PHENOMENOLOGICAL ASPECTS OF SUPERSYMMETRY

Hans Peter Nilles*

Physik Department
Technische Universität München
D-85747 Garching, Germany

and

Max-Planck-Institut für Physik
–Werner-Heisenberg-Institut–
D-80805 München, Germany

ABSTRACT

We discuss the possible applications supersymmetric theories might find in the field
of elementary particle physics. The supersymmetric generalization of the $SU(3) \times
SU(2) \times U(1)$ standard model is discussed in detail. Special attention has been
devoted to the question of gauge coupling constant unification in the framework of
supersymmetric grand unified models.

1. Introduction

The beautiful structure of supersymmetric theories is certainly one of the reasons they attracted and still attract so much attention. It remains to be seen, however, whether these theories have direct applications in the field of particle physics. In these lectures we shall discuss possible supersymmetric extensions of the standard model of particle physics \[1\] and the reasons we think why such a generalization should be considered. We shall see that phenomenological considerations restrict the possible realization of supersymmetry substantially. At energies below 100 GeV, we know that supersymmetry is badly broken, but still at some higher energies the world might be supersymmetric. Before embarking on this trip to the supersymmetric world let us first review shortly the basics of the nonsupersymmetric standard model.

The standard model is based on the gauge interactions of the strong and electroweak forces with gauge group \[SU(3) \times SU(2) \times U(1)\]. It thus contains 12 spin 1 gauge bosons: 8 gluons of \[SU(3)\], 3 \[SU(2)\] weak gauge bosons and the hypercharge gauge boson of \[U(1)\]. The photon will be a particular combination of the neutral \[SU(2)\] gauge boson and the hypercharge boson. The fermions of the theory consist of three generations of quarks and leptons, where we assume the existence of the top quark for which direct experimental evidence is still lacking. The spin-1/2 fermions of a family have the following transformation properties with respect to \[SU(3) \times SU(2) \times U(1)\]:

\[
U^a = \begin{pmatrix} u \\ d \end{pmatrix} = (3, 2, 1/6) \\
\bar{u} = (\bar{3}, 1, -2/3) \\
\bar{d} = (\bar{3}, 1, 1/3)
\]

\[
L^a = \begin{pmatrix} \nu_e \\ e \end{pmatrix} = (1, 2, -1/2) \\
\bar{e} = (1, 1, 1)
\]

(1.1)

where \(a = 1, 2\) is an \[SU(2)\] index and the first two entries in the brackets denote the dimensions of the \[SU(3) \times SU(2)\] representations while the last entry denotes \[U(1)\] hypercharge. Electric charge is given by \(Q = T_3 + Y\). Thus the up-quark,
for example, has \(Q(u) = 1/2 + 1/6 = 2/3 \) whereas for the down quark we obtain \(Q(d) = -1/3 \).

The so-called Higgs sector contains a scalar \(SU(2) \)-doublet

\[
h = \begin{pmatrix} h^0 \\ h^- \end{pmatrix} = (1, 2, -1/2)
\]

(1.2)

with potential \(V = \mu^2(h^\dagger h) + \lambda(h^\dagger h)^2 \) and one also introduces Yukawa couplings for the interactions of the scalars with the fermions

\[
L_Y = g_d U h \bar{d} + g_e L h \bar{e} + g_u U h^\dagger \bar{u}
\]

(1.3)

in all combinations that are allowed by \(SU(3) \times SU(2) \times U(1) \) gauge symmetry. A spontaneous breakdown of \(SU(2) \times U(1) \) occurs for negative \(\mu^2 \) and the neutral component of \(h \) receives a vacuum expectation value (vev)

\[
\langle h \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v \\ 0 \end{pmatrix}
\]

(1.4)

where \(v = (-\mu^2/\lambda)^{1/2} \). \(SU(2) \times U(1)_Y \) is broken to \(U(1)_Q \) and three gauge bosons become massive

\[
M_{W^\pm} = \frac{1}{2} g_2 v \\
M_Z = \frac{1}{2} v \sqrt{g_1^2 + g_2^2}
\]

(1.5)

where \(g_1 \) and \(g_2 \) are the coupling constants of \(SU(2) \) and \(U(1) \), respectively. The \(U(1) \) gauge coupling constant is given by

\[
e = g_2 \sin \theta_W = g_1 \cos \theta_W
\]

(1.6)

where \(\theta_W \) denotes the weak mixing angle. The mass of the physical Higgs-scalar is given by \(\sqrt{-2\mu^2} \). Yukawa couplings then allow, in presence of the spontaneous breakdown of \(SU(2) \times U(1) \), mass terms for the fermions. The term \(g_d h U \bar{d} \), e.g., leads to \(g_d v \bar{d} \bar{d} = m_d \bar{d} \bar{d} \). The masses and mixings for the three families of quarks and leptons are parametrized by the \(3 \times 3 \) Kobayashi-Maskawa[2] matrix.

Let us now count the parameters of the model. We have three gauge couplings \(g_1, g_2 \) and \(g_3 \) usually parametrized by \(\alpha_{e.m.}, \alpha_{\text{strong}} \) and \(\sin \theta_W \). In the gauge sector
we have in addition a Θ-parameter multiplying a $F^{\mu\nu} F^{\rho\sigma} \epsilon_{\mu\nu\rho\sigma}$ in the action. Its actual value seems to be very close to zero as can be deduced from the absence of the electric dipole moment of the neutron. Nonetheless we have to treat Θ as an arbitrary parameter and it still has to be understood why its value is so small.

In the Higgs sector we have introduced two parameters μ^2 and λ of which one combination defines the scale of $SU(2) \times U(1)$ breakdown while the other determines the Higgs mass. The 9 fermion masses (not including the possibility for neutrino-Majorana masses) are parametrized by the Yukawa couplings. The same applies to quark mixing consisting of 3 angles and one phase in the Kobayashi-Maskawa matrix, the latter giving rise to CP-violation. We do not know yet whether there is a corresponding mixing in the lepton sector. In any case we can conclude that the above mentioned quantities are completely free parameters in the standard model.

Any attempt to understand their specific values will require a generalization of the model. Apart from these questions we have eventually also to address the more fundamental puzzles out of which I shall mention some in the following. Why is the gauge group $SU(3) \times SU(2) \times U(1)$, why is $SU(2)$ broken and why at a scale of 100 GeV and not at the Planck mass? Why is the mass of the proton 1 GeV and is this scale related to other physical scales? Why do we have this repetition of families, why 3 families and why does a family not contain exotic representations of $SU(3) \times SU(2) \times U(1)$ (like e.g., a 3 of $SU(2)$)? Why are neutrinos massless (are they?) and why is the electron mass so small compared to the W-mass? These and many more related questions are the subject of discussions of the physics beyond the standard model.

One important property of the standard model is the chirality of the fermion spectrum. Fermion masses are protected by $SU(2) \times U(1)$, i.e., they can be nonzero only after $SU(2) \times U(1)$ breakdown. Thus all fermion masses are proportional to the vev of the Higgs-field (1.4) and this explains why fermion masses cannot be very large compared to M_W. It does, of course, not explain why the mass of the electron is so small compared to M_W and also the smallness of neutrino masses remains a mystery. Only the top quark seems to be as heavy as allowed by $SU(2) \times U(1)$. We will regard this chirality of fermions as a very important property of the standard
model and will therefore in the course of these lectures only discuss extensions that share these remarkable properties.

Another important symmetry of the standard model is baryon (B)- and lepton (L)- number conservation. From the requirement of gauge invariance and renormalizability (i.e. absence of nonrenormalizable terms in the action) the model has automatic B and L conservation. Among other things this implies the stability of the proton. Possible violations could come from higher dimensional (nonrenormalizable) terms as e.g. four-fermion operators. These operators have dimension 6 and therefore the coefficient $1/M_x^2$ has the dimension of inverse (mass)2. M_x denotes the scale of the new physics that is responsible for proton decay. From the long lifetime of the proton we conclude that M_x must be larger than 10^{15} GeV, a very large scale. For other processes, like lepton number violation, the corresponding scale could still be in the TeV region. It is a central question in all discussions of the physics beyond the standard model to isolate these new processes and discuss the corresponding scales.

2. Why supersymmetry

The standard model contains a dimensionful scale of the order of 100 GeV, represented by the masses of the intermediate gauge bosons. All parameters of dimension mass in the model are related to the vev of the scalar field that is responsible for the breakdown of $SU(2) \times U(1)$. If this would be the only scale in physics we could regard this scale then as the input parameter in the model and derive all mass parameters from it. There are reasons to believe, however, that there exist other fundamental scales in physics such as the Planck scale around 10^{19} GeV related to the gravitational interactions or a hypothetical grand unified scale of 10^{16} GeV in connection with the possible unification of strong and electroweak interactions. Compared to these scales the weak scale is tiny, in fact so tiny that one would think that one should find an explanation for this fact. Such a reason could be a symmetry as we encountered in the discussion of fermion masses, where chiral symmetry protected the masses. Chiral symmetry cannot forbid scalar masses and can therefore not explain the smallness of the weak scale.
Let us discuss this situation in detail. Recall the Higgs potential

\[V(h) = \mu^2 |h|^2 + \lambda |h|^4. \]

The Higgs mass is \(m = \sqrt{2\mu^2} \) and \(M_W = g_2 < h > \approx 80 \text{ GeV}. \) Experimental bounds on \(m \) come from LEP \(m \geq 60 \text{ GeV} \) while an upper bound of 1 TeV can be argued from unitarity constraints. Observe that the mass scale of the standard model \(M_W \) is solely set by the parameters \(\mu^2 \) and \(\lambda \) in the Higgs sector.

Theoretically the model is very appealing; it is not just based on an effective Lagrangian, like e.g. the Fermi theory of weak interactions, but it is a renormalizable field theory. This has drastic consequences for the possible range of validity of the model; would it be nonrenormalizable it necessarily would only be defined with a cutoff \(\Lambda \) (of dimension of a mass) and its region of validity would be bounded from above by \(\Lambda \). Above \(\Lambda \) one expects new things to happen which are not described by the model. Since the standard model is renormalizable it could, however, be valid in a much larger energy range. Strangely enough this very nice property of the model constitutes one of its problems. The mass scale of 100 GeV is put in by hand and there is no understanding of its origin: it is a completely free input parameter. In a more complete theory one would like to understand the origin of \(M_W \) in terms of more fundamental parameters like e.g. the Planck scale \(M_P \sim 10^{19} \text{ GeV} \), but such a complete theory would need more structure than present in the standard model.

A reconfirmation of the statement that \(M_W \) is a completely free parameter is found in the discussion of perturbation theory. The parameter \(\mu^2 \) in (2.1) receives a contribution at the one loop level which is quadratically divergent. There is nothing wrong with quadratic divergencies as they do not spoil the consistency of the theory; we regularize them and define the theory in terms of the renormalized parameters. The actual correction to \(\mu^2 \) depends on the regularization scheme and the renormalized quantity is an arbitrary parameter even if we would have understood its value at the tree level. This is true for all quadratically divergent quantities. These divergences introduce a new mass scale in the theory which has nothing to do with the scales already present; it is an arbitrary parameter which we can choose at our will. To understand the origin of these masses the quadratic
divergencies have to be absent i.e. they have to be cut off at a larger scale by a new physical structure. With such a physical cutoff Λ we would have

$$\delta \mu^2 \sim \lambda \Lambda^2$$

(2.2)

and to understand the order of magnitude of μ^2 it would not be appropriate to have Λ of the order of the Planck mass M_P but rather in the TeV region. An understanding of the order of magnitude of M_W would therefore require new physics in the TeV-region.

Having agreed that the standard model might have this subtle theoretical problem one has to look for ways out. The presence of quadratic divergencies is originated by the existence of fundamental scalar particles. One way out is to remove these scalars from the theory. Since we have to break $SU(2) \times U(1)$ spontaneously (and want to maintain Lorentz invariance) some scalar objects have to exist; they could be composite as postulated in the technicolour approach[3]. A new gauge interaction becomes strong in the region of a few hundred GeV; leading to the formation of condensates and many composite bound states. This is the new physics in the TeV-region.

But this is not the only possible solution and we could try to insist to live with fundamental scalar particles. Remember for this purpose the situation with spin 1 particles. Models containing spin 1 particles have usually serious theoretical problems unless there is a gauge symmetry that makes these fundamental spin 1 particles acceptable. Observe that this gauge symmetry also stabilizes the mass of these spin 1 particles; in the symmetric limit they have to vanish. Could we also have such a situation for scalar masses? In the standard model, of course, such a situation is not present. We can take the limit $\mu^2 \to 0$ and this does not enhance the symmetry of the action.

The only known way to protect scalar masses is supersymmetry. This symmetry relates bosons and fermions and therefore makes bosons as well behaved as fermions, which implies the absence of quadratic divergencies. Supersymmetry provides us with the physical cutoff discussed earlier. In addition to the contribution to μ^2 through a scalar loop we have now a contribution of the supersymmetric partner of the Higgs boson propagating in the loop. In the supersymmetric limit these
two contributions cancel exactly. If supersymmetry is broken the masses of the boson-fermion multiplet are split. We get a contribution

$$\delta \mu^2 \approx \lambda (m_B^2 - m_F^2) \tag{2.3}$$

and we would require the quantity on the right-hand side to be in the TeV range. If we would remove the partner with mass \(m_F\) from the theory we would again recover the quadratic divergence of the standard model. Thus to solve the Higgs problem we have to consider new (supersymmetric) structure in the TeV-region.

3. The particle content of the supersymmetric standard model

Let us now start the construction of the supersymmetric generalization of the standard model. I shall assume that the reader is familiar with the concept of global supersymmetry as provided e.g. in [4] or a previous review [5].

We recall the particle content of the standard model. Apart from the gauge bosons \(G^a_\mu, W^i_\mu, B_\mu\) in the adjoint representation we have quarks and leptons in three families with quantum numbers

\[
Q = \left(\begin{array}{c} u \\ d \end{array} \right) = (3, 2, 1/6) \\
\bar{u} = (\bar{3}, 1, -2/3) \\
\bar{d} = (\bar{3}, 1, 1/3) \\
L = \left(\begin{array}{c} \nu_e \\ e \end{array} \right) = (1, 2, -1/2) \\
\bar{e} = (1, 1, 1) \tag{3.1}
\]

together with a Higgs doublet

\[
h = \left(\begin{array}{c} h^0 \\ h^- \end{array} \right) = (1, 2, -1/2) \tag{3.2}
\]

The spectrum of this model is not supersymmetric and we have to add new degrees of freedom. There are no fermions in the adjoint representation of \(SU(3) \times SU(2) \times U(1)\) and we thus have to add gauge fermions (gauginos), which together with the gauge bosons form a massless vector superfield \(V = (V_\mu, \lambda, D)\). Quarks and leptons
require spin 0 partners in chiral superfields e.g. $\tilde{E} = (\varphi_e, \bar{e}, F_e)$ where φ_e is a complex scalar with \bar{e} quantum numbers. Next observe that the lepton doublet has the same quantum numbers as the Higgs: could it be that $\varphi_e = h^-$? Unfortunately it does not work. One reason is the absence of lepton number violation and other reasons will become clear in a moment. We thus have to add scalar partners to all quarks and leptons. To the Higgs scalar we have to join the partner spin 1/2 fermions. With these fermions $SU(2) \times U(1)$ is no longer anomaly free and we have to add a second Higgs chiral superfield $\tilde{H} = (1, 2, +1/2)$. In short, every particle in the standard model requires a new supersymmetric partner and one has to add a second Higgs superfield.

To construct the Lagrangian we first write the kinetic terms and the gauge couplings in the usual supersymmetric way. We still have to discuss the superpotential which contains mass terms and the supersymmetric generalization of the Yukawa couplings. If we write the most general superpotential consistent with the symmetries and renormalizability it will contain two sets of terms

$$g = g_w + g_u. \quad (3.3)$$

Let me first discuss the term

$$g_w = \mu \tilde{H} \tilde{H} + g_{ij} L_i^a H^b \epsilon_{ab} \tilde{E}_j + g_{ij} Q_i^a H^b \epsilon_{ab} \tilde{D}_j + g_{ij} Q_i^a \tilde{H}_a \tilde{U}_j \quad (3.4)$$

where $i, j = 1, \ldots 3$ is a family index and a, b are $SU(2)$ indices (colour indices are suppressed). It is not really clear whether we want μ from a theoretical point of view but we need it to break certain global symmetries that might be problematic. I will come back to this point later. Observe that we really need two Higgs superfields to give masses to all quarks and leptons. We can here no longer couple the up-type quarks to h^+ as we did in the nonsupersymmetric case. It is then also clear that in the breakdown of $SU(2) \times U(1)$ both Higgses have to acquire a vev to provide masses to all quarks and leptons.

Unlike in the standard model where the requirement of gauge symmetry and renormalizability automatically led to baryon and lepton number conservation we are here not in such a nice situation. This comes from the fact that the Higgs
and the lepton doublet superfields have the same \(SU(3) \times SU(2) \times U(1) \) quantum numbers. Consequently we have additional terms in (3.3) that we can write as (forgetting family indices)

\[
g_u = Q^a L^b e_{ab} \bar{D} + L^a \bar{E} L^b e_{ab} + \bar{U} \bar{D} \bar{D}.
\] (3.5)

These terms violate baryon and lepton number explicitly and lead to proton decay mediated by the exchange of the scalar partner of the d-quark. The rate for this process is unacceptably large as long as we assume the partner of the d-quark to be lighter than the grand unification scale. Thus some of the terms in (3.5) have to be forbidden. Let us try to achieve this with help of a symmetry. We can turn the question the other way around. Suppose we drop (3.5) from the superpotential; does the symmetry increase? In fact it does. The new symmetry is a global symmetry that, however, does not commute with supersymmetry (called \(R \)-symmetry\[6\]). Different components in the same supermultiplet have different charges. The concept of \(R \)-symmetry can best be explained in superspace. Suppose we have a symmetry that transforms \(\theta \) to \(e^{i\alpha} \theta \); so \(\theta \) has charge \(R = 1 \). Suppose we have a chiral superfield \(\phi \) transforming also with \(R = 1 \). Then it is obvious that the scalar component transforms as

\[
\varphi \to e^{i\alpha} \varphi
\] (3.6)

with \(R = 1 \). But what happens to the fermion? Since \(R(\phi) = 1 \) we have

\[
(\theta \psi) \to e^{i\alpha}(\theta \psi)
\] (3.7)

but the phase comes already from the \(\theta \) transformation and obviously \(R(\psi) = 0 \). The \(F \)-component of the superfield has \(R(F) = -1 \). Invariance of the Lagrangian requires \(\int d^2 \theta q \) to have \(R = 0 \) whereas \(d^2 \theta \) transforms with \(R = -2 \). In the given example only the term \(\phi^2 \) is allowed in the superpotential. So far our discussion of the implication of \(R \)-symmetry on chiral superfields. The vector superfield is real and consequently \(R = 0 \). From this we conclude

\[
R(V_\mu) = 0
\]

\[
R(\lambda) = 1
\] (3.8)
and this is a general and important statement. Gauginos transform nontrivially under any R-symmetry. The R-symmetry, in particular, forbids Majorana masses for the gauge fermions.

Let us now go back to the superpotential (3.4) and (3.5). There is an R-symmetry with e.g. $R(\theta) = 1$ and

$$R(H, \overline{H}) = 1$$

$$R(Q, L, \overline{U}, \overline{D}, E) = 1/2$$

(3.9)

which leaves g_W in (3.4) as the most general superpotential. In other words this means that if we drop the terms in (3.5) a continuous global R-symmetry appears. To forbid these terms in principle a smaller symmetry like R-parity

$$R_p = (-1)^{3B+L+2S}$$

(3.10)

(where B, L are baryon, lepton number and S is the spin) would be sufficient, but here a continuous R-symmetry appears. This continuous R-symmetry is somewhat problematic since it forbids gaugino Majorana masses and at least for the case of the gluino we might have experimental evidence that its mass cannot vanish. Thus the R-symmetry has to be broken. Since only a spontaneous breakdown of this symmetry is acceptable, this then would lead to an embarrassing Goldstone boson. Actually in our case it will be an axion since the R-symmetry is anomalous[7]. This then tells us that this spontaneous breakdown cannot happen at an energy scale like 100GeV. The breakdown scale of the R-symmetry has to be larger to make the axion invisible[8], i.e. a breakdown scale of something like 10^{10} to 10^{11}GeV.

In a simple way this can, however, only be realized if also the supersymmetry breakdown scale M_S is large. Now remember that the splitting of the multiplets is given by $\Delta m^2 \sim gM_S^2$ where g is the coupling to the goldstino. We thus need small couplings to have the supersymmetric partners of quarks and leptons in the TeV-range to provide us with a physical cutoff that stabilizes M_W. These couplings have to be really small, compare them e.g. with the gravitational coupling constant κ. We have

$$\delta m \sim \kappa M_S^2 = M_S^2/M_P$$

(3.11)
which is in the TeV-region for $M_S = 10^{11}$ GeV. Actually if we assume that all particles couple universally to gravity our requirement of the mass splittings implies M_S to be approximately 10^{11} GeV. It is thus natural to assume that the small coupling required from our discussion about R-symmetry is actually the gravitational coupling constant[17].

We consider this as a hint to include gravity in our framework. This will lead us to the local version of supersymmetry which includes gravity automatically. It will turn out that such considerations avoid some problems connected with the breakdown of global supersymmetry and their disastrous consequences for model building. We shall not discuss this here in detail and refer the reader to ref. [5] for a review.

Local supersymmetry[9] will also resolve the paradox concerning the nonzero cosmological constant in models of spontaneously broken global supersymmetry. We shall see that one can have $E_{\text{vac}} = 0$ in models of spontaneously broken local supersymmetry.

4. Supergravity

In local supersymmetry the transformation parameter is no longer constant but depends on space-time[10]. We have already acquired some experience in the framework of gauge symmetries: the local form of ordinary global symmetries; and for supersymmetry we proceed in the same way. In usual symmetries we had a scalar transformation parameter Λ. The requirement of local invariance then leads to the introduction of a gauge field A_μ with transformation property $\delta A_\mu = \partial_\mu \Lambda$. In supersymmetry we have a spinorial parameter ϵ_α. Local supersymmetry then requires the introduction of a gauge particle $\Psi_{\mu \alpha}$ (the gravitino) with transformation property $\delta \Psi_{\mu \alpha} = \partial_\mu \epsilon_\alpha(x)$. Thus the gauge particle of local supersymmetry is a spin 3/2 particle and for reasons that will become clear in a moment it is called the gravitino. These statements can also be made plausible when we discuss the Higgs effect. In ordinary global symmetries a spontaneous breakdown implied the existence of Goldstone bosons. In the local version these bosons then supply the
gauge bosons with the missing degrees of freedom to make them massive. In supersymmetry the goldstone particle is a spin 1/2 fermion. This then can provide the two degrees of freedom in the transition of a massless to massive spin 3/2 particle: the super-Higgs effect.

The next point to discuss shows a conceptual difference between ordinary symmetries and supersymmetry. While in ordinary theories it was sufficient for the local symmetry to introduce a spin 1 gauge boson in supersymmetry this is not the case. The gauge particle is a spin 3/2 fermion and supersymmetry requires a bosonic partner. The construction of local supersymmetry has shown that this partner is a spin 2 boson that has to have all the properties of the graviton. This then implies that local supersymmetry necessarily includes gravity. We could have guessed that already from the algebra

\[[e(x)Q, \bar{Q}e(x)] = 2e(x)\sigma_\mu e(x)P^\mu. \]

On the right hand side we have a space-time translation that differs from point to point, a general coordinate transformation.

We have now to discuss explicit Lagrangians containing chiral matter and gauge fields coupled to the \((2, \frac{3}{2})\)-supergravity multiplet. In general this requires a lot of tedious calculations which I shall not repeat here. Also the general form of the Lagrangian is quite lengthy and I refer to the literature for the complete expression[11]. I will instead concentrate on an analysis of the scalar potential of these theories which we need for our further discussion.

Remember that in the global case the most general Lagrangian was defined by three functions of the superfields: the gauge kinetic terms \(W^2\), the matter field kinetic terms \(S(\bar{\phi}\exp(gV)\phi)\) and the superpotential \(g(\phi)\). In the local case the most general action can be defined by \(f_{\alpha \beta}(\phi)W^\alpha W^\beta\) (with indices \(\alpha, \beta\) labeling the adjoint representation of the gauge group) and the Kähler potential

\[G = 3\log\left(-\frac{S}{3}\right) - \log(|g|^2). \]

The kinetic terms of the scalar particles \(z_i\) are then given by

\[G_{ij}D_\mu z_i D^\mu z^j_* = \frac{\partial^2 G}{\partial z_i \partial \bar{z}_j^*} D_\mu z_i D^\mu z^j_* \]

On the right hand side we have a space-time translation that differs from point to point, a general coordinate transformation.
where \(z_i \) is the lowest component of a chiral superfield \(\phi_i \). The scalar potential reads

\[
V = -\exp(-G)[3 + G_k(G^{-1})_k^l G^l] + \frac{1}{2} f_{\alpha\beta}^{-1} D^\alpha D^\beta.
\]

In these lectures I will use what is called minimal kinetic terms

\[
G^i_j = -\delta^i_j.
\]

This simplifies all our formulas considerably and allows us nonetheless to see all the essential properties of the potential. The Kähler potential can therefore be written as

\[
G = -\frac{z_i z^i}{M^2} - \log \frac{|g|^2}{M^6}
\]

where we have explicitly written out the mass scale \(M \) related to the gravitational coupling constant \(\kappa \):

\[
M = \frac{1}{\kappa} = \frac{M_{\text{Planck}}}{\sqrt{8\pi}} \approx 2.4 \times 10^{18} \text{ GeV}.
\]

The first derivative of the Kähler potential is then given by

\[
G^i = -\frac{z^i}{M^2} - \frac{g^i(z)}{g(z)}
\]

and we can rewrite the potential in terms of the superpotential \(g(z) \) as

\[
V = \exp \left(\frac{z_i z^i}{M^2} \right) \left[|g|^2 + \frac{z^i}{M^2} g \right]^2 - \frac{3}{M^2} |g|^2.
\]

Contrary to the case of global supersymmetry the potential is no longer semipositive definite. I still have to tell you under which conditions supersymmetry is spontaneously broken. As in the global case this breakdown is signaled by a vacuum expectation value of an auxiliary field. There we had the auxiliary field \(F \) given as the derivative of the superpotential; here we have an additional term

\[
F^i = g^i + \frac{z^i}{M^2} g
\]
where in the limit $M \to \infty$ we recover the global result. Supergravity is now spontaneously broken if and only if an auxiliary field receives a vev. The supergravity breakdown scale is found to be

$$M_S^2 = \langle F \rangle \exp\left(\frac{z_i z_i^*}{M^2}\right). \quad (4.11)$$

Observe that the vacuum energy is no longer an order parameter. We can have unbroken supergravity with $E_{\text{vac}} < 0$ (Anti de Sitter) or $E_{\text{vac}} = 0$ (Poincare supersymmetry) and $E_{\text{vac}} > 0$ always implies broken supergravity. The most important observation is, however, that we can have broken supergravity with vanishing vacuum energy (cosmological constant), a situation that could not occur in the framework of global supersymmetry. Here we need

$$\sum_i F_i^* F_i = \frac{3}{M^2} |y|^2 \quad (4.12)$$

and we will assume this to be fulfilled. In all cases I know of this is an ad hoc adjustment of the cosmological constant to zero. If (4.12) is fulfilled and if $M_S \neq 0$ the gravitino becomes massive through the super-Higgs effect

$$m_{3/2} = M \exp(-G/2) = \frac{g}{M^2} \exp\left(\frac{z_i z_i^*}{M^2}\right) \quad (4.13)$$

and we therefore have the relation

$$m_{3/2} = \frac{M_S^2}{\sqrt{3}M} \quad (4.14)$$

valid in the case of vanishing cosmological constant.

Let us now discuss some simple specific models with spontaneous supersymmetry breakdown. As a warm-up example consider one field z and a constant superpotential $g = m^3$. The potential is then given by

$$V = m^6 \exp\left(\frac{z z^*}{M^2}\right) \left[|z|^2 M^4 - \frac{3}{M^2}\right] \quad (4.15)$$

which has stationary points at $z = 0$ and $|z| = \sqrt{2}M$. At $z = 0$ supersymmetry is unbroken but this is a local maximum of the potential. The minima with broken supersymmetry and $E_{\text{vac}} < 0$ are at $z = \pm \sqrt{2}M$.

15
Next we want to give an example with broken supersymmetry and $E_{\text{vac}} = 0$. We consider a superpotential
\[g(z) = m^2(z + \beta) \]
(4.16)
A nonvanishing vev of
\[F = \frac{\partial g}{\partial z} + \frac{z^*}{M^2} g = m^2 \left(1 + \frac{z^*(z + \beta)}{M^2} \right) \]
(4.17)
would signal a spontaneous breakdown of supergravity. The equation
\[M^2 + zz^* + z^* \beta = 0 \]
(4.18)
has the solutions
\[z = -\frac{\beta}{2} \pm \frac{1}{2} \sqrt{\beta^2 - 4M^2}. \]
(4.19)
Since (4.18) only allows real solutions (we assume β to be real) (4.19) implies that supersymmetry is broken as long as $\beta < 2M$. Thus we can arrange for a supersymmetry breakdown but we still have the annoying task to fine tune the vacuum energy. Let us therefore first consider the case $\beta = 0$ in which the potential is proportional to
\[(M^2 + |z|^2)^2 - 3M^2 |z|^2 \]
(4.20)
which is positive definite with minimum at $z = 0$. Increasing β implies decreasing the vacuum energy and also z acquires a nonvanishing vev. We can now increase β until the potential just touches zero. This is found to happen at $\beta = (2 - \sqrt{3})M$ with a vev of $(\sqrt{3} - 1)M$ for the z-field. The potential is semipositive definite with $E_{\text{vac}} = 0$ and, since $|\beta| < 2M$, supersymmetry is broken and we have found the desired example. The super-Higgs effect occurs. The gravitino swallows the fermion in the chiral superfield and has a mass
\[m_{3/2} = \frac{m^2}{M} \exp \left(\frac{(\sqrt{3} - 1)^2}{2} \right) \]
(4.21)
and the two remaining scalars have masses
\[m_1^2 = 2\sqrt{3}m_{3/2}^2 \]
\[m_2^2 = 2(2 - \sqrt{3})m_{3/2}^2. \]
(4.22)
Supersymmetry is broken and E_{vac} remains zero. Observe that such a situation is not possible in the framework of global supersymmetry. Observe also, that in the present example we had to perform an explicit fine-tuning to obtain $E_{\text{vac}} = 0$.

Before closing this chapter let us discuss two more examples of interest. The first is supersymmetry breakdown through gaugino-condensation. Consider a pure supersymmetric gauge theory, just a gauge theory with fermions (the gauginos) in the adjoint representations of the gauge group. Such a theory is asymptotically free, the gauge coupling becomes strong at small energies and we assume, in analogy to QCD, that this leads to confinement and that gaugino bilinears condense. For a detailed discussion see ref.[12]. To see whether this leads to supersymmetry breakdown we have to consider the auxiliary fields of supergravity including the gaugino bilinears

$$F_i = \exp(-G/2)(G^{-1})^j_i G_j + \frac{1}{4} f_{\alpha\beta k} (G^{-1})^k_j (\lambda^\alpha \lambda^\beta) + \ldots$$

where λ^α are the gauginos, $f_{\alpha\beta}$ the so-called gauge-kinetic function that multiplies $W^\alpha W^\beta$ and $f_{\alpha\beta k} = \partial f_{\alpha\beta} / \partial z^k$. A nontrivial vev $<\lambda\lambda> \neq 0$ thus breaks supersymmetry provided that the gauge kinetic function is nontrivial[13]. The supersymmetry breakdown scale is given by

$$M_S^2 \sim \frac{\langle \lambda\lambda \rangle}{M}$$

leading to a gravitino mass of order $<\lambda\lambda>/M^2$. Observe that the value of M_S in (4.24) vanishes in the global limit $M \to \infty$. Models in which supersymmetry breakdown is induced by gaugino condensation have recently attracted revived attention because of their appearance in the low energy limit of string theories. They are also interesting because of the fact that for a nontrivial f the value of the gauge coupling constant $g^2 \sim 1/f$ is a dynamical parameter. In string theories it is related to the vev of the dilaton field[14].

Up to now we have for the sake of simplicity only discussed models with minimal kinetic terms for the scalar fields. Models with nonminimal kinetic terms can have interesting structure. Consider e.g.

$$G = 3\log(\dot{\phi} + \dot{\varphi}^*) - \log |g|^2$$
and take a constant superpotential. If you compute the potential as given in (4.4) you will find that it vanishes identically. Nonetheless the quantity

$$e^{-G} = \frac{|g|^2}{(\phi + \phi^*)^3}$$

(4.26)

does not vanish and supersymmetry is broken. Such so-called no-scale models[15] might also have applications in the low energy limit of string theories.

5. Low energy supergravity models

As we discussed in chapter 3 we should consider models that consist of two sectors: a hidden sector and an observable sector which are only coupled weakly through gravitational interactions. The observable sector consists of the fields discussed in chapter 3 which we will collectively denote by y_a. The hidden sector is responsible for the breakdown of supersymmetry at a scale $M_S \sim 10^{11}$GeV and leads to a gravitino mass in the TeV region. Its fields will be denoted by z_i and we choose a superpotential

$$\tilde{g}(z_i, y_a) = h(z_i) + g(y_a).$$

(5.1)

Let us parametrize a general hidden sector by assuming that at the minimum

$$< z_i > = b_i M$$

$$< h > = mM^2$$

$$< h_i > = \frac{\partial h}{\partial z_i} = a_i^* m M$$

(5.2)

while all observable sector fields y_a should have vanishing vev’s. In the example of last chapter we had e.g. $b = \sqrt{3} - 1$. The potential is given by

$$V = \exp \left(\frac{|z_i|^2 + |y_a|^2}{M^2} \right) \left[h_i + \frac{z_i^* \tilde{g}}{M^2} \right]^2 + \left| g_a + \frac{y_a \tilde{g}}{M^2} \right|^2 - \frac{3}{M^2} |\tilde{g}|^2. $$

(5.3)

The vacuum energy vanishes provided that

$$\sum_i |a_i + b_i|^2 = 3$$

(5.4)
and the gravitino mass is given by

\[m_{3/2} = \exp \left(\frac{1}{2} |b_i|^2 \right) m, \] (5.5)

thus \(m \) sets the scale of the gravitino mass. We furthermore define[16]

\[A = b_i^a (a_i + b_i) \] (5.6)

which will turn out to be an important parameter besides the gravitino mass. In the previous example we had \(A = 3 - \sqrt{3} \). The potential given in (5.3) is complicated but we have \(m \ll M \) and we can simplify the expressions enormously by neglecting subleading terms. Formally this means that we take the limit \(M \to \infty \) keeping, however, \(m_{3/2} \) fixed. We then replace the hidden sector fields by there vev’s and obtain the following potential for the observable sector fields

\[V = \left| \frac{\partial g}{\partial y_a} \right|^2 + m_{3/2}^2 |y_a|^2 + m_{3/2} \left[y_a \frac{\partial g}{\partial y_a} + (A - 3)g + \text{h.c.} \right]. \] (5.7)

Thus the spontaneous breakdown of supergravity in the hidden sector manifests itself as explicit breakdown of global supersymmetry in the low energy limit of the observable sector. The first term in (5.7) is the usual potential of a globally supersymmetric theory while the other terms are soft breaking terms.

The second term gives universal scalar masses to all the partners of quarks and leptons. The supertrace formula is here given in general by[11]

\[\text{STr} M^2 = 2(N - 1)m_{3/2}^2 \] (5.8)

where \(N \) is the number of chiral superfields. This avoids the mass relations obtained in the globally supersymmetric models and its disastrous consequences for model building. The universality property of the mass terms is needed to ensure the absence of flavour changing neutral currents. It appears here because of the choice of minimal kinetic terms for the scalar fields.

The term \((A - 3)g \) is of equal importance since it breaks all \(R \)-symmetries of the model. This implies that there are no problems with potential axions and that
also gaugino Majorana masses are allowed (recall our discussion in chapter 3). This breakdown of R-symmetry is a direct consequence of the coupling to gravity.

One more technical remark. In general we will deal with a superpotential $g = g_3 + g_2$ where g_3 denotes the trilinear and g_2 the bilinear terms. The last term in (5.7) then reads $A m_{3/2} g_3 + (A-1) m_{3/2} g_2$. Apart from the gaugino mass m_0 we find that $m_{3/2}$ (which sets the scale for the soft scalar masses) and A are the important parameters parametrizing the effects of supersymmetry breakdown in this class of models. In some cases one can also consider a new parameter B as the coefficient of the bilinear terms in the superpotential. In the simplest example $B = A - 1$, but this need not be the case in general.

A remark about the mechanism of SUSY-breakdown is in order here. The example of one scalar field with superpotential (4.16) should, of course, only be considered as a toy example and existence proof for such a mechanism. The true mechanism of SUSY-breakdown will certainly look different, already because of the fact that the scale of 10^{11} GeV has to be put in by hand. Nowadays the most discussed mechanism for SUSY-breakdown is based on the mechanism of gaugino condensation[12]. Here the SUSY breakdown scale can be understood dynamically as a consequence of a new strong gauge coupling, in a similar way as we can understand the mass of the proton through the scale of QCD. One should also remark that a model based on SUSY breakdown through gaugino condensation initiated the construction of hidden sector models based on broken supergravity[17]. Later it was found that such a mechanism fits very well in the framework of models derived from heterotic string theory[18]. Therefore this mechanism of SUSY-breakdown is very popular at present.

Let us now discuss the superpotential

$$g = \mu H \bar{H} + g_E H L \bar{E} + g_D H Q \bar{D} + g_U H \bar{Q} \bar{U}. \tag{5.9}$$

The parameter μ has to be different from zero since otherwise we would have problems with a light higgsino (the supersymmetric partner of the Higgs-scalar) or axions. The value of μ is not directly related to the supersymmetry breakdown scale but one can construct models [19] where μ is related to $m_{3/2}$ and we shall assume that also μ is in the TeV range.
Let us now address the question of $SU(2) \times U(1)$ breakdown. We have two Higgs multiplets and members of both have to receive nonvanishing vev’s to give masses to all quarks and leptons, according to (5.9). The relevant part of the Higgs potential reads[20]

$$V = m_1^2 |h|^2 + m_2^2 |\bar{h}|^2 + m_3^2 (h\bar{h} + h^*\bar{h}^*) + \frac{g_1^2 + g_2^2}{8} (|h|^2 - |\bar{h}|^2)^2$$

(5.10)

where the last term corresponds to the $SU(2) \times U(1) D$-term and g_2 and g_1 denote the respective coupling constants. From (5.7) and (5.9) we obtain

$$m_1^2 = m_2^2 = m_{3/2}^2 + \mu^2$$
$$m_3^2 = -B \mu m_{3/2}$$
$$B = A - 1$$

(5.11)

The potential consists of quadratic and quartic terms. The quartic terms have a positive coefficient such that the potential at infinity is well behaved, with the exception, however, of a flat direction for $|h| = |\bar{h}|$. To have the potential bounded from below we therefore have to impose a constraint on the coefficients of the quadratic terms

$$m_1^2 + m_2^2 \geq 2|m_3|^2.$$

(5.12)

Next we have to discuss the requirement of $SU(2) \times U(1)$ breakdown. Since there are no trilinear terms in (5.10) a stationary point at $h = \bar{h} = 0$ has to be unstable, i.e. the mass matrix at this point has to have a negative eigenvalue. The requirement for a nontrivial $SU(2) \times U(1)$ breaking absolute minimum is therefore

$$|m_3|^4 \geq m_1^2 m_2^2.$$

(5.13)

With the input parameters (5.11) we observe now that the constraints (5.12) and (5.13) can only be fulfilled in the limiting case

$$m_{3/2}^2 + \mu^2 = B \mu m_{3/2}$$

(5.14)

i.e. at most we can arrive at a flat direction where $SU(2) \times U(1)$ breaking and nonbreaking minima are degenerate. We would then have to look for radiative
corrections to see whether $SU(2) \times U(1)$ breaking minima can be reached at all within this approach. This is actually a nice feature of the model. It tells us again that we have not put in $SU(2) \times U(1)$ breaking by hand. Instead this breakdown will be intrinsically related to the supersymmetry breakdown and the dynamics of the model. The investigation of this question involves a full treatment of the evolution of the parameters of the model in the framework of the renormalization group approach. Time does not permit us to discuss that in detail. We refer the reader to some existing reviews that also discuss the phenomenological properties of the model[5,21].

6. Grand unification

Again I assume that the reader is familiar with the general idea of grand unification[22]. We shall concentrate here on those special points that are important in the supersymmetric case. This concerns the scale M_X, a discussion of the superpotential, the question of the triplet-doublet splitting and proton decay via dimension 5 operators. We shall exclusively stay within the $SU(5)$ framework, with $\tilde{5} + 10$ for a quark-lepton family.

In this first chapter on supersymmetric grand unification we give the basic structure of these theories. A more careful discussion of the models including the results of recent precision measurements will be given in the next chapter. If we very roughly assume a value of $\alpha_3 \sim 0.11$ and $\alpha \approx 1/129$ at a scale of 100 GeV we obtain in the nonsupersymmetric model a scale M_X of approximately 5×10^{14} GeV and disastrous proton decay. The supersymmetric model, however, has more light particles and as such the evolution of coupling constants changes[23]. The most important contribution comes from the gauginos implying a slow-down of the evolution. As a result we observe a larger $M_X \sim 2 \times 10^{16}$ GeV roughly 60 times larger than in the corresponding nonsupersymmetric model. Since proton decay is suppressed with the fourth inverse power of M_X there are no problems with proton stability in the supersymmetric $SU(5)$ model. For a long time the experimental uncertainties concerning the value of the gauge coupling constants did not allow a distinction between the supersymmetric and nonsupersymmetric models. But more recently
this situation has changed. A precision analysis of electroweak data indicated that
the supersymmetric model (with two Higgs doublets and a supersymmetry break-
down scale in the TeV-region) gives, in contrast to nonsupersymmetric $SU(5)$ the
correct prediction for $\sin^2\theta_W(M_Z)$ [24]. We shall discuss these questions in the next
section. First we would like to present some basic facts of supersymmetric grand
unified theories.

Let us here next examine the superpotential and the question of
$SU(5)$ breakdown. We denote the quark superfields $X_i(10), Y_i(\bar{5})$ $i = 1, 2, 3$ and the Higgs
superfields $H(5), \bar{H}(\bar{\bar{5}})$ and $\Phi(24)$. The superpotential can then be written as

$$g = g_{ij}X_iX_jH + h_{ij}X_iY_j\bar{H} + \lambda_1H\Phi\bar{R} + \lambda_2\Phi^3 + M\Phi^2 + M'\Phi\bar{R}$$ \hspace{1cm} (6.1)

where g_{ij} determines the masses of up-type quarks and h_{ij} those of down-type
quarks and leptons. The discussion of the spontaneous breakdown of $SU(5)$ is
similar to the one in nonsupersymmetric $SU(5)$ models. The auxiliary /n0ce/-tuning has to
be performed to keep the Higgs/-doublets ligh t/. Here it amounts to

$$M' = \frac{3}{2}\delta \lambda_1.$$ \hspace{1cm} (6.4)
This is similar to the nonsupersymmetric case but here we could argue that the fine-tuning concerns only parameters in the superpotential and is therefore not disturbed by radiative corrections. If we now would be able to find a reason why (6.4) should be valid at tree level we could claim to have solved the fine-tuning problem. There have been several interesting attempts in this direction. As a first we discuss the mechanism of a sliding singlet[25]. Take a gauge singlet superfield Z and add a term $\lambda H Z \bar{H}$ to the superpotential. The H auxiliary field reads now

$$-F_H^* = \bar{H}(\lambda_1 \bar{\Phi} + \lambda Z + M').$$

(6.5)

In the full theory, including supersymmetry breakdown, the doublet component of the scalar of \bar{H} should receive a vev (in contrast to the $SU(3)$-triplet component). The vev of Z is undetermined and it can adjust its vev to have $F = 0$ for the doublet component, thus it slides to make

$$-\frac{3}{2} \lambda_1 v + \lambda z + M' = 0$$

(6.6)

and the Higgs-doublet remains light. This looks nice, but also this mechanism has some problems. We do not understand why the allowed Z^2 and Z^3 terms are absent and also we cannot rule out the possibility that the absolute minimum of the potential occurs for large vev’s of both the triplet and the doublet. Moreover, there are usually problems with a small supersymmetry breakdown scale in the presence of light singlets[26].

A second mechanism to be discussed here is the one of the missing partner. H and \bar{H} contain $(3,1)+({\bar 3},1)$ and $(1,2)+(1,\bar{2})$ of $SU(3)$ and $SU(2)$ respectively. Try to find now a new representation which only contains a $(3,1)$ but not a $(1,2)$. The former could then pair up with the $({\bar 3},1)$ in \bar{H} while $(1,\bar{2})$ would remain massless. A simple example[27] is a 50 of $SU(5)$. It decomposes with respect to $SU(3) \times SU(2)$ as $(\bar{6},1)+(8,2)+(1,1)+(3,2)+(6,3)+({\bar 3},1)$ and as a cross term in the superpotential we could imagine $50 \times 5 \times 75$ with $75 = (1,1)+(3,1)+(3,2)+({\bar 3},1)+({\bar 3},2)+({\bar 6},2)+(6,2)+(8,1)+(8,3)$. Fortunately a vev of 75 can break $SU(5)$ to $SU(3) \times SU(2) \times U(1)$ thus avoiding the presence of Φ in (6.1). Instead we choose now for the superpotential

$$g = \lambda_3 75 \times 75 + M 75 \times 75 + \lambda_1 50 \times 75 \times 50$$

$$+ \lambda_2 50 \times 75 \times 5 + \lambda_3 50 \times 75 \times 5 + M 50 \times 50$$

(6.7)
and as a mass matrix for the triplets we obtain

\[
\begin{pmatrix}
0 & \lambda_2 v \\
\lambda_3 v & \tilde{M}
\end{pmatrix}
\]

(6.8)

(where \(v\) is the vev of 75), while the doublets remain light. Of course, one still has to explain why we have omitted a direct \(5 \times 5\) mass term in (6.7) and the question of a complete solution of the fine tuning problem remains open.

We had seen at the beginning of this chapter that \(M_X\) is quite large in supersymmetric grand unified models and that therefore proton decay via gauge boson exchange is sufficiently suppressed. This, however, is not the last word about proton decay in supersymmetric grand unified models. Remember, that in the supersymmetric version of the standard model we already had to suppress proton decay via dimension-4 operators by introducing an \(R\)-symmetry (see chapter 3). Here we have to worry about proton decay via dimension five operators[28] leading to proton decay via the exchange of fermionic supersymmetric partners. The first step couples two fermions to two bosons (therefore the name dimension-5 operator) and has a propagator suppression of \(1/M_X\) and the second step involves only light particles. Instead of \(1/M_X^2\) in the amplitude we have now \(1/M_X M_W\) and there is a potential danger of fast proton decay. A careful investigation of the dimension 5-operators has therefore to be performed. Out of the possible terms we need only consider those which are invariant under the \(R\)-symmetry discussed earlier and these are the two \(F\)-terms \((QQQL)_F\) and \((\bar{U}U \bar{D}E)_F\). The latter reads in components

\[
\bar{U}_{ia} \bar{U}_{jb} \bar{D}_{kc} E_{le}^{abc}
\]

(6.9)

where \(a, b, c\) are \(SU(3)\) indices and \(i, j, k, l\) are generation indices. All fields above are scalar superfields and should obey Bose-statistics. The two \(\bar{U}\)'s are antisymmetrized in \(a\) and \(b\) and therefore \(i \neq j\) and one of the \(\bar{U}\)'s has to come from the second generation. Since the charmed quark is heavier than the proton the presence of the term in (6.9) does not constitute a problem. The other possibility reads

\[
Q^a_{ir} Q^b_{js} Q^c_{kt} L_{lu} \epsilon_{abc} \epsilon^{rs} \epsilon^{tu}
\]

(6.10)
where r, s, t, u are $SU(2)$-indices. Here we can have $i = j = 1$ but then we need $k = 2$ which leads to
\[
\begin{pmatrix}
c \\
s \\
t \\
u
\end{pmatrix}_{i} \begin{pmatrix}
u' \\
e'
\end{pmatrix}_{u}
\]
thus ce or su. Proton decay therefore is only possible with the $(uds\nu)_{F}$ operator. The dominant decay mode is proton to K^{+} and antineutrino, a quite unique prediction of supersymmetric grand unified models. The rate is faster than the one from dimension-6 operators but it is not desastrously fast since $p \rightarrow K^{+}\bar{\nu}$ involves Yukawa couplings instead of gauge couplings in the process with dimension-6 operators. At the moment $p \rightarrow K^{+}\bar{\nu}$ seems to be at the border of observability and further experimental results are eagerly awaited.

7. Supersymmetric grand unification

Experimental findings give at the moment the following picture; with a top quark mass between 150 and 200 GeV the strong coupling constant $\alpha_s(M_Z) = 0.12 \pm 0.01$ and $\alpha_{em}(M_Z) = 1/128$ the weak mixing angle is $\sin^2 \theta_W(M_Z) = 0.2316 \pm 0.0003$. This leads to gauge coupling unification at a scale $M_X = 2 \times 10^{16}$ GeV with $\alpha_{GUT} \sim 1/26$ in the minimal supersymmetric extension of the standard model, provided the mass scale M_{SUSY} of the supersymmetric partners is between 100 Gev and 10 TeV.

There is a correlation between α_s and M_{SUSY}: large α_s corresponds to small M_{SUSY}.

We have now to take a closer look at the definition and the role of M_{SUSY}. It is understood that between M_Z and M_{SUSY} one should use the renormalization group equations of the standard model while above M_{SUSY} the evolution equations of the supersymmetric extension of the standard model should be applied. If we consider e.g. a model where all the supersymmetric partners like the gauginos, the higgsinos, the squarks and the sleptons are degenerate with mass m, then $M_{SUSY} = m$; this in fact would then mean, that $M_{SUSY} = m \geq M_Z$.

A more realistic spectrum of supersymmetric partners, however, might look different. We e.g. expect in general, that the gluino is heavier than the photino or that the squarks are heavier than the sleptons; in any case one would expect a nondegenerate spectrum. Some averaging procedure should then be performed. It turned out that strange things happen in this procedure. It was observed that
even with nondegenerate partners *all in mass above* M_Z the effective scale M_{SUSY} can become *smaller* than M_Z. We shall therefore (following ref.[30]) call this effective scale T_{SUSY} and still keep the notation M_{SUSY} for the physical mass scale of supersymmetric partners.

This effect of the averaging procedure for a nondegenerate spectrum has been explained in ref. [29]. Let us here follow this discussion and use the evolution equations at the one-loop level. The qualitative features are valid also if we include the two-loop contribution, but the formulae become too complicated to be discussed here. Here we obtain the following relation:

$$19 \log \left(\frac{T_{\text{SUSY}}}{M_Z} \right) = -25 \log \left(\frac{M_1}{M_Z} \right) + 100 \log \left(\frac{M_2}{M_Z} \right) - 56 \log \left(\frac{M_3}{M_Z} \right); \quad (7.1)$$

where M_1, M_2 and M_3 in some way represent the average mass of particles with $U(1)$, $SU(2)$ and $SU(3)$ quantum numbers, respectively[29]. At the moment it is not necessary to understand these masses in detail; we will shortly give a more detailed explanation. It is important to realize first that in fact the whole spectrum can be described by *one effective scale* T_{SUSY} that represents all information about these threshold corrections for the supersymmetric particles. Secondly we observe that the right hand side of (7.1) contains positive as well as negative signs. And here we now understand the strange behaviour mentioned above: if we increase the mass of the gluino (contributing only to M_3) while keeping all other masses fixed we lower the effective scale T_{SUSY}. This also makes clear that it is possible to have $T_{\text{SUSY}} < M_Z$. The threshold effects that take place above M_Z and which might come from a complicated spectrum can be summarized with this one effective scale T_{SUSY}.

Let us now examine more closely the effect of the various particles on T_{SUSY}:

$$-19 \log \left(\frac{T_{\text{SUSY}}}{M_Z} \right) = 3 \log \left(\frac{M_{\text{squarks}}}{M_Z} \right) + 28 \log \left(\frac{M_{\text{gluino}}}{M_Z} \right)$$

$$- 3 \log \left(\frac{M_{\text{slepton}}}{M_Z} \right) - 32 \log \left(\frac{M_{\text{wino}}}{M_Z} \right)$$

$$- 12 \log \left(\frac{M_{\text{higgsino}}}{M_Z} \right) - 3 \log \left(\frac{M_{\text{Higgs}}}{M_Z} \right), \quad (7.2)$$
which allows you to compute T_{SUSY}, once you know the masses of the particles in the supersymmetric standard model. It is clear that even with all the supersymmetric partners heavy, still T_{SUSY} might be small. Observe also, that the contribution from squarks and sleptons cancel if they are degenerate. The terms with the gauginos have quite large coefficients. If one considers models with a universal gaugino mass at the large scale, there is also the tendency that the winos partially cancel a big gluino contribution. In general, however, threshold corrections due to the nondegeneracy of the supersymmetric spectrum are quite important. This remains true after the inclusion of two-loop effect in the evolution equations which we have not discussed here. An account of the difference between one- and two-loop results on these questions can be found in [31].

Let us now turn to the question of fermion masses in grand unified models. We remember that a discussion of the quark and lepton masses in the standard model as well as its supersymmetric extension usually consisted of the statement that one has to adjust the Yukawa-couplings to obtain the correct spectrum. In grand unified models, however, due to the larger gauge symmetry we also have to consider Yukawa coupling unification. In our example based on the group $SU(5)$ we have, according to equation (6.1), only one Yukawa coupling for the charged leptons and the down quarks, as long as we assume that they obtain their mass through the vev of the same Higgs-scalar. The complete fermion mass matrix is very complicated, and in order to understand it completely one would most probably need more than just one of these scalars. It is, however, tempting to assume that for the heaviest generation just one scalar is responsible for b-quark and τ-lepton mass. This then implies $h_\tau(M_X) = h_b(M_X)$ for the b- and τ-Yukawa-couplings at the GUT-scale. Of course, at low energies, h_τ and h_b differ because of the renormalization effects. The one-loop equations for the Yukawa-couplings are given by (assuming $h_t \gg h_b, h_\tau$):

$$ \mu \frac{\partial}{\partial \mu} h_\tau = -\frac{1}{8\pi^2} h_\tau \left(\frac{3}{2} g_2^2 + \frac{3}{2} g_1^2 \right) $$

$$ \mu \frac{\partial}{\partial \mu} h_b = -\frac{1}{8\pi^2} h_b \left(\frac{8}{3} g_3^2 + \frac{3}{2} g_2^2 + \frac{7}{18} g_1^2 \right) + \frac{1}{16\pi^2} h_b^2 h_b $$

$$ \mu \frac{\partial}{\partial \mu} h_t = -\frac{1}{8\pi^2} h_t \left(\frac{8}{3} g_3^2 + \frac{3}{2} g_2^2 + \frac{13}{18} g_1^2 \right) + \frac{3}{8\pi^2} h_t^3 $$
in the notation of chapter 5. Since the b-quark has strong interactions in contrast to
the τ-lepton hb evolves faster than hτ giving rise to a larger b-mass at low energies
in agreement with experimental results. This is a well known result and it was
considered a great success that the mb/mτ ratio could be explained by this fact[32].
In [33] it was pointed out, that for a large value of ht (comparable in size to the
gauge coupling constants) its effects could be quite important. This comes from the
last term in (7.4) with the opposite sign, thus reducing the mb/mτ ratio. This ratio
thus depends strongly on αs and ht. For a long time αs was so poorly known that
no conclusion could be drawn from these facts. With the more precise value of αs
and the knowledge of the mb/mτ ratio now, however, we can obtain information on
the size of the top-quark Yukawa coupling ht [34]. This leads to the statement, that
ht should be close to its infrared quasi fixed-point [35] which is obtained in case of
a vanishing right hand side of (7.5), thus with Yt = ht²/4π

\[8\alpha_s(m_t) \sim 9Y_t(m_t), \quad (7.6) \]
evaluated at the low energy scale, here chosen to be the mass of the top-quark. This
value of ht close to the infrared quasi fixed point leads to rather large values of the
top-quark mass:

\[m_t(m_t) = h_t(m_t)v \sin \beta, \quad (7.7) \]
where tan β is the previously defined ratio of the vevs of the two Higgs-fields.

Observe that in models with radiative symmetry breakdown one has tan β ≥ 1
and thus mt ≥ 140 GeV approximately. The assumption of Yukawa coupling
unification for the b-τ system gives strong restrictions on mt. A detailed discussion
of these and related questions can be found in the literature[30]. Meanwhile the
direct experimental observation of the top quark has confirmed these expectations.

As we discussed in the last chapter there can be constraints from proton decay
via dimension-5 operators. This process involves the down-quark Yukawa coupling
and given the d-quark mass we see that this coupling is proportional to tan β.
The experimental results might therefore lead to an upper bound[36] on tan β,
but the exact value of this bound is still under debate[37]. If proton decay via
dimension-5 operators is not found one might also consider models where some
discrete symmetries\cite{38,39} (as alternatives to R-parity) prohibit this mechanism. In these cases we would, however, expect new sources of lepton number violation.

An upper bound on tan β might become important in those models based on an $SO(10)$ grand unified gauge group where the heaviest generation receives a mass from a single Higgs representation. There $h_t = h_b$ at M_X and therefore $\tan \beta \sim 60$.

The simplest supersymmetric grand unified model is thus consistent with the value of $\sin^2 \theta_W$. Given this success, we can then test more specific models, like the assumption of Yukawa-coupling unification discussed above. Another more specific scenario is the one based on the induced radiative breakdown of $SU(2) \times U(1)$. Here we obtain strong restrictions on the parameters\cite{40}, especially in models that also exhibit Yukawa coupling unification. At the moment we can just try and study the full parameter space of the model. New data has then to decide which part of it might be selected. A lot of work has been done in this field recently which we do not have the time to present in detail.

We should, however, be aware of the fact that in all grand unified models there are inherent uncertainties at the grand scale that we cannot control. These are e.g. threshold corrections due to heavy particles. While in minimal $SU(5)$ they are usually rather mild\cite{29}, they could become quite important in more complicated models like those with a 75-representation discussed earlier\cite{41}. Other uncertainties include heavy thresholds in the evolution of Yukawa-couplings, the presence of nonminimal gauge kinetic terms or just a more general set of boundary conditions for the soft breaking terms at the grand scale\cite{42}.

8. String unification

This brings us to the central question: should we believe in the reality of supersymmetric grand unified theories? After all some ten years ago many people believed in normal grand unified theories. Then proton decay was not found and now we also know that the coupling constants in a nonsupersymmetric theory do not match at a single scale. Could history repeat itself? Of course, we cannot answer this question. Nonetheless it might be useful to keep this possibility in mind. If the GUT idea were true, however, we could then ask the question how well we can
determine the grand unified scale M_X with our present experimental knowledge. That seems to be easy: just take the precisely known values of α_1 and α_2 at M_Z and then determine the value where they cross. This would give something like $M_X \sim 2 \times 10^{16}$ GeV. But we cannot control heavy threshold effects and they might strongly influence the value of M_X. In fact, grand unified models with a complete description of the fermion mass spectrum turn out to lead to a complicated spectrum of heavy particles and significant heavy threshold effects might be a genuine property of realistic grand unified models. Also M_X tends to be only two orders of magnitude smaller than the Planck scale. How sure can we be that $M_X \ll M_{\text{Planck}}$ since gravitational effects might also influence M_X.

We cannot answer these questions at the moment and one way to proceed is to compare SUSY-GUTs with alternative models. One of them is the embedding of the supersymmetric standard model within the framework of string theory, called string unification. Such theories contain one fundamental scale $M_{\text{string}} \approx 4 \times 10^{17}$ GeV related to the Planck scale. Many heavy particles can act as sources for threshold effects. There is usually a fixed relation between the gauge coupling constants but they need not necessarily all coincide at a single scale. The models in general do not contain a grand unified gauge group like $SU(5)$ or $SO(10)$ although such groups might be present. This could relieve somewhat the problem of splitting doublet and triplet in grand unified $SU(5)$ since the Higgs-doublet does not necessarily have an $SU(5)$ partner. It also implies that Yukawa couplings like h_b and h_τ need not be equal at the grand scale.

Let us now examine string unification in more detail. At the tree level the gauge couplings are determined by the vev of the scalar dilaton field:

$$k_3g_3^2 = k_2g_2^2 = k_1g_1^2 = g_{\text{string}}^2 = g^2$$

where the coefficients k_i (the so-called Kac-Moody levels) are rational numbers. One could now try to see which choice for the k_i leads to models consistent with observed values of the coupling constants. From the experience with model building we know that it is very hard to obtain realistic models with $k \neq 1$ for nonabelian gauge groups and one would choose $k_3 = k_2 = 1$ leaving k_3 as a free parameter. In SUSY-GUTs the relation between the coupling constants would be fixed, but M_X would be the
free parameter while in the other approach M_X is fixed through M_{string}. The usual normalization of the $U(1)$ gauge coupling corresponds to $k_1 = 5/3$.

The evolution of coupling constants requires a loop-calculation and apart from the usual evolution the gauge couplings become moduli-dependent (i.e. a function of scalar fields T_i) and this can be understood as the influence of heavy particles. In simple models such a functional dependence can be estimated [43-46] while in more realistic models such a calculation turns out to be quite complicated[47]. One can write

$$\frac{16\pi^2}{g_a^2(\mu)} = k_a \frac{16\pi^2}{g_{\text{string}}^2} + b_a \log\left(\frac{M_{\text{string}}^2}{\mu^2}\right) + \Delta_a,$$

(8.2)

where in the simplest cases[45] the threshold $\Delta \sim \log[\text{Im} T(\eta(T))]$ is a function of one modulus T which is related to the overall size of compactified space. M is as [44]

$$M_{\text{string}} = (2\pi \alpha')^{-1/2} \exp[(1 - \gamma)/2] 3^{-3/4} \approx 0.527 g_{\text{string}} \times 10^{18}\text{GeV}.\quad (8.3)$$

If we then assume $g_{\text{string}} \sim 0.7$ for the correct size of the coupling constant M_{string} turns out to be a factor of 20 larger than M_X. If we now, hypothetically take M_{string} as the unification scale and assume that all the particles lighter than M_{string} are those of the minimal supersymmetric standard model we can determine $\sin^2 \theta_W \approx 0.218$ which is in conflict with the measured value. This calculation, however, is purely academic, since such a string model might not exist. Usually such models contain more particles below M_{string} and thresholds might be important. Just consider $\Delta(T)$ in its simplest form with a value of $T \approx 10^{16}\text{GeV}$: one could have effects big enough to reproduce the correct value of $\sin^2 \theta_W [48]$. Of course, also such a calculation might be academic since this simple threshold function is valid only in very simple models with unbroken E_6 gauge group. It indicates, however, the potential importance of heavy thresholds. This is confirmed in more realistic models; see ref. [47] for a detailed discussion. One way to distinguish string unification and grand unification could be related to the question of Yukawa couplings. While in many grand unified models with a simple Higgs sector we expect also some group theory relations between Yukawa couplings (like e.g. $h_b = h_\tau$), this needs not
necessarily be the case in string theory. We have to see how the experimental situation develops, before we can make some more definite statements.

Calculations of threshold corrections in realistic string theories are very difficult and tedious. They were for along time only available for very simple models, and turned out to be numerically very small[46]. This had lead to the impression[49] that maybe a successful string unification might necessarily require the introduction of new particles at an intermediate scale ($10^{11} - 10^{13}$ GeV) that is much smaller than the string scale and even the grand unified scale.

More recently, a breakthrough has been achieved in the calculation of the moduli dependence of thresholds in (0,2) string theories[50]. When applied to realistic extensions of the supersymmetric standard model, they show the possibility that the correct prediction of the low energy coupling constant can be achieved without the introduction of a small intermediate scale[51]. String unification is thus a realistic possibility.

9. Conclusions

We have seen that the supersymmetric model provides an interesting framework for physics beyond the standard model. In contrast to the standard model itself it might even have a simple grand unified extension. Unfortunately up to now the model remains a theoretical dream. No sign of supersymmetry has been detected yet. We did not have the time here to discuss the experimental limits for the various superpartners. Such a discussion can be found in [52] with the yearly updates given in the big conferences. Of course, still plenty of parameter space remains unexplored and we have to keep in mind, that also the Higgs boson of the standard model has not been found. So we have to wait and see.

On the more theoretical side there could come some progress as well. I had no time to discuss these developments in the lectures at this school and will give an account of these issues elsewhere. Among the much discussed subjects is the embedding of the supergravity models in the framework of string theory. This might lead to more detailed information on the nature and the size of the soft breaking terms, also in connection with the mechanism of supersymmetry breakdown via
gaugino condensates. Stringy symmetries like so-called targeted space duality could play an important role in this process. For review and a list of references see ref. [53,54].

In these lectures, I concentrated on the simplest model with an exact R-parity. This leads to a stable particle that might have cosmological relevance. But there are alternatives[55]. Of course, such models then necessarily will have some amount of L(eft-handed)-number)-violation in dimension four operators and it is not clear whether we would like to have those. Alternative choices of discrete symmetries might avoid a possible problem with the dimension-5 operators in grand unified models [38,39] at the expense of L-violation. May be this could be relevant in connection with the solar neutrino problem[56] as well as many particle physics and cosmological phenomena.

Acknowledgements

It is a pleasure to thank the organizers of the meeting for their hospitality. This work was partially supported by Deutsche Forschungsgemeinschaft SFB-375-95 as well as grants from EC-contracts SC1-CT91-0729 and SC1-CT92-0789.

References

 A. Salam, in Elementary Particle Theory, ed. N. Svartholm, (1968) 367;
4. J. Wess and J. Bagger, Supersymmetry, Princeton Series in Physics, Princeton
 Univ. Press (1983)
 A. Salam and J. Strathdee, Nucl. Phys. B87 (1975) 85
 M. Dine, R. Rohm, N. Seiberg and E. Witten, Phys. Lett. 156B (1985) 55
21. H.P. Nilles, Tasi lectures 1990, Published in the proceedings, Ed. P. Langacker, page 633
35
40. See M. Olechowski and S. Pokorski, Nucl. Phys. B404 (1993) 590 for a discussion and further references
53. S. Ferrara and S. Theisen, CERN TH-5652 (1990), Lectures at the third Hellenic Summer School, Corfu, Greece, published in the Proceedings, page 620