be noted that \(\hat{p}^2 \neq \hat{p}_a \hat{p}_a \) unless \(f(x) \) is linear in \(x \).

5. Discussion

In this paper we have established a form of constraints in the path integral formula given by the time discretization. The main interest is how to incorporate the classical constraint \(p \cdot \nabla_x f = 0 \) into the quantum one: the correct form can be found by requiring that the delta function be single-valued.

The conclusion is unchanged even if we take a nonstandard form of Hamiltonian instead of (1.8) such as

\[H(p, x) \longrightarrow h(p^2) + V(x), \]

(5.1)

provided \(h'(p^2) \neq 0 \).

Therefore we have successfully described a ‘local’ form of the path integral formula; where the word ‘local’ must be attached since if manifold is nontrivial and composed of \(G/H \) there emerge induced gauge fields according to recent studies [8][9]. Our formula apparently lacks these informations. There has been a trial [10] but we are still on the way to the final goal.
References

