Random Walks on Braid Groups: Brownian Bridges, Complexity and Statistics

S.K. Nechaev
A. Yu Grosberg
A.M. Vershik

Institut des Hautes Etudes Scientifiques
35, route de Chartres
91440 – Bures-sur-Yvette (France)

Mai 95

IHES/P/95/49
Random Walks on Braid Groups: Brownian Bridges, Complexity and Statistics

S. K. Nechaev

L D Landau Institute for Theoretical Physics,
117940, Moscow, Russia
and
Institut de Physique Nucléaire, Lab. Physique Mathematique,
91406 Orsay Cedex, France

A. Yu. Grosberg

Department of Physics MIT, Cambridge, MA 02139, USA
and
Institute of Chemical Physics, 117977 Moscow, Russia

A. M. Vershik

St Petersburg branch of Steklov Mathematical Institute,
Fontanka, 27, 191011 St.Petersbourg, Russia

Abstract

We investigate the limit behavior of the random walks on some noncommutative discrete groups related to the knot theory. Namely, we study the connection between the limit distribution for the products of noncommutative random matrices - generators of the braid group - and the asymptotics of the powers of the algebraic knot invariants turning in such a way the simplest problems of knot statistics to the context of the random walks on hyperbolic groups. We consider also the limit distribution for brownian bridges on the so-called local groups.
Introduction

The great progress during last decade in construction of topological invariants of knots and links (Jones, HOMFLY, Vassiliev) and their deep relation to the statistical physics of integrable systems made the subject of invention of new series of knot and link invariants very popular (see, for example [Ka, AkW]).

There is, however, completely different aspect of the problem, which is hardly ever touched in the mathematical literature, but started recently to attract attention of physicists [Wi, Nel]. We call this aspect "the problem of the knot entropy". In other words, we are aimed in the calculation of the probability distribution associated with different homotopy classes of some randomly generated knots. One of possible approaches to this huge task suggests to deal with slightly different but more well-defined problem. Namely, one can represent knots by the braids and consider the distribution of corresponding topological invariants of knots generated by "random braids", i.e. for braids created by the uniform random choice of braid group generators.

Our main aim in the present work is as follows: we show that a lot of non-trivial properties of the statistics of knots generated by random braids can be explained in the context of the random walks over the elements of some local noncommutative group introduced in paper [Ve].

Another reasons which forces us to consider the limit distributions (and conditional limit distributions) of Markov chains on locally noncommutative discrete groups is due to the fact that this class of problems could be regarded as a first step of a consistent harmonic analysis on the multiconnected manifolds (like Teichmüller space).

The paper is organized as follows. The Section 1 is devoted to the calculations of the conditional limit distributions of the brownian bridges on the braid group B_3 as well as to the derivation of the limit distribution of the powers of Alexander polynomial of knots generated by random B_3-braids. The limit distribution of random walks on local free groups is discussed in the Section 2 where some conjectures about the statistics of random walks on the group B_n are expressed. Each section is finished by a short summary of results and generalizing conjectures.
1 Brownian bridges on simplest noncommutative groups and knot statistics

The investigation of the limit distributions of the random walks on some noncommutative groups is represented rather widely in the probability theory. Namely, the set of rigorous results concerning the limit behavior of Markov chains on the free group and on the Riemannian surface of the constant negative curvature have been received in works [Kes, Ve, VeKa, NeS]; the problem of construction of the probability measure for the random walks on the modular group has been studied in [CLM]. To this theme we could attribute also a number of spectral problems considered in the theory of dynamic systems on the hyperbolic manifolds [Sin, Gut] as well as the subject of the random matrix theory [Fu].

However in the context of the "topologically-probabilistic" consideration, the problems dealing with the limit distributions of the noncommutative random walks are practically out of discussion except very few specific cases [KNS, KhN, NeSK]. In particular, in these works it has been shown that the statistics of random walk with fixed topological state with respect to the regular array of the obstacles on the plane can be obtained from studying of the limit distributions of the so-called "brownian bridges" (see the definition below) on the universal covering ... the graph with the topology of the Cayley tree. The analytic construction of the nonabelian topological invariant for the trajectories on the double punctured plane and the statistics of the simplest nontrivial random braid B_3 was shortly discussed in [NeV].

1.1 Basic definitions and statistical model

Recall some necessary information concerning the definition of braid groups and construction of the algebraic knot invariants from the braid group representation.
1.1.1 Braids

The braid group B_n of n strings has $n - 1$ generators $\{\sigma_1, \sigma_2, \ldots, \sigma_{n-1}\}$ with the following relations:

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad (1 \leq i < n - 1)$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \quad (|i - j| \geq 2) \quad (1.1)$$

$$\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = e$$

Let us mention that:

- The word written in terms of "letters" — generators from the set $\{\sigma_1, \ldots, \sigma_{n-1}, \sigma_1^{-1}, \ldots, \sigma_{n-1}^{-1}\}$ gives a particular braided. The geometrical interpretation of braid generators is as shown in the fig.1.

- The length of the braid is the total number of used letters, whereas the minimal irreducible length called below as the "primitive word" is the shortest noncontractible length of a particular braid which remains after applying of all possible group relations (1.1). Diagrammatically the braid can be represented as a set of crossing strings going from the top to the bottom (see fig.2) appeared after subsequent gluing the braid generators shown in the fig.1.

- The closed braid appears after gluing the "upper" and the "lower" free ends of the braid on the cylinder.

- Any braid corresponds to some knot or link. So, there is a principal possibility to use the braid group representation for the construction of topological invariants of knots and links, but the correspondence of braids and knots is not mutually single valued and each knot or link can be represented by infinite number of different braids. This fact should be taken into account in course of the knot invariant construction.

1.1.2 Algebraic invariants of knots

Take a knot diagram K in general position on the plane. Let $f[K]$ be the topological invariant of the knot K. One of the possible ways of the knot invariant construction using the braid group representation can be realized in the following steps.
1. Represent the knot by some braid \(b \in B_n \). Take the function \(f \)

\[
f : B_n \rightarrow \mathbb{C}
\]

Demand \(f \) to take the same value for all braids \(b \) representing the given knot \(K \). That condition is established in the well-known theorem (see, for instance, [Jo1]):

Theorem 1 (Markov-Birman) The function \(f_K \{b\} \) defined on the braid \(b \in B_n \) is the topological invariant of a knot or link if and only if it satisfies the following "Markov condition":

\[
f_K \{b' b''\} = f_K \{b'' b'\} \tag{1.2}
\]

\[
f_K \{b' \sigma_n\} = f_K \{\sigma_n b'\} = f_K \{b'\}, \quad b', b'' \in B_n
\]

where \(b' \) and \(b'' \) are two subsequent subwords in the braid — see fig.3.

2. Now the invariant \(f_K \{b\} \) can be constructed using the linear functional \(\varphi\{b\} \) defined on the braid group and called *Markov trace*. It has the following properties

\[
\varphi\{b' b''\} = \varphi\{b'' b'\}
\]

\[
\varphi\{b' \sigma_n\} = \tau \varphi\{b'\}
\]

\[
\varphi\{b' \sigma_n^{-1}\} = \bar{\tau} \varphi\{b'\}
\]

where

\[
\tau = \varphi\{\sigma_i\}, \quad \bar{\tau} = \varphi\{\sigma_i^{-1}\}; \quad i \in [1, n - 1] \tag{1.4}
\]

The invariant \(f_K \{b\} \) of the knot \(K \) is connected to the linear functional \(\varphi\{b\} \) defined on the braid \(b \) as follows

\[
f_K \{b\} = (\tau \bar{\tau})^{-(n-1)/2} \left(\frac{\tau}{\bar{\tau}} \right)^{\frac{1}{2}(\#(+) - \#(-))} \varphi\{b\} \tag{1.5}
\]

where \(\#(+) \) and \(\#(-) \) are the numbers of "positive" and "negative" crossings in the given braid correspondingly (see the fig.1).

The Alexander algebraic polynomials are the first well-known invariants of such type. In the beginning of 80th Jones discovered the new invariants of knots. He used the braid representation "passed through" the Hecke algebra relations, where the Hecke algebra, \(H_n(t) \), for \(B_n \) satisfies both braid group relations (1.1) and an additional "reduction" relation (see [Jo2, VeK])

\[
\sigma_i^2 = (1 - t)\sigma_i + t. \tag{1.6}
\]
Now the trace $\varphi \{ b \} = \varphi(t) \{ b \}$ can be regarded as to take the value in the ring of polynomials of one complex variable t. Consider the functional $\varphi(t)$ over the braid $\{ b' \sigma_i b'' \}$. The equation (1.6) allows one to get the recursion (skein) relations for $\varphi(t)$ and for the invariant $f_K(t)$ (see for details [AkW]):

$$\varphi(t) \{ b' \sigma_i b'' \} = (1 - t) \varphi(t) \{ b' b'' \} + t \varphi(t) \{ b' \sigma_i^{-1} b'' \}$$ \hspace{1cm} (1.7)

and

$$f_k^i(t) - t \left(\frac{\tau}{\tau} \right) f_k^i(t) = (1 - t) \left(\frac{\tau}{\tau} \right)^{1/2} f_k^i(t)$$ \hspace{1cm} (1.8)

where $f_k^i \equiv f \{ b' \sigma_i b'' \}; \ f_k^- \equiv f \{ b' \sigma_i^{-1} b'' \}; \ f_k^0 \equiv f \{ b' b'' \}$ and the fraction $\frac{\tau}{\tau}$ depends on the used representation.

3. The tensor representations of the braid generators can be written as follows

$$\sigma_i(u) = \lim_{u \to \infty} \sum_{klmn} R_{kl}^{lmn}(u) \cdot I^{(i)} \otimes \cdots I^{(i-1)} \otimes E_{nk}^i \otimes E_{ml}^{i+1} \otimes I^{(i+1)} \otimes \cdots I^{(n)}$$ \hspace{1cm} (1.9)

where $I^{(i)}$ is the identity matrix acting at the position i; E_{nk} is a matrix such that $(E_{nk})_{pq} = \delta_{np} \delta_{kq}$ and R_{kl}^{lmn} is the matrix satisfying the Yang-Baxter equation

$$\sum_{abc} R_{cij}^{q}(v) R_{kni}^{op}(u + v) R_{jbc}^{pq}(u) = \sum_{abc} R_{cqk}^{op}(u) R_{jib}^{pq}(u + v) R_{ka}^{pq}(v)$$ \hspace{1cm} (1.10)

In that scheme both known polynomial invariants (Jones and Alexander) can be considered. In particular, it has been discovered in [KaS, AkD] that the solutions of Eq.(1.10) associated with the groups $SU_q(2)$ and $GL(1,1)$ are linked to Jones and Alexander invariants correspondingly. To be more specific, one can find:

a) $\frac{\tau}{\tau} = t^2$ for Jones invariants, $f_K(t) \equiv V(t)$. The corresponding skein relations are

$$t^{-1} V^+(t) - t V^-(t) = (t^{-1/2} - t^{1/2}) V^0(t)$$ \hspace{1cm} (1.11)

and

b) $\frac{\tau}{\tau} = t^{-1}$ for Alexander invariants, $f_K(t) \equiv \nabla(t)$. The corresponding skein relations\(^1\) are

$$\nabla^+(t) - \nabla^-(t) = (t^{-1/2} - t^{1/2}) \nabla^0(t)$$ \hspace{1cm} (1.12)

\(^1\)Let us stress that the standard skein relations for Alexander polynomials one can obtain from (1.12) replacing $t^{1/2}$ by $-t^{1/2}$.

5
To complete this brief review of construction of polynomial invariants from the representation of the braid groups let us mention that the Alexander invariants allow also another useful description [Bir]. Write the generators of the braid group in the so-called Magnus representation

\[\sigma_j = \hat{\sigma}_j = \begin{pmatrix} 1 & 0 & \cdots \\ 0 & \ddots & \vdots \\ \vdots & \ddots & 0 \\ \cdots & 0 & 1 \end{pmatrix} \quad \text{\text{left } } j\text{th row;} \quad A = \begin{pmatrix} 1 & 0 & 0 \\ t & -t & 1 \\ 0 & 0 & 1 \end{pmatrix} \] (1.13)

Now the Alexander polynomial of the knot represented by the closed braid \(W = \prod_{\alpha=1}^{N} \sigma_{\alpha j} \) of the length \(N \) one can write as follows

\[(1 + t + t^2 + \ldots + t^{n-1}) \nabla(t)\{A\} = \det \left[\prod_{\alpha=1}^{N} \sigma_{\alpha j} - e \right] \] (1.14)

where the index \(j \) runs "along the braid", i.e. labels the number of used generators, while the index \(\alpha = \{1, \ldots, n-1, n, \ldots, 2n-2\} \) marks the set of braid generators ("letters") ordered as follows \(\{\sigma_1, \ldots, \sigma_{n-1}, \sigma_{1}^{-1}, \ldots, \sigma_{n-1}^{-1}\} \). In our further investigations we repeatedly address to this representation.

Let us stress that in general the length of the minimal irreducible length of the braid, introduced above, is not related directly to any topological knot invariants but we show below that nevertheless the "primitive word" can be served as a well defined characteristic of the "knot complexity". The "primitive word" has the simple topological sense which can be expressed in the following necessary condition. If the "primitive word" of some closed braid of \(n \) strings has the unit length then this braid belongs to the "trivial" class and the corresponding knot is represented by the set of \(n \) disjoint unentangled trivial loops for sure.

We are interested in the limit behavior of the knots or links invariants when the length of the corresponding braid tends to infinity, i.e., when the braid "grows". In that case we can rigorously define some more simple topological characteristics than the algebraic invariant which we call the "knot complexity".

Definition 1 Call the knot complexity, \(\eta \), the power of some algebraic invariant, \(f_K(t) \) (Alexander, Jones, HOMFLY) (see also [GN2])

\[\eta = \lim_{|t| \to \infty} \frac{\ln f_K(t)}{\ln |t|} \] (1.15)
Remark. By definition, the "knot complexity" takes one and the same value for rather broad class of topologically different knots corresponding to algebraic invariants of one and the same power, being from that point of view more weak topological characteristics than complete algebraic polynomial.

The polynomial invariant can give rather complete information about the knot topology, but dealing with statistics of randomly generated knots very often we do not require such detailed data and look for more rough characteristics of "topologically similar" knots. The analogous problem in statistical mechanics appears when passing from the microcanonical ensemble to the Hibbs one: we lose some information about details of a particular realization of the system but aquire the smoothness of the measure being able to apply the standard thermodynamic methods to the considered system.

Let us summarize the advantages of the quantity introduced in (1.15) with respect to the corresponding topological invariant $f_K(t)$:

(i) One and the same value of η characterizes a narrow class of "topologically similar" knots which is however much broader than the class represented by the polynomial invariant $X(t)$. This allows one to introduce the smoothed measures and distribution functions for η.

(ii) The knot complexity η describes correctly, (at least from the physical point of view) the limit cases: $\eta = 0$ corresponds to "weakly entangled" trajectories whereas $\eta \sim N$ matches the system of "strongly entangled" paths. The later case has been discussed in details in [GN2].

(iii) The knot complexity keeps all nonabelian properties of the polynomial invariants.

Our main goal in the present section concerns the estimation of the limit probability distribution of η for the knots obtained by randomly generated closed B_3-braids of the length N. Let us stress that we essentially simplify the general problem "of knot entropy". Namely, we insert an additional requirement that the knot should be represented by a braid from the group B_3 without fail.

1.1.3 Statistical model

The investigation of the probability properties of algebraic knot invariants we begin with the consideration of statistics of the random loops ("brownian bridges") on the simplest
noncommutative groups. In the most general way the problem can be formulated as follows.

Take the discrete group G_n with a fixed finite number of generators $\{g_1, \ldots, g_{n-1}\}$. Let ν be the uniform distribution on the set $\{g_1, \ldots, g_{n-1}, g_i^{-1}, \ldots, g_{n-1}^{-1}\}$. For convenience we suppose $h_j = g_i$ for $j = i$ and $h_j = g_i^{-1}$ for $j = i + n - 1$; $\nu(h_j) = \frac{1}{2n-2}$ for any j. We construct the (right-hand) random walk (the random word) on G_n with a transition measure, ν, i.e., the Markov chain $\{\xi_n\}$, $\xi_0 = e \in G_n$ and $\text{Prob}(\xi_j = u|\xi_{j-1} = v) = \nu(v^{-1}u) = \frac{1}{2n-2}$. It means that with the probability $\frac{1}{2n-2}$ we add the element $h_{\alpha N}$ to the given word $h_{N-1} = h_{\alpha_1}, h_{\alpha_2}, \ldots h_{\alpha_{N-1}}$ from the right-hand side2.

Definition 2 The random word W formed by N letters taken independently with the uniform probability distribution $\nu = \frac{1}{2n-2}$ from the set $\{g_1, \ldots, g_{n-1}, g_i^{-1}, \ldots, g_{n-1}^{-1}\}$ is called the brownian bridge (BB) of length N on the group G_n if the primitive word of W is identical to the unity.

The most attention is paid in this paper to the following two questions:

1. What is the probability $P(N)$ of the brownian bridge on the group G_n.

2. What is the probability distribution $P(\kappa, m|N)$ of the fact that the subword W' consisting of first m letters of the N-letter word W has the primitive path κ under the condition that the whole word W is the brownian bridge on the group G_n. (Below we call $P(\kappa, m|N)$ the conditional distribution on BB.)

It has been shown in the papers [KNS] that for the free group the corresponding problem can be mapped to the investigation of the random walks on the simply connected tree. Below we represent shortly some results concerning the limit behavior of the conditional probability distribution of BB on the Cayley tree. In the case of braids the more complicated group structure does not allow us to use the same simple geometrical image directly. Nevertheless the problem of the limit distribution for the random walks on B_n can be reduced to the consideration of the random walk on some graph Γ. In the case of the group B_3 we are able to construct this graph evidently, whereas for the group B_n ($n \geq 4$) we give upper estimations for the limit distribution of the random walks considering the walks on so-called local groups.

2Analogously we can construct the left-hand side Markov chain.
1.2 Statistics of random walks and joint distributions of brownian bridges on free group

The free group, Γ_2, with two generators g_1 and g_2 has the well-known matrix representation (see, for instance, [Mum])

$$
g_1 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}; \quad g_2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}
$$

(1.16)

Consider the Markov chain with the states in the set $\{g_1, g_2, g_1^{-1}, g_2^{-1}\}$ as it is described in the previous section. Due to the simple topological structure of the free group, the limit distribution of the random walk on Γ_2 follows from the limit distribution of the random paths on the Cayley tree with 4 branches [Kes, KhN, KNS] and the local transitional probabilities equal to $\frac{1}{4}$ (see fig.4). In particular, the probability, $P(\kappa, N)$, of the fact that in the randomly generated N-letter word W the primitive word length is κ, satisfies the set of equations [NeSK]

$$
P(\kappa, N + 1) = \frac{1}{4} P(\kappa + 1, N) + \frac{3}{4} P(\kappa - 1, N); \quad (\kappa \geq 2)
P(\kappa, N + 1) = \frac{1}{4} P(\kappa + 1, N) + P(\kappa, N); \quad (\kappa = 1)
P(\kappa, N + 1) = \frac{1}{4} P(\kappa + 1, N); \quad (\kappa = 0)
$$

(1.17)

$$
P(\kappa, 0) = \delta_{\kappa, 0}
$$

The solution of (1.17) in the limit $N \to \infty$ is

$$
P(\kappa, N) = \left(\frac{3}{4}\right)^{N/2} 3^{(\kappa+1)/2} Q(\kappa + 1, N)
$$

(1.18)

where

$$
Q(\kappa, N) = \begin{cases}
3 \sqrt{\frac{2}{\pi}} \frac{1}{N^{3/2}} & (\kappa = 1) \\
2 \sqrt{\frac{2}{\pi}} \frac{\kappa}{N^{3/2}} \exp \left\{ -\frac{\kappa^2}{2N} \right\} & (1 \ll \kappa < N)
\end{cases}
$$

(1.19)

The function $Q(\kappa, N)$ defines the probability distribution for the simplest random walk on the half-line \mathbb{Z}^+ with the boundary condition $Q_0(\kappa = 0, N) = 0$.

Lemma 1 The limit conditional probability distribution, $P(\kappa, m|N)$, for the brownian bridge on the group Γ_2 obeys the central limit theorem [KNS]

$$
P(\kappa, m|N) = \sqrt{\frac{2}{\pi (m(N - m))^{3/2}}} \exp \left\{ -\frac{\kappa^2}{2} \left(\frac{1}{m} + \frac{1}{N - m} \right) \right\}
$$

(1.20)

when $N \to \infty$; $\frac{m}{N} = \text{const}$ and $1 \ll k < N$.

9
Proof. According to the definition of conditional probability distribution over BB, we split the whole word W in two subwords W' and W'' having m and $(N - m)$ letters correspondingly. Now using the Definition 2 and the fact that the word W is realized as a Markov chain, we can represent the conditional distribution function $P(\kappa, m| N)$ in the following form

$$P(\kappa, m| N) = \frac{P(\kappa, m) P(\kappa, N - m)}{P(0, N) \overline{N}(\kappa)}$$

(1.21)

where $\overline{N}(\kappa) = 4 \cdot 3^{\kappa - 1}$ is the number of different primitive words of length κ.

To make the eq.(1.21) more clear recall that the N-letter word W on the group Γ_2 is in one-to-one correspondence with the N-step trajectory on the Cayley tree and the length of the primitive word W is identical to the distance between ends of the given trajectory along the Cayley tree (i.e., is equal to the geodesics). The functions $P(\kappa, m)$ and $P(\kappa, N - m)$ give the probability of the fact that the m- and $(N - m)$-step paths have finished in an arbitrary points of the Cayley tree on the distance κ from the origin. The probability of the coincidence of ends of these two different paths in some common point on the distance κ from the origin is just $\frac{1}{\overline{N}(\kappa)}$.

Substituting (1.18), (1.19) into (1.21) we obtain the postulated expression (1.20), where the pre-exponent is due to the Dirichlet boundary condition at $\kappa = 0$. □

Lemma 2 The joint conditional probability distribution $P(\kappa_1, m_1; \ldots; \kappa_s, m_s| N)$ of the BB on the group Γ_2 is converged for $N \to \infty$ (where $\Sigma_{j=1}^s m_j = N; \frac{m_j}{N} = \text{const}$ and $1 \ll \kappa_j \ll N$ for any $1 < j < s$) to the finite-dimensional distribution of the BB on the halfline \mathbb{Z}^+.

Proof. Define the two-point conditional distribution functions, $\pi^+(\kappa_1, m_1; \kappa_2^+, m_2| N)$ and $\pi^-(\kappa_1, m_1; \kappa_2^-, m_2| N)$, having the sense of the probabilities of two following events satisfied simultaneously:

i) in the N-letter word W the first m_1-letter subword W' has the primitive length κ_1;

ii) in the same N-letter word the subword W'' obtained by adding the forthcoming letter to the subword W' ($m_2 = m_1 + 1$) has the primitive length $\kappa_2^+ = \kappa_1 + 1$ (for π^+) or $\kappa_2^- = \kappa_1 - 1$ (for π^-) under the condition that the whole word W is completely contractible (i.e. its primitive length is equal to zero).
Obviously, $\pi^+(\kappa_1, m_1; \kappa_2, m_2|N)$ give the local transitional probabilities for the conditional random walk when we make one step "forth" or "back" along the geodesics on the Cayley tree (fig.5). Now to prove that the conditional radial\(^3\) random process on the group Γ_2 is mapped to the simplest random walk without any drift on \mathbb{Z}^+ and has the Wiener mesure, it is enough to show that $\pi^+ = \pi^- = \frac{1}{2}$ when $N \to \infty$; i.e., the condition of the contractibility of the whole N-step trajectory completely "kills" the drift from the origin on the Cayley tree for the local jumps.

1. Suppose $\kappa_2^+ = \kappa_1 + 1$. In accordance with the condition ii) we have

$$\pi^+(\kappa_1, m_1; \kappa_2^+ = \kappa_1 + 1, m_2 = m_1 + 1|N) = \frac{P(\kappa_1, m_1) P^+(\kappa_2^+ - \kappa_1, 1) P(\kappa_2^+, N - m_1 - 1)}{P(0, N) \mathcal{N}(\kappa_1) (z - 1)} \quad (1.22)$$

where: $(z - 1)$ is the number of the tree branches connecting one arbitrary point on the tree to the points on the next coordinational sphere (z is the coordinational number of the Cayley tree), $z = 4$; $P^+(\kappa_2^+ - \kappa_1, 1)$ is the probability to increase the distance along the tree per one unit making one random step for $\kappa_1 \geq 1$, $P^+ = \frac{z - 1}{z} = \frac{3}{4}$.

Substituting (1.18) into (1.22) we obtain the following expression for π^+

$$\pi^+ = \frac{3\sqrt{3}}{8} \frac{Q(\kappa_1 + 1, m_1) Q(\kappa_1 + 2, N - m_1 - 1)}{Q(1, N)} \quad (1.23)$$

2. Now let $\kappa_2^- = \kappa_1 - 1$. Reversing the direction along the trajectory, we get

$$\pi^-(\kappa_1, m_1; \kappa_2^- = \kappa_1 - 1, m_2 = m_1 + 1|N) \equiv \pi^+(\kappa_2^-, N - m_1 - 1; \kappa_2^- + 1, m_1|0) = \frac{P(\kappa_2^-, N - m_1 - 1) P^+(\kappa_1 - \kappa_2^-, 1) P(\kappa_2^-, 1, m_1)}{P(0, N) \mathcal{N}(\kappa_1) (z - 1)} \quad (1.24)$$

where $P^+(\kappa_1 - \kappa_2^-, 1) = \frac{3}{4}$ (compare to (1.22)).

Eq.(1.24) reflects the fact that the probability does not change if the random word is represented in the reversed order of steps, i.e., the 1st step has number N, the 2nd has the number $(N - 1)$ and so on. Thus, π^- has the form similar to (1.22) and it can be written as

$$\pi^- = \frac{3\sqrt{3}}{8} \frac{Q(\kappa_1 + 1, m_1) Q(\kappa_1, N - m_1 - 1)}{Q(1, N)} \quad (1.25)$$

\(^3\)The distances are measured in terms of lengths of geodesics on the Cayley tree.
Using the probability conservation law

\[\pi^+ + \pi^- = 1 \]

and the recursion relation for the simplest random walk on the half-line \(\mathbb{Z}^+ \) (extracted from (1.17)-(1.18))

\[Q(\kappa_1 + 2, N - m_1 - 1) + Q(\kappa_1, N - m_1 - 1) = 2Q(\kappa_1 + 1, N - m_1), \quad (\kappa \geq 1) \]

it is possible to rewrite \(\pi^\pm \) as follows:

\[
\begin{align*}
\pi^+ &= \frac{\pi^+}{\pi^+ + \pi^-} = \frac{1}{2} \frac{Q(\kappa_1 + 2, N - m_1 - 1)}{Q(\kappa_1 + 1, N - m_1)} \\
\pi^- &= \frac{\pi^-}{\pi^+ + \pi^-} = \frac{1}{2} \frac{Q(\kappa_1, N - m_1 - 1)}{Q(\kappa_1 + 1, N - m_1)}
\end{align*}
\]

(1.26)

Substituting (1.19) into (1.26) we find

\[
\begin{align*}
\pi^+ &= \frac{1}{2} - \frac{c(1 - s)}{\sqrt{N}}; \\
\pi^- &= \frac{1}{2} + \frac{c(1 - s)}{\sqrt{N}}
\end{align*}
\]

(1.27)

where \(c = \kappa_1/\sqrt{N} \) \((1 \ll k_1 \ll N)\), \(s = m_1/N \) \((1 < m < N)\) and \(N \to \infty \).

Thus, the transition probabilities for the local jumps along the geodesics on the Cayley tree under the condition of BB coincide with the transition probabilities for the simplest random walk on the halfline \(\mathbb{Z}^+ \) when \(N \to \infty \). Hence, we have one-to-one mapping of the "radial" random walk on the tree under the condition of BB on the standard diffusion process without the drift on the halfline. Applying the standard central limit theorem to the last process we get the desired statement of the theorem. \(\square \)

1.3 Limit distribution for power of Alexander invariants of knots generated by random \(B_3 \)-braids

We start out the consideration with the calculation of the distribution function for the conditional BB on the simplest nontrivial braid group \(B_3 \). The group \(B_3 \) can be represented by the \(2 \times 2 \) unimodular matrices. To be specific, the braid generators \(\sigma_1 \) and \(\sigma_2 \) in the Magnus representation [Bir] look as follows:

\[
\sigma_1 = \begin{pmatrix} -t & 1 \\ 0 & 1 \end{pmatrix}; \quad \sigma_2 = \begin{pmatrix} 1 & 0 \\ t & -t \end{pmatrix},
\]

(1.28)
where t is "the spectral parameter". It is well known that for $t = -1$ the matrices σ_1 and σ_2 generate the group $PSL(2, \mathbb{Z})$ in such a way that the whole group B_3 is its central extension with the center

$$
(\sigma_1 \sigma_2 \sigma_1)^{1\lambda} = (\sigma_2 \sigma_1 \sigma_2)^{1\lambda} = (\sigma_1 \sigma_2 \sigma_1)^{6\lambda} = (\sigma_2 \sigma_1 \sigma_2)^{6\lambda} = \begin{pmatrix}
\epsilon^{6\lambda} & 0 \\
0 & \epsilon^{6\lambda}
\end{pmatrix}
$$

(1.29)

First we restrict ourselves with the examination of the group $PSL(2, \mathbb{Z})$, for which we define $\hat{\sigma}_1 = \sigma_1$ and $\hat{\sigma}_2 = \sigma_2$ (at $t = -1$).

The canonical representation of $PSL(2, \mathbb{Z})$ is given by the matrices S, T:

$$
S = \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}; \quad T = \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
$$

(1.30)

The braiding relation $\hat{\sigma}_1 \hat{\sigma}_2 \hat{\sigma}_1 = \hat{\sigma}_2 \hat{\sigma}_1 \hat{\sigma}_2$ in the $\{S, T\}$-representation takes the form

$$
S^2 TS^{-2} T^{-1} = 1
$$

(1.31)

in addition we have

$$
S^4 = (ST)^3 = 1
$$

(1.32)

This representation is well known and reflects the fact that in terms of $\{S, T\}$-generators the group $SL(2, \mathbb{Z})$ is a free product $\mathbb{Z}^2 \otimes \mathbb{Z}^3$ of two cyclic groups of 2nd and 3rd orders correspondingly.

The connection of $\{S, T\}$ and $\{\hat{\sigma}_1, \hat{\sigma}_2\}$ is as follows

$$
\hat{\sigma}_1 = T \quad \quad (T = \hat{\sigma}_1)
$$

$$
\hat{\sigma}_2 = T^{-1} ST^{-1} \quad (S = \hat{\sigma}_1 \hat{\sigma}_2 \hat{\sigma}_1)
$$

(1.33)

1.3.1 The random walks on the group $PSL(2, \mathbb{Z})$

The modular group $PSL(2, \mathbb{Z})$ is a discrete subgroup of the group $PSL(2, \mathbb{R})$. The fundamental domain of $PSL(2, \mathbb{Z})$ has the form of a circular triangle ABC with the angles $\{0, \frac{\pi}{3}, \frac{\pi}{3}\}$ situated in the upper halfplane $\text{Im} \tau > 0$ of the complex plane $\tau = u + iv$ (see fig.6 for details). By definition of the fundamental domain, at least one element of each orbit of $PSL(2, \mathbb{Z})$ lies inside ABC-domain and two elements lie on the same orbit
if and only if they belong to the boundary of the \(ABC\)-domain. The group \(PSI(2, \mathbb{Z})\) is completely defined by its basic substitutions under the action of generators \(S\) and \(T\):

\[
\begin{align*}
S : & \quad \zeta \to -1/\zeta \\
T : & \quad \zeta \to \zeta + 1
\end{align*}
\]

Let us choose an arbitrary element \(\zeta_0\) from the fundamental domain and construct the orbit corresponding to it. In other words we raise a graph, \(\Gamma\), which connects the neighboring images of the initial element \(\zeta_0\) obtained under successive action of the generators from the set \(\{S, T, S^{-1}, T^{-1}\}\) on the element \(\zeta_0\). The corresponding graph is shown in the fig.6 by the broken line and its topological structure is clear reproduced in the fig.7. It can be seen that despite the graph \(\Gamma\) does not correspond to the free group and has local cycles, its "backbone", \(\gamma\), has a Cayley tree structure but with the reduced number of branches compared to the free group \(\Gamma_2\).

Now we turn to the problem of the limit distribution of a random walk on the graph \(\Gamma\). The walk is determined as follows:

1. Take the initial point ("root") of the random walk on the graph \(\Gamma\). Consider the discrete random jumps over the neighboring vertices of the graph with the transition probabilities induced by the uniform distribution \(\nu\) on the set of generators \(\{\tilde{\sigma}_1, \tilde{\sigma}_2, \tilde{\sigma}_1^{-1}, \tilde{\sigma}_2^{-1}\}\). These probabilities are (see (1.33))

\[
\begin{align*}
\text{Prob}(\xi_n = T\zeta_0 \mid \xi_{n-1} = \zeta_0) &= \frac{1}{4} \\
\text{Prob}(\xi_n = (T^{-1}ST^{-1})\zeta_0 \mid \xi_{n-1} = \zeta_0) &= \frac{1}{4} \\
\text{Prob}(\xi_n = T^{-1}\zeta_0 \mid \xi_{n-1} = \zeta_0) &= \frac{1}{4} \\
\text{Prob}(\xi_n = (TS^{-1}T)\zeta_0 \mid \xi_{n-1} = \zeta_0) &= \frac{1}{4}
\end{align*}
\]

(1.35)

The following facts we should take into account:

(a) the elements \(S\zeta_0\) and \(S^{-1}\zeta_0\) coincide (as it follows from (1.34));

(b) the process is markovian in terms of the alphabet \(\{\tilde{\sigma}_1, \ldots, \tilde{\sigma}_2^{-1}\}\) only;

(c) the total transition probability is conserved.

2. Define the shortest distance, \(\kappa\), along the graph between the root and terminal points of the random walk. By construction, this distance coincides with the
length $|W_{[S,T]}|$ of the minimal irreducible word $W_{[S,T]}$ written in the alphabet
$\{S,T,S^{-1},T^{-1}\}$. The connection of the distance, κ, with the length $|W_{[\tilde{s}_1,\tilde{s}_2]}|$ of
the minimal irreducible word $W_{[\tilde{s}_1,\tilde{s}_2]}$ written in the alphabet $\{\tilde{s}_1,\tilde{s}_2,\tilde{s}_1^{-1},\tilde{s}_2^{-1}\}$ is
established in the following lemma.

Lemma 3 (a) $|W_{[\tilde{s}_1,\tilde{s}_2]}| = 0$ if and only if $\kappa = 0$; (b) for $\kappa \gg 1$ the length $|W_{[\tilde{s}_1,\tilde{s}_2]}|$ has the following behavior

$$
\lim_{\kappa \to \infty} \frac{|W_{[\tilde{s}_1,\tilde{s}_2]}|}{\kappa} = 1 + O\left(\frac{1}{\kappa}\right)
$$

The proof is rather trivial and is based on the evident construction of the graph Γ
where each bond by means of Eqs.(1.33) can be associated with the generators \tilde{s}_1^\pm and $(\tilde{s}_1 \tilde{s}_2 \tilde{s}_1)^\pm$.

The "coordinates" of the graph vertices we define in the following way (see fig.7):

a) We apply the arrows for the bonds of the graph Γ corresponding to T-generators.
The step towards (backwards) the arrow means the application of T (T^{-1}).

b) We characterize each elementary cell of the graph Γ by its distance, μ, along the
graph backbone γ from the root cell.

c) We introduce the variable $\alpha = \{1,2\}$ which numerates only the "ingoing vertices"
inside each cell. We say that the walker stays in the cell M located at the distance
μ along the backbone from the origin if and only if it visits one of two ingoing
vertices of M. Such labeling gives the unique coding of the whole graph Γ.

Define the probability $U_\alpha(\mu,N)$ of the fact that the N-step random walk along the
graph Γ starting from the root point is finished in α-vertex of the cell on the distance of
μ steps along the backbone. We should stress that $U_\alpha(\mu,N)$ is the probability to stay in
any of $\mathcal{N}_\alpha(\mu) = 3 \cdot 2^{\alpha-1}$ cells situated at the distance μ along the backbone.

It is possible to write the closed system of recursion relations for the functions
$U_\alpha(\mu,N)$, but in here we attend to a bit more rough characteristics of random walk.
Namely we calculate the "integral" probability distribution of the fact that the trajectory of the random walk starting from an arbitrary vertex of the root cell O has finished
in an arbitrary vertex point of the cell M situated on the distance μ along the graph backbone. This probability, $U(\mu, N)$, reads

$$U(\mu, N) = \frac{1}{2} \sum_{\alpha = \{1, 2\}} U_\alpha(\mu, N)$$

Lemma 4 The relation between the distances, κ, along the graph Γ and μ along its backbone γ is as follows:

$$\lim_{\mu \to \infty} \frac{k}{\mu} + O\left(\frac{1}{\mu}\right) \tag{1.36}$$

This fact is the simple consequence of the constructed graphs Γ and γ (fig.7).

The following theorem gives the limit distribution for the random walks on the group $PSL(2, \mathbb{Z})$.

Theorem 2 The probability distribution $U(\kappa, N)$ of the fact that the randomly generated N-letter word $W_{(\sigma_1, \sigma_2)}$ with the uniform distribution $\nu = \frac{1}{4}$ over the generators $\{\bar{\sigma}_1, \bar{\sigma}_2, \bar{\sigma}_1^{-1}, \bar{\sigma}_2^{-1}\}$ can be contracted to the minimal irreducible word of length κ, has the following limit behavior

$$U(\kappa, N) = \frac{h}{\sqrt{\pi(4-h)}} \left(\frac{1 + \sqrt{2}}{2}\right)^N \left\{\begin{array}{ll}
\frac{1}{N^{3/2}} & k = 0 \\
\frac{1}{N^{3/2}} 2^{k/2} \kappa \exp\left(-\frac{\kappa h}{4}\right) & 1 \ll k \ll N
\end{array}\right. \tag{1.37}$$

where $h = 2 + \frac{\sqrt{2}}{2}$.

Proof. Suppose the walker stays in the vertex α of the cell M located at the distance $\mu > 1$ from the origin along the graph backbone γ. The change in μ after making of one arbitrary step from the set $\{\bar{\sigma}_1, \bar{\sigma}_2, \bar{\sigma}_1^{-1}, \bar{\sigma}_2^{-1}\}$ is summarized in the following table:

<table>
<thead>
<tr>
<th>α</th>
<th>$\bar{\sigma}_1 = T$</th>
<th>$\bar{\sigma}_2 = T^{-1}ST^{-1}$</th>
<th>$\bar{\sigma}_1^{-1} = T^{-1}$</th>
<th>$\bar{\sigma}_2^{-1} = TS^{-1}T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>$\mu \to \mu + 1$</td>
<td>$\mu \to \mu$</td>
<td>$\mu \to \mu - 1$</td>
<td>$\mu \to \mu + 1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>$\bar{\sigma}_1 = T$</th>
<th>$\bar{\sigma}_2 = T^{-1}ST^{-1}$</th>
<th>$\bar{\sigma}_1^{-1} = T^{-1}$</th>
<th>$\bar{\sigma}_2^{-1} = TS^{-1}T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>$\mu \to \mu - 1$</td>
<td>$\mu \to \mu$</td>
<td>$\mu \to \mu + 1$</td>
<td>$\mu \to \mu$</td>
</tr>
</tbody>
</table>
It can be seen that for any value of α two steps increase the length of the backbone, μ, one step decreases it and one step leaves μ without changes.

Let us introduce the effective probabilities: p_1 - to jump to some specific cell among 3 neighboring ones of the graph Γ and p_2 - to stay in the given cell. Because of the symmetry of the graph the conservation law has to be written as $3p_1 + p_2 = 1$; by definition we have: $p_1 \overset{def}{=} \nu = \frac{1}{3}$. Thus we can write the following set of recursion relations for the integral probability $U(\mu, N)$

$$U(\mu, N + 1) = \frac{1}{4}U(\mu + 1, N) + \frac{1}{4}U(\mu, N) + \frac{1}{2}U(\mu - 1, N) \quad (\mu \geq 2)$$

$$U(\mu, N + 1) = \frac{1}{4}U(\mu + 1, N) + \frac{1}{2}U(\mu, N) \quad (\mu = 1)$$

(1.38)

$$U(\mu, N = 0) = \delta_{\mu,1}$$

The solution of (1.38) we search in the form

$$U(\mu, N) = A^\mu B^N V(\mu, N)$$

(1.39)

where the constants A and B we choose from the auxiliary conditions:

$$\frac{A}{4B} = \frac{1}{h}; \quad \frac{1}{4B} = 1 - \frac{2}{h}; \quad \frac{1}{2AB} = \frac{1}{h} \quad (h > 1)$$

(1.40)

Resolving these equations we get:

$$A = \sqrt{2}; \quad B = \frac{1}{2} + \frac{\sqrt{2}}{2}; \quad h = 2 + \frac{\sqrt{2}}{2}$$

(1.41)

The equations (1.40) imply that for the function $V(\mu, N)$ we obtain a usual 1D random walk on the halfline $\mu \geq 0$ (i.e. $V(\mu \leq 0, N) \equiv 0$) with conserved transition probabilities and with some special boundary and initial conditions:

$$V(\mu, N + 1) = \frac{1}{h}V(\mu + 1, N) + \left(1 - \frac{2}{h}\right)V(\mu, N) + \frac{1}{h}V(\mu - 1, N) \quad (\mu \geq 2)$$

$$V(\mu, N + 1) = \frac{1}{h}V(\mu + 1, N) + 2\left(1 - \frac{3}{h}\right)V(\mu, N) \quad (\mu = 1)$$

$$V(\mu, N = 0) = \delta_{\mu,1}$$

(1.42)

It is possible to obtain the exact asymptptotic solution of (1.42) for $N \to \infty$. First we represent eqs. (1.42) in a slightly different way rewriting them as follows

$$V(\mu, N + 1) = \frac{1}{h}V(\mu + 1, N) + \left(1 - \frac{2}{h}\right)(1 + \delta_{\mu,1})V(\mu, N) + \frac{1}{h}V(\mu - 1, N)$$

(1.43)
with the boundary $V(\mu = 0, N) = 0$ and initial $V(\mu, N = 0) = \delta_{\mu,1}$ conditions.

Then we introduce the generating function for N-variable and the sin-Fourier transform for μ-variable on the halfline $\mu \geq 0$

$$V(u, s) = \sum_{N=0}^{\infty} s^N \sum_{\mu=0}^{\infty} V(\mu, N) \sin \frac{\pi u \mu}{l}$$

(1.44)

Now we have from (1.43)-(1.44)

$$\frac{1}{s} V(u, s) - \frac{1}{s} \sin \frac{\pi u}{l} = \frac{2}{h} \cos \frac{\pi u}{l} V(u, s) + \left(1 - \frac{2}{h}\right) V(u, s) + \left(1 - \frac{1}{h}\right) \sin \frac{\pi u}{l} \int_0^l \sin \frac{\pi u}{l} V(u, s) du$$

(1.45)

The solution of (1.45) reads

$$\frac{1}{l} \int_0^l \sin \frac{\pi u}{l} V(u, s) du = \frac{D_1(h, s)}{D_2(h, s)}$$

(1.46)

where

$$D_1(h, s) = \frac{1}{\pi} \int_0^\pi \frac{\sin^2 w \ dw}{1 - s \left(\frac{2}{h} \cos w + 1 - \frac{2}{h}\right)} =$$

$$\left. \frac{h}{s} + \frac{h}{4s^2} \left(\frac{h}{h} + 6s - hs - \sqrt{h} \sqrt{(1-s)(h+4s-hs)} \right) \right|_{s=1} \approx$$

(1.47)

and

$$D_2(h, s) = 1 - \left(1 - \frac{2}{h}\right) \frac{1}{\pi} \int_0^\pi \frac{s \sin^2 w \ dw}{1 - s \left(\frac{2}{h} \cos w + 1 - \frac{2}{h}\right)} =$$

$$1 - \left(1 - \frac{2}{h}\right) s D_1(h, s)$$

(1.48)

It is easy to see that $D_2(h, s)$ is always positive for any $|s| \leq 1$, what means that equation (1.45) has a continuous spectrum and the limit distribution of the function $V(\mu, N)$ is governed by the central limit theorem for the random walks on the halfline.

The exact solution for the function $V(\mu, s)$ is

$$V(\mu, s) = \frac{1}{D_2(h, s)} \frac{2}{\pi} \int_0^\pi \frac{\sin w \sin \mu w \ dw}{1 - \frac{2}{s} \left(\frac{2}{h} \cos w + 1 - \frac{2}{h}\right)}$$

(1.49)

In particular, we have

$$V(\mu = 1, s) = \frac{2h \left(1 - \sqrt{h} \sqrt{1-s}\right)}{4 - h + (h-2)\sqrt{h} \sqrt{1-s}} = \frac{2\sqrt{h}}{h - 2 a + \sqrt{c}} + \text{const}$$

(1.50)
and

\[V(\mu \gg 1, N) \approx \frac{2h \exp \left(-\mu \sqrt{h} \sqrt{1 - s} \right)}{4 - h + (h - 2) \sqrt{h} \sqrt{1 - s}} = \frac{2\sqrt{h} \exp \left(-\mu \sqrt{h} \sqrt{1 - s} \right)}{h - 2} \frac{a + \sqrt{\epsilon}}{a + \sqrt{\epsilon}} \]

(1.51)

where \(a = \frac{h - 1}{\sqrt{h} (h - 2)} \) and \(\epsilon = 1 - s > 0 \).

Performing the inverse Laplace transform and taking into account the contribution from the branching point at \(\epsilon = 0 \) only, we obtain in the limit \(N \to \infty \)

\[V(\mu = 1, N) = \frac{2\sqrt{h}}{h - 2} \frac{1}{\sqrt{\pi} N} - a e^{2N} \text{erfc} \left(a \sqrt{N} \right) \approx \frac{\sqrt{h}}{a \sqrt{\pi} (h - 2) N^{3/2}} \]

(1.52)

and

\[V(\mu \gg 1, N) = \frac{2\sqrt{h}}{h - 2} \left(\frac{1}{\sqrt{\pi} N} e^{-\mu^2 h} - a e^{\mu \sqrt{h} + a^2 N} \text{erfc} \left(a^2 \sqrt{N} + \frac{\mu \sqrt{h}}{2 \sqrt{N}} \right) \right) \approx \frac{\sqrt{h}}{a \sqrt{\pi} (h - 2) N^{3/2}} \exp \left(-\frac{\mu^2 h}{4N} \right) \]

(1.53)

Substituting the last equation in (1.39) and taking into account the Lemmas 3-4 we get the statement of the Theorem 2. \(\square \)

Corollary 1 The probability distribution \(U(\kappa, m | N) \) of the fact that in the randomly generated \(N \)-letter trivial word in the alphabet \(\{ \bar{\sigma}_1, \bar{\sigma}_2, \bar{\sigma}_1^{-1}, \bar{\sigma}_2^{-1} \} \) the subword of first \(m \) letters has a minimal irreducible length \(\kappa \) reads

\[U(\kappa, m | N) = \frac{\kappa^2}{\sqrt{\pi} (4 - h) (m(N - m))^{3/2}} \exp \left\{ \frac{\kappa^2 h}{4} \left(\frac{1}{m} + \frac{1}{N - m} \right) \right\} \]

(1.54)

Proof. The conditional probability distribution \(U(\mu, m | N) \) of the fact that the random walk on the backbone graph, \(\gamma \), started from origin visits after first \(m \) \((m < N) \) steps some graph vertex situated at the distance \(\mu \) and after \(N \) steps returns to the origin, is determined as follows (compare to the proof of Lemma 1)

\[U(\mu, m | N) = \frac{U(\mu, m | N)}{U(\mu = 0, N | \gamma)} \]

(1.55)

where the \(\mathcal{N}_\gamma = 3 \cdot 2^{\mu - 1} \) and \(U(\mu, N) \) is given by (1.37). Using Lemma 3 we get Eq.(1.54). \(\square \)
1.3.2 The random walks on the braid group B_3 and the limit distribution of powers of Alexander invariants

Now we are in position to formulate some limit theorems for BB on the group B_3 as well as to find the limit distribution for the knot complexity η (i.e. a power of the Alexander polynomial of the knots represented by the random braids from B_3).

Theorem 3 The probability $Z(\kappa, m|N)$ for the brownian bridge on the group B_3 has the limit behavior

\[
Z(\kappa, m|N) \asymp \begin{cases}
\text{const} & \kappa = 0 \\
\psi \left(\frac{k}{m} \right) \psi \left(\frac{k}{N-m} \right) \exp \left\{ -\text{const} \kappa^2 \left(\frac{1}{m} + \frac{1}{N-m} \right) \right\} & \kappa \gg 1
\end{cases}
\]

(1.56)

where $\psi \left(\frac{k}{m} \right)$ is some polynomial function.

(We expect $\psi \left(\frac{k}{m} \right) \sim \frac{k}{m^{3/2}}$ but the given proof is too rough to show that behavior).

Proof. The conditional probability distribution $Z(\kappa, m|N)$ for $N \to \infty$ is bounded from below and above

\[
P(\kappa, m|N) \leq Z(\kappa, m|N) \leq U(\kappa, m|N)
\]

(1.57)

where $P(k, m|N)$ and $U(k, m|N)$ are the limit probabilities for the brownian bridges on the groups Γ_2 (i.e. the free group) and $PSL(2, \mathbb{Z})$ (i.e. the braid group at the point $t = -1$) correspondingly. Substituting asymptotics (1.20) and (1.54) into (1.57) we come to the conclusion (1.56).

The problem of calculating of the conditional limit probability distribution of the brownian bridges on the group B_3 can be easily turned to the problem of calculating of the conditional distribution function for the powers of Alexander polynomial invariants of knots produced by randomly generated closed braids from the group B_3 which allows one to make a first step in investigation of correlations in knotted random walks.

The closure an arbitrary braid $b \in B_3$ of the total length N gives the knot (link) K. Split now the braid b in two parts b' and b'' with the corresponding lengths m and $N-m$ and make the "phantom closure" of the subbraids b' and b'' as it is shown in the fig.8. The phantomly closed subbraids b' and b'' correspond to the set of phantomly closed parts.
("subknots") of the knot (link) K. Now we could ask for the conditional probability to find these subknots in the state characterized by the complexity η when the knot (link) K as a whole is characterized by the complexity $\eta = 0$ (i.e. the topological state of $K"is close to trivial").

It is convenient to introduce the normalized generators of the group $B_3 ||\sigma_j^{\pm 1}|| = (\det \sigma_j^{\pm 1})^{-1} \sigma_j^{\pm 1}$ to get rid of unimportant commutative factor dealing with the the norm of the matrices σ_1 and σ_2. Now we can rewrite the power of Alexander invariant (Eq.(1.14)) in the form

$$\eta = [\#(+) - \#(-)] + \bar{\eta}$$

(1.58)

where $\#(\pm)$ are the numbers of the σ_{α_j} or $\sigma_{\alpha_j}^{-1}$ in the given braid and $\bar{\eta}$ is the power of the normalized matrix product $[I_{1 \alpha=1}^N ||\sigma_{\alpha_j}||$. The condition of brownian bridge implies $\eta = 0$ (i.e. $\#(+) - \#(-) = 0$ and $\bar{\eta} = 0$).

Theorem 4 Take the knots obtained by closure of B_3-braids of length N with the uniform distribution over the generators. The conditional probability distribution $U(\bar{\eta}, m|N)$ for the normalized complexity $\bar{\eta}$ of the Alexander polynomial invariant has the Gaussian behavior and is given by Eq.(1.54) where $\kappa = \bar{\eta}$.

Proof. Write

$$||\sigma_1|| = T(t); \quad ||\sigma_2|| = T^{-1}(t)S(t)T^{-1}(t)$$

(1.59)

where $T(t)$ and $S(t)$ are the generators of the "t-deformed" group $PSL_t(2, \mathbb{Z})$

$$T(t) = \begin{pmatrix} (-t)^{1/2} & 0 \\ 0 & (-t)^{-1/2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$T^{-1}(t) = \begin{pmatrix} (-t)^{-1/2} & 0 \\ 0 & (-t)^{1/2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

(1.60)

$$S(t) = \begin{pmatrix} (-t)^{-1/2} & 0 \\ 0 & (-t)^{1/2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

The group $PSL_t(2, \mathbb{Z})$ preserves the relations of the group $PSL(2, \mathbb{Z})$ without changes, i.e., $(T(t)S(t))^3 = S^4(t) = T(t)S^2(t)T^{-1}(t)S^{-2}(t) = 1$ (compare to (1.31)). Hence, if we construct the graph Γ_t for the group $PSL_t(2, \mathbb{Z})$ connecting the neighboring images of an arbitrary element from the fundamental domain, we ultimately come to the fact that the graphs Γ_t and Γ (fig.7) are topologically equivalent. This is the direct consequence of
the fact that the group B_3 is the central extension of $PSL(2, \mathbb{Z})$. Let us stress that the metric properties of the graphs Γ_i and Γ are different because of the different embeddings of the groups $PSL_i(2, \mathbb{Z})$ and $PSL(2, \mathbb{Z})$ into the complex plane.

Thus, the matrix product $\prod_{\alpha=1}^{N} ||\sigma_{\alpha_j}||$ for the uniform distribution over the braid generators is in one-to-one correspondence with the N-step random walk along the graph Γ (as it is explained in the proof of the Theorem 2) and its power coincides with the corresponding geodesics length along the backbone graph γ. Taking into account Lemmas 2 and 3 we conclude that limit distribution of random walks on the group B_3 in terms of normalized generators (1.59) is given by Eq.(1.37) where κ should be regarded as a power of the product $\prod_{\alpha=1}^{N} ||\sigma_{\alpha_j}||$. The statement of the Theorem follows now from the Corollary 1. □

Remarks and conclusions

Let us mention the simple geometrical meaning of the results obtained for the random walks on B_3:

(a) The limit distribution of the shortest noncontractible word for the random walk on the group is rather rough characteristic being not very sensitive to the local group relations.

(b) Comparing the random walks on the free (Γ_2) and braid (B_3) groups, one can see that the presence of the Yang-Baxter-type relations change effectively only the number the corresponding branches (i.e., the effective curvature of the corresponding non-Euclidean space, in which the graph $\tilde{\Gamma}$ could be embedded). In particular, the "effective coordinational number", z, of the backbone graph, γ, corresponding to the group $PSL(2, \mathbb{Z})$ is $z = 3$ whereas for the graph, representing the free group, $z = 4$.

(c) It is noteworthy that the "brownian bridge" condition for the random walk on the local free groups (as well as on the free one) completely compensates the "drift from the origin" turning the corresponding limit probability distribution to the normal form with zero mean if the distribution over the generators is uniform. We believe that this property is general for the random walks on the noncommutative groups. Anyway, the mentioned behavior is established recently in many cases [KNS, NeS, Let] (see also below).
2 Random walks on locally free groups

We are aimed to get the asymptotics of the conditional limit distributions of BB on the braid group B_n. For the case $n > 3$ it is rather hard problem which is unsolved yet. However we can extract some estimations for the limit probability distributions of BB on B_n considering the limit distributions of random walks on the so-called "local groups" ([Ve]).

Definition 3 The group $\mathcal{F}_{n+1}(d)$ we call the locally free if the generators, $\{f_1, \ldots, f_n\}$ obey the following commutation relations:

(a) Each pair (f_j, f_k) forms the free subgroup of the group \mathcal{F}_n if $|j - k| < d$;

(b) $f_j f_k = f_k f_j$ for $|j - k| \geq d$

(Below we restrict ourselves with the case $d = 2$ only for which we define $\mathcal{F}_{n+1}(2) \equiv \mathcal{F}_{n+1}$).

Theorem 5 The limit probability distribution for the N-step random walk on the group \mathcal{F}_{n+1} to have the minimal irreducible length μ is

$$P(\mu, N) = \frac{9}{2\pi \sqrt{6\pi N^3}} e^{-N/6} \mu \sinh \mu \exp \left(-\frac{3\mu^2}{2N} \right) \quad (n = 3)$$

$$P(\mu, N) = \frac{\text{const}}{N^{3/2}} \left(\frac{h (pq)^{1/2}}{p} \right)^N \left(\frac{q}{p} \right)^{\mu^2/2} \exp \left(-\frac{\mu^2 h}{4N} \right) \quad (n \gg 1) \quad (2.1)$$

where $h = 2 + \frac{r}{(pq)^{1/2}}$ and the values of p, q, r are given by Eq.(2.21).

Proof. We propose two approaches valid in two different cases: (1) for $n = 3$ and (2) for $n \gg 1$.

1. The following geometrical image is useful. Consider the random walk in some n-dimensional space $\mathcal{H}^n(x_1, \ldots, x_n)$ establishing the following one-to-one identity with the random walk on the group \mathcal{F}_{n+1}, written in terms of generators $\{f_1, \ldots, f^{-1}\}$: when one adds one generator, say, f_j, (or f_j^{-1}) to the given word in \mathcal{F}_n, the walker makes one unit step towards (backwards for f_j^{-1}) the axis $[0, x_j]$ in the space $\mathcal{H}^n(x_1, \ldots, x_n)$.

Now the relations (a)-(b) of the Definition 3 could be reformulated in terms of metric properties of the space \mathcal{H}^n. Actually, the relation (b) means that the successive steps
along the axes $|0, x_j|$ and $|0, x_k|$ ($|j - k| \geq 2$) commute, hence the section (x_j, x_k) of the space \mathcal{H}^n is flat and has the Euclidean metric $dx_j^2 + dx_k^2$. The completely different situations appears when looking at the projections of the random trajectories in \mathcal{H}^n to the space sections (x_j, x_{j+1}). Here the steps of the walk obey the free group relations (a) and the walk itself is mapped to the walk on the Cayley tree. It is well known that the Cayley tree can be uniformly embedded (without gaps and self-intersections) into the 3-pseudosphere which gives the representation of the non-Euclidean plane with the constant negative curvature (Lobachevskii plane). Thus, the section (x_j, x_{j+1}) has the Lobachevskii plane metric which it is convenient to write in the form $\frac{1}{x_j^2}(dx_j^2 + dx_{j+1}^2)$.

For the group \mathcal{F}_4 these arguments lead to the fact that the appropriate space $\mathcal{H}^{(3)}$ has the following metric

$$ ds^2 = \frac{dx_1^2 + dx_2^2 + dx_3^2}{x_2^2} \tag{2.2} $$

Actually, the section (x_1, x_3) is flat while the sections (x_1, x_2) and (x_2, x_3) have the Lobachevskii plane metric. The noneuclidean (hyperbolic) distance between two points M' and M'' in the space \mathcal{H}^3 is defined as follows

$$ \cosh \mu(M'M'') = 1 + \frac{1}{x_2(M')x_2(M'')} \sum_{i=1}^{3} (x_i(M') - x_i(M''))^2 \tag{2.3} $$

where $\{x_1, x_2, x_3\}$ are the euclidean coordinates in the 3D-halfspace $z > 0$ and μ is regarded as the geodesics on the 4-pseudosphere (Lobachevskii space) [KTS].

The diffusion equation for the scalar density $P(q, t)$ of the free random walk on the Riemann manifold reads (see, for instance, [KTS])

$$ \frac{\partial}{\partial N} P(q, N) = D \frac{1}{\sqrt{g}} \frac{\partial}{\partial q_i} \left(\sqrt{g} \left(g^{-1} \right)_{ik} \frac{\partial}{\partial q_k} \right) P(q, N) \tag{2.4} $$

where $D = \frac{1}{6}$ for uniform distribution over generators and

$$ P(q, N = 0) = \delta(q) \tag{2.5} $$

$$ \int \sqrt{g} P(q, N) dq = 1 $$

(g_{ik} is the metric tensor of the manifold; $g = \det g_{ik}$). For the 4-pseudosphere g_{ik} reads

$$ ||g_{ik}|| = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \sinh^2 \mu & 0 \\ 0 & 0 & \sinh^2 \mu \sin^2 \theta \end{vmatrix} \tag{2.6} $$
Solving Eq.(2.4) one gets

\[P(\mu, N) = \frac{e^{-ND}}{8\pi \sqrt{\pi (ND)^3}} \frac{\mu}{\sinh \mu} \exp \left(-\frac{\mu^2}{4ND} \right) \]

(2.7)

We find very important to pay attention to the following fact. The distribution function \(P(\mu, N) \) gives the probability to find the random walk starting at the point \(\mu = 0 \) after \(N \) steps to be in some specific point located at the distance \(\mu \) in the corresponding noneuclidean space. The probability to find the point somewhere at the distance \(\mu \) after \(N \) steps is

\[\mathcal{P}(\mu, N) = P(\mu, N) N(\mu) \]

(2.8)

where

\[N(\mu) = \sinh^2 \mu \]

(2.9)

is the area of the sphere of radius \(\mu \) on the 4-pseudosphere.

The difference between \(P \) and \(\mathcal{P} \) is insignificant in the euclidean geometry, while in the noneuclidean space that becomes dramatic. Returning to the random walk on the group \(\mathcal{F}_4 \) we conclude that the distribution function \(\mathcal{P}(\mu, N) \) gives the probability for the \(N \)-letter random word written in terms of uniformly distributed generators on \(\mathcal{F}_4 \) to have the primitive word of some length \(\mu \) (see Eq.(2.1)).

2. For the group \(\mathcal{F}_{n+1} \) \((n \gg 1) \) we extract the limit behavior of the distribution function exactly evaluating of the volume of the maximal noncommutative subgroup of \(\mathcal{F}_{n+1} \).

Let \(V_n(\mu) \) be the number of all nonequivalent primitive words of length \(\mu \) on the group \(\mathcal{F}_{n+1} \). We show that \(V_n(\mu) \) has the following asymptotics for \(n \gg 1, \mu \gg 1 \)

\[V_n(\mu) = \text{const} \left[1 + 2 \left(3 - \frac{4\pi^2}{n^2} \right) \right]^\mu \]

(2.10)

To get Eq.(2.10) we represent each primitive word \(W_\mu \) of length \(\mu \) in the group \(\mathcal{F}_{n+1} \) in the so-called normal order

\[W_\mu = (f_{\alpha_1})^{m_1} (f_{\alpha_2})^{m_2} \cdots (f_{\alpha_s})^{m_s} \]

(2.11)

where \(\sum_{i=1}^{s} |m_i| = \mu \ (m_i \neq 0 \ \forall \ i; \ 1 \leq s \leq \mu) \) and sequence of generators \(f_{\alpha_i} \) in Eq.(2.11) for all \(f_{\alpha_i} \) satisfies the following local rules:
(i) If \(f_{\alpha_i} = f_1 \), then \(f_{\alpha_{i+1}} \in \{ f_2, f_3, \ldots f_{n-1} \} \);

(ii) If \(f_{\alpha_i} = f_k \) \((1 < k < n - 1)\), then \(f_{\alpha_{i+1}} \in \{ f_{k-1}, f_{k+1}, \ldots f_{n-1} \} \);

(iii) If \(f_{\alpha_i} = f_{n-1} \), then \(f_{\alpha_{i+1}} = f_{n-1} \).

These local rules give the prescription how to enumerate all distinct primitive words. If the sequence of generators in the primitive word \(W_p \) does not satisfy the rules (i)-(iii), we commute the generators in the word \(W_p \) up to the normal order is restored. Hence, the normal order representation enables one to give the unique coding of all nonequivalent primitive words in the group \(\mathcal{F}_{n+1} \).

The calculation of the number of distinct primitive words, \(V_n(\mu) \), of the given length \(\mu \) is now rather straightforward:

\[
V_n(\mu) = \sum_{s=1}^{\mu} R(s) \sum_{\{m_1, \ldots, m_s\}} \Delta \left[\sum_{i=1}^{s} |m_i| - \mu \right] \tag{2.12}
\]

where \(R(s) \) is the number of all distinct sequences of \(s \) generators taken from the set \(\{ f_1, \ldots, f_n \} \) and satisfying the local rules (i)-(iii) while the second sum gives the number of all possible representations of the primitive path of length \(\mu \) for the fixed sequence of generators ("prime" means that the sum runs over all \(m_i \neq 0 \) for \(1 \leq i \leq s \); \(\Delta \) is the Kronecker \(\delta \)-function).

To get the partition function \(R(s) \) let us mention that the local rules (i)-(iii) define the generalized Markov chain with the states given by the \(n \times n \) coincidence matrix \(\hat{T}_n \) where the rows and columns correspond to the generators \(f_1, \ldots, f_n \):

\[
\hat{T}_n = \begin{pmatrix}
0 & 1 & 1 & 1 & \ldots & 1 & 1 \\
1 & 0 & 1 & 1 & \ldots & 1 & 1 \\
0 & 1 & 0 & 1 & \ldots & 1 & 1 \\
0 & 0 & 1 & 0 & \ldots & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 \\
\end{pmatrix} \tag{2.13}
\]

Thus,

\[
R_n(s) = \text{Sp} \left[(\hat{T}_n)^s \right] \tag{2.14}
\]
Supposing that the main contribution in Eq. (2.12) appears from $s \gg 1$ we take for $R_n(s)$ the following asymptotic expression

$$R_n(s)|_{s \gg 1} = (\lambda_n^{\text{max}})^s$$ \hspace{1cm} (2.15)

where λ_n^{max} is the highest eigenvalue of the matrix \tilde{T}_n $(n \gg 1)$.

Simple but rather tedious calculations give the following value for the highest eigenvalue λ_n^{max} for $n \gg 1$

$$\lambda_n^{\text{max}} = 3 - \frac{4\pi^2}{n^2} + o\left(\frac{1}{n^2}\right)$$ \hspace{1cm} (2.16)

The remaining sum in Eq.(2.12) is independent on $R(s)$, so its calculation is trivial:

$$\sum_{\{m_1, \ldots, m_s\}} \Delta \left[\sum_{i=1}^{s} |m_i| - \mu \right] = 2^s \frac{(\mu - 1)!}{(s-1)!(\mu - s)!}$$ \hspace{1cm} (2.17)

Substituting Eqs.(2.16) and (2.17) into Eq.(2.12) and evaluating the sum over s we arrive at Eq.(2.10).

The random walk on the group \mathcal{F}_{n+1} can be viewed now as follows. Take the free group Γ_n with generators $\{\tilde{f}_1, \ldots, \tilde{f}_n\}$ where all \tilde{f}_i $(1 \leq i \leq n)$ do not commute. The group Γ_n has a structure of $2n$-branching Cayley tree, $C(\Gamma_n)$, where the number of distinct words of length μ is equal to $V_n(\mu)$,

$$V_n(\mu) = 2n(2n-1)^{\mu-1}$$ \hspace{1cm} (2.18)

The graph $C(\mathcal{F}_{n+1})$ corresponding to the group \mathcal{F}_{n+1} can be constructed from the graph $C(\Gamma_n)$ by the following recursion procedure:

a) Take the root vertex of the graph $C(\Gamma_n)$ and consider all vertices on the distance $\mu = 2$. Identify those vertices which correspond to the equivalent words in the group \mathcal{F}_{n+1}. (One particular example is shown in fig.9).

b) Repeat this procedure taking all vertices at the distance $\mu = (1, 2, \ldots)$ and ”gluing” the vertices at the distance $\mu + 2$ according to the Definition 3.

Despite the local structure of the graph $C(\mathcal{F}_{n+1})$ is very complex, Eqs.(2.10) and (2.18) enable one to find the asymptotics of the random walk on the graph $C(\mathcal{F}_{n+1})$.

27
The probability $\mathcal{P}(\mu, N)$ to find the walker at the distance μ from the origin after N random steps on the graph $C(F_{n+1})$ satisfies the following recurrence relation

$$\mathcal{P}(\mu, N + 1) = p\mathcal{P}(\mu + 1, N) + r\mathcal{P}(\mu, N) + q\mathcal{P}(\mu - 1, N)$$ \hspace{1cm} (2.19)

where p, r, and q are the probabilities "to go back" ($\mu \to \mu - 1$), "to stay" ($\mu \to \mu$) and "to go forth" ($\mu \to \mu + 1$) making one random step ($N \to N + 1$). For instance, for the random walk on $C(\Gamma_n)$ one has $p = \frac{1}{2n}$, $r = 0$, $q = 1 - p$.

The local transition probabilities p, r, q can be computed for $\mu \gg 1$ as follows. Take some point at the distance ("level") μ from the origin on the graph $C(F_{n+1})$ (embedded in $C(\Gamma_n)$). The averaged number of branches going from the level μ to the level $\mu + 1$ and leading to the distinct vertices is $\frac{V_n(\mu + 1)}{V_n(\mu)}$ (see Eq.(2.10)). Hence we have in the limit $n \gg 1$

$$\frac{q}{p} = 7$$ \hspace{1cm} (2.20)

while the part of identical vertices on the level $\mu + 1$ is equal to $\frac{V_n(\mu)(2n - 1) - V_n(\mu + 1)}{V_n(\mu)(2n - 1)}$ what gives the value of r. Thus we finally get

$$r = \frac{2n - 8}{2n - 1}; \hspace{0.5cm} p = \frac{7}{8(2n - 1)}; \hspace{0.5cm} q = \frac{49}{8(2n - 1)}$$ \hspace{1cm} (2.21)

Substituting Eq.(2.21) into Eq.(2.19) we can proceed in the same way as in the proof of Theorem 5. Namely, we introduce

$$\mathcal{P}(\mu, N) = A^\mu B^N \mathcal{V}(\mu, N)$$

(compare to (1.22)) where the constants A and B we derive from the auxiliary conditions

$$\frac{p}{AB} = \frac{1}{h}; \hspace{0.5cm} \frac{1 - (p + q)}{A} = 1 - \frac{2}{h}; \hspace{0.5cm} \frac{qB}{A} = \frac{1}{h}$$

Under such choice the function $\mathcal{V}(\mu, N)$ describes the ordinary random walk on the halfline with the diffusion coefficient $\frac{1}{h}$. We do not specify the boundary conditions because we are interested still only in the long-distance behavior ($\mu \gg 1$). Thus we obtain the desired distribution function (Eq.(2.1)) for the lengths of the primitive word for the random walk on the group F_{n+1}. \Box

Corollary 2 The Eq.(2.1) gives the upper estimation for the limit distribution of the primitive words on the group B_n for $n \gg 1$.

28
Comments and conjectures

We find very perspective further investigation of the random walks on the groups \(\mathcal{F}_{n+1}(d) \) for different values of \(d \) because it should give insight for the consideration of the statistics of random walks on "partially commutative groups" as well as it could be regarded as a natural model for the problem of limit distributions on the group of coloured braids.

Finally, let us express some conjectures which generalize naturally our consideration.

Conjecture 1 The complexity \(\eta \) of any known algebraic invariants (Alexander, Jones, HOMFLY) for the knot represented by the \(B_n \)-braid of length \(N \) with the uniform distribution over generators has the following limit behavior:

\[
P(\eta, N) \sim \frac{\text{const}}{N^{3/2}} \exp \left(-\frac{(\eta - \alpha(n) N)^2}{\beta(n) N} \right)
\]

(2.22)

where \(\alpha(n) \) and \(\beta(n) \) are some numerical constants depending only on \(n \).

The proof of this conjecture is in progress now. The main idea consists in utilizing the relation between the knot complexity \(\eta \), the length of the shortest noncontractible word and the length of geodesics on some hyperbolic manifold.

Conjecture 2 Take the product of \(N \) independent uniformly distributed matrices, \(\prod_{\alpha=1}^{N} \hat{f}_{\alpha,j} \), from the set \(\{ \hat{f}_{1}, \ldots, \hat{f}_{n}^{-1} \} \), \((\hat{f}_{j} \) gives the matrix representation of generators \(f_{j} \) of the group \(\mathcal{F}_{n+1} \) for all \(j \)). The value \(\mu = \ln |\text{Trace} \prod_{\alpha=1}^{N} \hat{f}_{\alpha,j}| \) in the limit \(N \gg n \gg 1 \) has the Gaussian probability distribution with non-zero mean.

The matrix representation of the group \(\mathcal{F}_{n+1} \) resembles the Magnus representation of the braid group generators (1.13) (but without the Yang-Baxter relations) where the block \(A \) is as follows\(^4\):

\[
A = \begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 2 \\
0 & 0 & 1 \\
\end{pmatrix}
\]

(2.23)

\(^4\)The representation (1.13) satisfies the Hecke algebra relations (1.8) with \(t = -1 \).
Define the Lyapunov exponent, \(\lambda(N) \), of \(\prod_{\alpha=1}^{N} \dot{f}_{\alpha} \) as follows: \(\lambda(N) \overset{\text{def}}{=} \ln |\Lambda(N)| \), where \(\Lambda(N) \) is the highest eigenvalue of the considered product. In the limit \(N \to \infty \) (\(n = \text{const} \)) we can rewrite \(\lambda(N) \) as

\[
\lambda(N) \approx \ln \left| \text{Trace} \prod_{\alpha=1}^{N} \dot{f}_{\alpha} \right| \tag{2.24}
\]

From the other hand, \(\lambda(N) \) is proportional to the length of the shortest noncontractible word (the length of "geodesics"), \(\mu \), for the random walk on the group \(\mathcal{F}_n \). Using Eq.\((2.1)\) we obtain the posed conjecture. Of course such consideration is rather crude. Nevertheless it could be supported by the following arguments. The relation

\[
|\text{Tr}(N)| = 2 \cosh \frac{L_p}{2} \tag{2.25}
\]

establishes the connection between the trace and the length of the periodic orbit, \(L_p \), on some group. It is known (see, for instance, [Bog]) that in average the number of periodic orbits \(N_p \) of the length \(L_p \) is proportional to \(L_p^{-1} \exp(L_p/2) \) for the hyperbolic groups. At the same time the volume \(V_n(\mu) \) of the group \(\mathcal{F}_{n+1} \) is growing like \(\text{const} \times 7^\mu \). Comparing \(N_p \) and \(V_n(\mu) \) for \(\mu \gg 1 \) and \(L_p \gg 1 \) we get

\[
\lim_{L_p \to \infty} \frac{\mu}{L_p} = \frac{1}{2 \ln 7} + O \left(\frac{\ln L_p}{L_p} \right)
\]

Supposing roughly that \(L_p \) is proportional to the length of geodesics, \(\mu \), and taking into account the distribution function \((2.1)\), we are back to the expressed statement.

Acknowledgments

We highly appreciate the useful comments of S.P. Novikov, V.A. Malyshev, R.L. Dobrushin, A.Yu. Kitaev and especially thank Ya.G. Sinai for stimulated discussions. S.K.N. is partially supported by the ISF Grant No. M5R000; S.K.N. and A.M.V. are very grateful to CNRS (France) for the maintenance in frameworks of "Landau-Steklov" program.
References

31

[Jo2] V.F.R.Jones, seminar Bourbaki

Figure Captions

Fig.1. Graphic representation of generators σ_i ("positive") and σ_i^{-1} ("negative") in the group B_n.

Fig.2. Schematic representation of a particular braid of N generators.

Fig.3. Geometric representation of Eqs.(1.2).

Fig.4. Cayley tree corresponding to the free group Γ_2.

Fig.5. Schematic representation of the brownian bridges on the Cayley tree. cases (a) and (b) correspond to calculation π^+ and π^-.

Fig.6. The Riemann surface for the modular group The graph Γ representing the topological structure of $PSL(2, \mathbb{Z})$ is shown by the dashed line.

Fig.7. The graph Γ and its backbone graph γ (see the explanations in the text).

Fig.8. Construction of brownian bridge for knots represented by B_3-braids.

Fig.9. The vertices A and B should be glued because they represent one and the same word in the group \mathcal{F}_{n+1}.
\[\begin{array}{ccc}
1 & 2 & i \\
\vdots & \vdots & \vdots \\
1 & 2 & i & i+1 & \ldots & n
\end{array} \]

\[= \sigma_i \]

\[\begin{array}{ccc}
1 & 2 & i \\
\vdots & \vdots & \vdots \\
1 & 2 & i & i+1 & \ldots & n
\end{array} \]

\[= \sigma_i^{-1} \]

\[\text{Fig. 1.} \]
Fig. 3.
Fig. 5.
Fig. 9.