LOADED DELAY LINES FOR FUTURE R.F. PULSE COMPRESSION SYSTEMS†

R.M. Jones*, P.B. Wilson* & N.M Kroll^*
*Stanford Linear Accelerator Center,
Stanford University, Stanford, CA 94309
^University of California, San Diego, La Jolla, CA 90732

Abstract

The peak power delivered by the klystrons in the NLCTA (Next Linear Collider Test Accelerator) now under construction at SLAC is enhanced by a factor of four in a SLED-II type of R.F. pulse compression system (pulse width compression ratio of six). To achieve the desired output pulse duration of 250 ns, a delay line constructed from a 36 m length of circular waveguide is used. Future colliders, however, will require even higher peak power and larger compression factors, which favors a more efficient binary pulse compression approach. Binary pulse compression, however, requires a line whose delay time is approximately proportional to the compression factor. To reduce the length of these lines to manageable proportions, periodically loaded delay lines are being analyzed using a generalized scattering matrix approach. One issue under study is the possibility of propagating two TE_{0n} modes, one with a high group velocity and one with a group velocity of the order 0.05c, for use in a single-line binary pulse compression system. Particular attention is paid to time domain pulse degradation and to Ohmic losses.

I. INTRODUCTION & METHODOLOGY EMPLOYED

Electron-positron colliders in the TeV range will require microwave sources delivering power in the hundred megawatt range. The large power demands are alleviated to some extent through the use of pulse compression techniques in which the power of the pulse is enhanced at the expense of the time duration of the pulse.

In order to reduce the length of the delay lines necessary to store the energy for a pulse compression scheme the characteristics of a delay line periodically loaded with thick irises are investigated. In the SLED-II system (SLAC energy development system using resonant lines), overmoded circular waveguides are used to store energy from the early portion of the output pulse from the klystrons. Once the line is charged the phase of the klystron is reversed, leading to a discharge of this energy at a reduced pulse width and enhanced overall pulsed power. To achieve a pulse of length 250 ns requires a delay line of length 36 m.

The length of the line can be reduced by loading it periodically with irises, in order to reduce the group velocity of the wave. In BPC (binary pulse compression†), in which the peak power is doubled in successive stages. At each stage it is required to delay the progress of the wave from the first half of the pulse with respect to the last half, so that they arrive synchronously in time at the output of the stage. To achieve this end, either two lines are required, one with a low group velocity and one with a group velocity near c, or a delay line propagating two different modes simultaneously with widely differing group velocities. We explore this latter method with a TE_{01} mode and a TE_{02} mode propagating in a delay line consisting of a large number of inward and outward steps (thick irises)

The theoretical gain of a BPC system is 100% for a system consisting of components with infinite conductivity in which no mode conversion occurs at discontinuities. However, in reality the system possesses finite Ohmic wall losses which both degrade the shape of the pulse and reduce the overall system efficiency and finite mismatches occur at waveguide discontinuities. Ohmic wall losses are paid attention to by allowing the axial wavenumber to possess both a real and imaginary component (the latter corresponding to the wall losses) and also, by taking into account transverse wall losses in a multi-mode S-matrix analysis.

Our initial investigation in the area of multi-mode propagation down iris-loaded delay lines revealed that the highest order propagating mode can undergo significant reflection under resonance conditions (this is a choke mode), and that the mode below in frequency can also be delayed as a consequence of the avoided crossing in the characteristic dispersion curves of the waveguide. However, it is not possible to operate in a choke mode regime for lower order propagating modes. For this reason we chose the diameter of the waveguide to be 2.32 inches (the cut-off of the TE_{02} mode lies at 11.36GHz) and the outward radial step (negative iris) is chosen to be three times larger. The choice of the latter

† Supported by Department of Energy, DE-AC03-76SF00515 and DE-FG03-92ER40759

Presented at the 16th IEEE Particle Accelerator Conference (PAC 95) and International Conference on High Energy Accelerators, Dallas, Texas, May 1-5, 1995
diameter dictates the group velocity and the point of avoided
crossing in the dispersion curves.

II. APPLICATION OF MODE MATCHING
METHOD TO THE DISPERSION
CHARACTERISTICS OF LOADED
DELAY LINES

The Brillouin diagrams for the loaded delay lines are
calculated using a scattering matrix method involving
matching the electric and magnetic field at either side of the
aperture region of a periodic structure. This mode matching
method converges provided a sufficient number of modes is
used to represent the field at transitions in the geometry of the
waveguide.

Firstly, the generalized lossless S-Matrix of a single narrow
to wide transition (NW) is calculated by matching the
complete modally decomposed field at the transition:

\[
\begin{pmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{pmatrix} = \begin{pmatrix}
2q_0^{-1} - I & 2q_0^{-1}p_0 \\
a(S_{22} + I) & aS_{21} + I
\end{pmatrix}
\]
(2.1)

where the \(q_0\) and \(p_0\) matrices are given in terms \(Y\), the admittance matrix of the wide transition and \(\hat{Z}\), the impedance matrix of the narrow transition:

\[
q_0 = I + \hat{Z}a^*Y, \quad p_0 = \hat{Z}a^*Y
\]
(2.2)

The inner product matrix is given by:

\[
a = \int e \cdot \hat{e} dS
\]
(2.3)

where the integral is performed over the aperture plane of the
waveguide transition and the normalised mode functions \(e\) and \(\hat{e}\) correspond to circular waveguide mode functions\(^3\) of the
wide section and the narrow section respectively. The NW
matrix is cascaded with the wide to narrow (WN) transition
to give the overall narrow to wide to narrow (NWN)
scattering matrix for all modes (including evanescent modes).
This matrix is converted into a multi-mode transmission or
wave-amplitude matrix by applying the matrix relation:

\[
\begin{pmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{pmatrix} = \begin{pmatrix}
S_{11}^{-1} & -S_{11}^{-1}S_{21} \\
S_{21}S_{22} & S_{12} - S_{11}S_{21}S_{22}
\end{pmatrix}
\]
(2.4)

Finally, the eigenvalues of the multi-mode wave-amplitude
matrix, for a given frequency, are of the form \(\exp(j\Psi)\). Real
values of \(\Psi\) correspond to modes within the pass-band of the
Brillouin diagram. In practice twenty or more modes are
necessary in order to adequately satisfy the boundary
conditions. For a single waveguide mode propagating within
the structure it is sufficient to consider a single mode wave-

amplitude matrix (all modes are of course retained in the S-
matrix calculation). However, for two propagating modes it
is necessary to maintain the full-mode wave-amplitude matrix
in the calculation of the eigenvalues.

Thus, the method proceeds with a search for real phase values
as a function of frequency; the dispersion diagram is
constructed by inverting the resulting phase dependence on
frequency. Complex phase values of purely imaginary
content are rejected as this represents waves within the stop-
bond region.

III. DISPERSION CHARACTERISTICS OF
MULTIPLY LOADED DELAY LINES

The narrow and wide transition are .5 inches and .53 inches
in length respectively. The latter dimension was chosen in
order to allow at least one radial mode to propagate within
the wide transition (i.e. the negative iris region). The radius
of the narrow waveguide, viz., 1.16 inches, was chosen with a
view to allowing two azimuthally symmetric TE modes to
propagate in order to operate close to the cut-off of the upper
band TE mode. The below fig. 1 shows the characteristic
dispersion diagram for the chosen loaded delay line. The
dashed line also indicated is the characteristic velocity of
light line.

![Brillouin Diagram for Loaded Delay Line](image)

Figure 1: Brillouin Diagram for a Loaded Delay Line

The wide transition (i.e. the negative iris) has the effect of
splitting the smooth wall dispersion curves. This avoided
crossing in the dispersion curve allows one to have two
waves propagating down the periodic structure. At a frequency
of 11.503 GHz there is simultaneously a high group velocity
wave of \(-0.7c\) (i.e. a backward wave) and low group velocity
wave of 0.05c. This allows for the possibility of operating a
binary pulse compression system in a a single loaded delay
line.

IV. PULSE PROPAGATION THROUGH
SLED DELAY LINES
The progress of the pulse through the structure is monitored by the convolution of the input signal with the time response of the loaded delay line. To model the propagation of a pulse through the SLED delay lines we require the frequency response function of the loaded waveguide. The inverse transform of the product of the response function and the Fourier spectrum of the pulse allows the progress of the pulse through the structure to be monitored. The response function is obtained by evaluating the overall scattering matrix of the structure.

The effect of Ohmic losses is an important consideration. Wall losses are paid attention to using wavenumbers in which Ohmic losses are taken into account utilizing third order perturbation in the exact eigenvalues (the first order perturbation method is invalid close to the cut-off region of the waveguide) and also by calculating the scattering matrix of each NW transition incorporating Ohmic losses due to the presence of the transverse wall. The generalized scattering matrix of a single transition is given by:

\[
\begin{pmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{pmatrix} =
\begin{pmatrix}
2q^{-1} - I & 2q^{-1}p \\
(d^{-1}(S_{22} + I)) & d^{-1}\left((aS_{22} - 2I) + I\right)
\end{pmatrix}
\] (4.1)

where:

\[
q = I + \hat{Z}a \hat{Y}a, \quad p = \hat{Z}a \hat{Y}, \quad d = I + R_m w \hat{Y},
\]

\[
\hat{Y} = Y d^{-1}, \quad w = I - aa'
\] (4.2)

I is the unit matrix, \(a'\) is the transpose of the matrix of inner products of the normalised mode functions, and \(R_m\) represents the wall resistance of the waveguide. In the limit of infinite wall conductivity (4.1) becomes (2.1). This scattering matrix is cascaded with succeeding matrices to give the overall matrix of the structure in the frequency domain.

The input trapezoidal pulse with duration 250 ns and a sharp rise and fall time of 5 ns, together with the amplitude of its Fourier spectrum are illustrated in the below fig. 2.

Also shown in fig. 3 is the waveform corresponding to the propagation of a TE_{01} mode through one thousand and twenty four cells. The shape of the leading edge of the pulse is degraded by presence of the dispersive loaded delay line. However, even for this particularly large number of irises the overall shape of the pulse suffers remarkably little degradation. Ohmic wave losses of the system are of course unavoidable and this accounts for the diminished amplitude and overall area of the transmitted pulse. The TE_{00} suffers substantially larger Ohmic wall losses and to reduce these losses for multi-mode propagation one must use superconducting waveguide.

![Pulse Propagation Through SLED Delay Line](image)

Figure 3: Pulse Propagation Through Loaded Delay Line

V. DISCUSSION

The concept of using a single-line iris-loaded waveguide to simultaneously delay the progress of two input pulses has been demonstrated, but the losses associated with the higher order mode (TE_{02} in this case) have been shown to be too high to be acceptable for practical purposes, unless one is prepared to utilize superconducting iris-loaded waveguide. However, a superconducting waveguide will impose a limit on the magnetic field that is tolerable and so limits the power transport through the system.

VI. REFERENCES

2. Z.D. Farkas, IEEE Trans MTT, 34, 1036-1043, 1986
