Multiple Particle Interference and Quantum Error Correction

Andrew Steane†
Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, England.

November 20, 1995

Abstract

The concept of multiple particle interference is discussed, using insights provided by the classical theory of error correcting codes. This leads to a discussion of error correction in a quantum communication channel or a quantum computer. Methods of error correction in the quantum regime are presented, and their limitations assessed. A quantum channel can recover from arbitrary decoherence of $x$ qubits if $K$ bits of quantum information are encoded using $n$ quantum bits, where $K/n$ can be greater than $1 - 2H(2x/n)$, but must be less than $1 - 2H(x/n)$. This implies exponential reduction of decoherence with only a polynomial increase in the computing resources required. Therefore quantum computation can be made free of errors in the presence of physically realistic levels of decoherence. The methods also allow isolation of quantum communication from noise and evesdropping (quantum privacy amplification).

1 Introduction

The concepts of quantum interference, correlations and entanglement are at the heart of quantum mechanics. A quantum interference between two parts a system’s
evolution is prevented when the system interacts with another so as to produce an entangled state. In such situations, properties of the two entangled systems are correlated, and correlations of this type are subject to the Bell inequalities (Bell 1964), which shows that they are non-local in character. Whereas for many quantum mechanical effects a model can be given which relies only on classical concepts, this non-locality is a feature of quantum mechanics which is alien to the very structure of other (classical) theories. (Many texts are available as an introduction to this broad subject, for example that of Shimony 1989.)

One way of shedding light on the nature of quantum mechanics is to pose the question “to what extent can quantum mechanical behaviour be modelled in classical terms?” To make this slightly vague question more concrete, it can be posed thus: “to what extent can quantum mechanical behaviour be simulated by means of a universal computer operating according to the laws of classical mechanics?” Such a ‘universal’ computer is universal in the sense of a universal Turing machine: it can simulate the behaviour of any other computer in the set of all possible computers (Turing 1936). However, as long as the set of ‘possible’ computers includes only those operating by classical laws of physics, then the non-local correlations which arise in the real world cannot be simulated, as was discussed by Feynman 1982. To simulate them, the computer must be allowed to operate according to the laws of quantum mechanics. Hence one introduces the concept of the quantum, as opposed to classical, computer (see Deutsch 1985; Ekert 1995), and the question under consideration can be re-phrased: “to what extent can a quantum computer perform calculations which are beyond the computing abilities of a classical computer?” For the physicist, this question addresses fundamental questions concerning the nature of our most basic physical theory. However, the answer is also of considerable practical interest because computing ability is an extremely useful kind of ability.

The theoretical analysis of quantum computers has by now passed some important milestones, among them the demonstration of how to construct a universal quantum computer (Deutsch 1985), the discovery of simple universal quantum gates (Deutsch et al. 1995, Barenco 1995, DiVincenzo 1995), and the presentation of algorithms for idealised quantum computers which surpass the computing ability of known algorithms for classical computers, and which appear to surpass even what is in principle possible classically (Deutsch & Jozsa 1992, Bernstein 1993, Shor 1994, Simon 1994). It has been obvious from the outset that quantum computation is different from classical computation precisely because of the possibility of quantum interference and entanglement. However, this entanglement is itself sensitive to a problem which is unavoidable in the quantum context, namely, decoherence of
the state of the computer. The useful algorithms just mentioned were initially proposed under the assumption of the idealised case that this decoherence is negligible. However, it can be argued that the possibility of decoherence is itself just as fundamental a feature of quantum mechanics as the interference and entanglement of which a quantum computer takes advantage. Such decoherence must be considered, for example, in any discussion of the “Schrödinger’s cat” paradox (Schrödinger 1935; for a text-book treatment see, for example, Peres 1993). The cat in Schrödinger’s thought-experiment corresponds here to the quantum computer itself. Hence, the idealisation in which decoherence is taken to be negligible is not merely a limit on the practical application of the theory of quantum computation, it is in fact an “idealisation too far”, since it involves neglecting a basic aspect of quantum theory, as has been emphasized by Landauer 1995.

This paper discusses both the nature of quantum interference involving many particles, and also the question of decoherence in quantum computers. It is shown that both questions are intimately concerned with the issue of error correction which arises in classical information theory. Unruh 1995 calculated the sensitivity of a ‘bare’ quantum computer to thermal decoherence. Here, we are concerned with the different question of how to add redundancy to such a ‘bare’ computer in order to stabilise it against decoherence. The classical theory of error correction which is invoked is a well-founded body of knowledge involving some beautiful mathematical concepts, and we can take advantage of this knowledge in our quest to understand quantum mechanics more fully. This paper does not assume much familiarity with classical error correction, however. At the risk of alienating experts, concepts from classical information theory are introduced for the most part with sufficient explanation to allow readers unfamiliar with this material to follow the argument. The readily available textbooks such as MacWilliams & Sloane 1977 and Hamming 1986 give further explanation.

In section 2 a general theory of interference involving many particles is presented. It is shown that an interesting class of entanglements involving many particles (or other simple quantum systems) can be understood by appealing to the known theory of classical error correcting codes. In section 3 the same concepts are applied to the problem of error correction in a set of two-state systems (‘quantum bits’). Coding and correction methods are presented which allow the problem of decoherence in a quantum computer to be circumvented. The same methods allow privacy in quantum cryptography to be enhanced (for a review and references to this subject, see, for example, Hughes et al. 1995.) In section 4 the limitations of these coding methods are estimated, by a calculation reminiscent of Shannon’s main theorem for
communication through a noisy channel. A full quantum equivalent to Shannon’s theorem is not found, and this is a limitation of the present work, but the ideas presented here suggest ways of tackling this more general question. The conclusions of the present discussion are hopeful, however, in that they suggest that error-free quantum computation is possible using resources (numbers of quantum bits and of operations) that are only a polynomial factor greater than those required by an ideal quantum computer. Indeed, the judicious use of redundancy and error correction allows the probability of decoherence to fall exponentially with the amount of redundancy. This is a conclusion which has commonly been imagined to be ruled out for quantum systems. The implementation of the error correction procedure to be described, without introducing excessive extra decoherence, remains a severe technological challenge, however.

2 Multiple particle interference and parity checks

2.1 Single parity check

Consider a two-state quantum system. Its two-dimensional Hilbert space is spanned by two orthogonal states which will be written $|0\rangle$ and $|1\rangle$. These states may for example be different states of motion of a spinless particle of no internal structure, or they may be different internal states, such as those of a two-level atom. The simple concept of quantum interference arises when such a system is in a state such as $(|0\rangle + \exp(i\phi) |1\rangle)/\sqrt{2}$, and measurements are performed which project the state onto $(|0\rangle \pm |1\rangle)/\sqrt{2}$. Now, what happens if this system interacts with another two-state system, such that the total state of the pair is the entangled state $(|0\rangle \otimes |0\rangle + \exp(i\phi) |1\rangle \otimes |1\rangle)/\sqrt{2}$? In this case, measurements on either subsystem alone (hereafter called a ‘particle’) will not reveal any interference effect (any dependence on the value of $\phi$). If both particles are measured in the $(|0\rangle \pm |1\rangle)/\sqrt{2}$ basis, on the other hand, and the results of the measurements on each particle pair are compared, then a correlation is observed which is sensitive to $\phi$. The probability that the particles are found in the same state is equal to $\cos^2 \phi/2$. Whereas before we had a single particle interference effect, we now have a two-particle interference, in the sense that no measurements on individual particles reveal the interference phase $\phi$, while combining measurements on both particles makes the interference ‘fringe’ $\cos^2 \phi/2$ observable.
The above argument was extended by Greenberger et al. 1990, so that one speaks of an “n-particle interference,” meaning a state of n particles in which no measurements on any subset of the n particles (containing 1, 2 or any number up to n – 1 particles) will suffice to reveal an interference, but once all n are measured (in the correct basis), and correlations established between the results, the interference becomes apparent. Such an n-particle interference is the state

\[ |n, \phi\rangle = \left( |000 \cdots 0\rangle + \exp(i\phi)|111 \cdots 1\rangle \right) / \sqrt{2}, \]  

(1)

where there are n zeroes or ones in the ket labels, and the usual convention has been followed of writing product states (\(|0\rangle \otimes |0\rangle \otimes \cdots\)) by the notation \(|00 \cdots\rangle\). When n = 2 the correlations are subject to the most simple type of Bell inequality. When n = 3 we have the ‘GHZ’ state of Greenberger, Horne and Zeilinger 1989, in which correlations can be found which are both non-local and which occur with certainty. Also, Zurek 1981 stressed that three particles are sufficient and necessary to establish a ‘preferred’ basis for inter-particle correlations. For larger n, Mermin 1990 derived a Bell-type inequality which becomes more and more severe as n grows.

Is there a simple way of seeing that the state \(|n, \phi\rangle\) is an n-particle interference? Clearly, a ‘which path’ argument will suffice. If any set of less than n particles is measured, the remaining unmeasured two-state system could in principle be measured in the \({|0\rangle, |1\rangle}\) basis, thus indicating which of the two ‘paths’ \(|000 \cdots 0\rangle\) or \(|111 \cdots 1\rangle\) the whole system followed, which prevents any interference between those paths\(^1\).

In the case that all n particles are measured so as to observe a \(\phi\)-dependent result, it is instructive to examine how such interference can come about, it being a property of all n particles, and not of any subset. To this end, a simple notation will be introduced. The pair of states \({|0\rangle, |1\rangle}\) will be referred to as ‘basis 1’, and written in standard font. The states \(|0\rangle \equiv (|0\rangle + |1\rangle)/\sqrt{2}\), and \(|1\rangle \equiv (|0\rangle - |1\rangle)/\sqrt{2}\), will be referred to as ‘basis 2’, and distinguished from basis 1 by using bold font for the labels. (The two bases are related by a rotation in Hilbert space through 45 degrees).

Consider the three-particle interference \(|3, \phi\rangle = (|000\rangle + \exp(i\phi)|111\rangle)/\sqrt{2}\). To observe the interference, measurements must be carried out in basis 2 on all the particles. Therefore, it is useful to write the state \(|3, \phi\rangle\) in terms of basis states of

\(^1\)If this description in terms of ‘following a path’ is felt to be too reliant on an assumption of wavefunction collapse, it can always be stated more elaborately in terms of entanglements with external measuring devices, and the same conclusion is obtained.
basis 2:

\[ |3, \phi \rangle \equiv \left( 1 + e^{i\phi} \right) \left( |000 \rangle + |011 \rangle + |101 \rangle + |110 \rangle \right)/4 \]
\[ + \left( 1 - e^{i\phi} \right) \left( |111 \rangle + |100 \rangle + |010 \rangle + |001 \rangle \right)/4 \] (2)

Measurements carried out in basis 2 will collapse the state onto one of the 8 product states \( |000 \rangle, |001 \rangle \cdots |111 \rangle \). Examining equation (2), one finds that the probability of obtaining an even number of 1’s is equal to \( \cos^2 \phi/2 \). In other words, the information on the value of \( \phi \) is contained in the parity check of the total state in basis 2. We are using the word ‘parity’ in the sense of the parity check for binary communication channels.

With this insight in terms of parity, a new way of explaining the \( n \)-particle interference arises. For, to learn the parity of a string of \( n \) bits, it is obvious that one must know the value of all \( n \) bits. No subset of the bits contains this information. It is important to note that when \( \phi = 0 \), all the 4 possible product states of even parity appear, and when \( \phi = \pi \), all the 4 possible product states of odd parity appear. If this were not the case, then sometimes a subset containing less than 3 bits would define the parity. For example, if we know from the outset that the product state \( |111 \rangle \) is not present in the final superposition, then whenever measurements of the first two bits both yield 1, we know immediately that the overall parity is even, without measuring the third bit.

The parity check argument is true for any \( n \) (this was shown by Steane 1995a and will also be demonstrated below). The parity check is a two-valued quantity, and thus can store a single bit of information. It may be imagined as a single bit stored symmetrically among all the \( n \) bits.

### 2.2 Multiple parity checks

Once the \( n \)-particle interference has been understood as a parity check in basis 2, the concept of multiple-particle interference can be generalised. For, an overall parity check is the simplest example of error detection in a classical communication channel. More advanced types of error detection and correction are associated with more complicated types of \( n \)-particle interferences. To understand the details, we make use of theorems 1 to 3 of Steane 1995a, which are reproduced below. Before they are presented, a few notations will be introduced.

---

6
First, the two-state systems which have so far been referred to as ‘particles’ will hereafter be called qubits\(^2\). The product states in either of bases 1 or 2 (e.g. \(|0010\rangle\) or \(|01101\rangle\)) will be referred to as *words*, since each such state is identified by a unique string of bits when written in the relevant basis. A superposition of product states defines a set of words. A set of words is called a *code*, following standard nomenclature in the theory of error correcting codes. When writing superposition (entangled) states, the overall normalisation factor will often be omitted, since it is not important to the main argument, and can always be reintroduced easily if necessary. The theorems derived in Steane 1995a are as follows.

**Theorem 1.** The word \(|000 \cdots 0\rangle\) consisting of all zeroes in basis 1 is equal to a superposition of all \(2^n\) possible words in basis 2, with equal coefficients.

**Theorem 2.** If the \(j^{th}\) bit of each word is complemented (0 ↔ 1) in basis 1, then all words in basis 2 in which the \(j^{th}\) bit is set (is a 1) change sign.

**Theorem 3.** When the quantum state of the system forms a linear code \(C\) in basis 1, in a superposition with equal coefficients, then in basis 2 the words appearing in the superposition are those of the dual code \(C^\perp\).

Theorems 1 and 2 are easy to prove, while theorem 3 requires further comment. A linear code \(C\) is any set of \(n\)-bit words for which if the bitwise EXCLUSIVE-OR (addition modulo 2) operation \(\oplus\) is carried out between any two words in the code, then the resulting word is also in the code. Such codes can be expressed in terms of an \((n \times k)\) *generator matrix* \(G\), whose \(k\) rows are \(n\)-bit words. The code consists of all linear combinations (by bitwise EXCLUSIVE-OR) of the rows of \(G\). This produces \(2^k\) different words in the code. It can be shown that any linear code is also fully defined by its \((n \times (n - k))\) *parity check matrix* \(H\). The code consists of all words \(u\) for which \(H_j \cdot u\) has even parity, for all rows \(H_j\) of \(H\), where the dot indicates the bitwise AND operation. When \(H_j \cdot u\) has even parity, we say that “\(u\) satisfies the parity check \(H_j\)”\(^\ast\). In other words, \(H_j\) singles out a subset of the bits of \(u\), and it is the parity of this subset which is “checked” when we ascertain the parity of \(H_j \cdot u\).

If \(C\) is a linear code, then the dual code \(C^\perp\) is defined to be the set of all words \(v\) for which \(v \cdot u\) has even parity for all \(u \in C\). If \(C^\perp\) is the dual of \(C\), then \(C\) is the dual of \(C^\perp\). The only property of dual codes which will interest us for the moment is that the *generator matrix* of a code \(C\) is the *parity check matrix* of the dual code \(C^\perp\). (This property is used in the derivation of theorem 3, see Steane 1995a.)

\(^2\)The word ‘qubit’ for ‘quantum bit’ is now a standard term for a two-state system.
Using the formalism, it is possible to generalise the concept of multiple-particle (or multiple-qubit) interference. It is necessary first to extend slightly the definition of the generator matrix. We associate with each row $G_j$ of the matrix a phase factor $\exp i\phi_j$, and when different rows are combined, these factors multiply:

$$G_j \oplus G_k = \exp(i(\phi_j + \phi_k)) \left( |G_j| \oplus |G_k| \right) \quad (j \neq k),$$  

where $|G_j|$ signifies the $j$'th row with phase factor set to 1. If a row is combined with itself, the resulting phase factor is defined to be 1, so that the zero word is produced: $G_j \oplus G_j = 000 \cdots 0$. One may regard the words as vectors in a discrete $n$-dimensional vector space (Hamming space), and the phase factors as scalars.

The generalised multiple-particle interference is defined through the following theorem.

**Theorem 4.** If $G$ generates the state in basis 1, then the probability that the parity check $|G_j|$ is satisfied in basis 2 varies as $\cos^2 \phi_j / 2$.

**Proof.** This is closely related to the proof of theorem 3. To find the effect of the $j$'th row of $G$, first consider the state $|G'\rangle$ generated by $G'$ in basis 1, where $G'$ consists of all rows of $G$ except the $j$'th, with all phase factors set to 1. By theorem 3, for this state, all the parity checks of $G'$ are satisfied in basis 2. Now complement, in basis 1, the qubits specified by the $j$'th row of $G$. Call the resulting state $|G''\rangle$. By repeated applications of theorem 2, this has the effect that all words change sign in basis 2 which do not satisfy the parity check $|G_j|$. Now form

$$\frac{1 + \exp i\phi_j}{2} (|G'\rangle + |G''\rangle) + \frac{1 - \exp i\phi_j}{2} (|G'\rangle - |G''\rangle) \equiv |G'\rangle + \exp i\phi_j |G''\rangle. \quad (4)$$

The left hand side of this equivalence shows that the probability that the $j$'th parity check is satisfied in basis 2 is proportional to $\cos^2 \phi_j / 2$, since if $|G'\rangle$ and $|G''\rangle$ are added (subtracted), all words which satisfy (respectively fail to satisfy) the parity check $|G_j|$ disappear in basis 2. The right hand side of the equivalence is the state generated by $G'$ with the row $G_j$ added to it, since the selective bit-complementing operation which was carried out is in fact the EXCLUSIVE-OR operation. By applying this argument successively to all the rows of $G$, the theorem is proved.

Theorem 4 is more easily understood in terms of an example, which will now be provided. Consider the generator matrix

$$G_s = \left( \begin{array}{ccc} e^{i\phi_1} & e^{i\phi_2} & e^{i\phi_3} \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 \end{array} \right).$$  

8
This equation is to be understood as a 3-column matrix of phase factors multiplying a 3-row matrix of 7-bit words. $G_s$ generates the state

$$|G_s\rangle = |0000000\rangle + e^{i\phi_3} |1010101\rangle + e^{i\phi_2} \left( |0110011\rangle + e^{i\phi_3} |1100110\rangle \right)$$

$$+ e^{i\phi_1} \left( |0001111\rangle + e^{i\phi_3} |1011010\rangle + e^{i\phi_2} \left( |0111100\rangle + e^{i\phi_3} |1101001\rangle \right) \right)$$

This code, appearing in basis 1, is well known in classical coding theory. It is called the simplex code, since the 8 words define the 8 vertices of a regular simplex in 7-dimensional space (see for example MacWilliams & Sloane 1977). In the quantum mechanical context, the code appears in $|G_s\rangle$ as a 7-particle entanglement containing three 4-particle interferences. Each phase $\phi_j$ is associated with a multiple-particle correlation among all those qubits which are selected by the $j$'th row of $G_s$. Thus, by examining the matrix $G_s$ (equation (5)), one sees that for this example case there are 3 correlations, each involving a different 4-member subset of the 7 qubits. These correlations can be revealed by measuring the qubits in basis 2, and calculating the relevant parity checks. I conjecture that such correlations satisfy Bell-type inequalities similar to those deduced by Mermin 1990, though a demonstration is beyond the scope of the present work. One may regard the linear codes as a generalisation to many qubits of the 2-qubit “Bell basis” $\{ |00\rangle \pm |11\rangle, |01\rangle \pm |10\rangle \}$.

This concludes the discussion of multiple particle interference per se. The concepts introduced make a natural introduction to the following sections, which will provide more information on these interferences, such as a method for their generation, while discussing other issues.

## 3 Error Correction for Qubits

The set of $n$ qubits which we have been discussing may be considered to be a quantum computer (Deutsch 1985). In the course of a computation, entangled states involving many qubits at once are produced, and one of the fundamental problems of quantum computation is that such entanglements are highly sensitive to decoherence. By decoherence we mean the departure of the quantum state of the computer from the state which it ought to have (that produced purely by evolution under error-free computing operations).

An erroneous state of the whole computer will in general require correction methods operating on the whole computer at once in order to correct it. A method of this
type was presented by Berthiame et al. 1994. Some types of error can be corrected through a bit-by-bit method, on the other hand, in which operations only on small subsets of the qubits are required. Shor 1995 proved that 9 qubits can be used to protect a single bit of quantum information against single errors, and Steane 1995a introduced a 7-qubit scheme, and a general method for correcting many errors, while discussing limitations to robust encoding of a single qubit. The approach adopted in the latter work is generalised in this paper to enable robust encoding of a whole computer. Also, the method of how to carry out error correction without disrupting the unitary evolution of the computation process is given.

The philosophy pursued in this paper is to adopt methods suggested by the classical theory of error correction, and then to consider afterwards what types of error can be corrected by such methods. It will be argued that realistic physical systems can be found which are subject primarily to the type of error whose correction we discuss. The general scenario is that of a computer undergoing its normal computing operations, and interspersed among these are error correction operations. The qubits are assumed to decohere and generally change their state in an unpredictable manner. The word 'error' will sometimes refer to a rotation of a qubit through $\pi/2$ radians about a given axis in Hilbert space, which mimics the classical 'error' where a bit is complemented, but in general the word will refer to any departure of a qubit from the state it ought to be in.

A general error of a qubit can be considered as made up of phase error in basis 1 (a rotation around the axis of the Poincaré or Bloch sphere) plus an amplitude error in basis 1 (a rotation to different latitude on the sphere), plus a contribution due to entanglement with external systems, which, once those external degrees of freedom are traced over, causes the qubit's state to become mixed rather than pure. We will consider first the case of phase error alone, then a restricted class of external entanglements, and then more general errors.

3.1 Simplest case

Let us begin by considering the case that the qubits randomly dephase but never entangle with the environment, and never flip in basis 1. This is the simplest non-trivial case, and is practically interesting because it may be possible to approximate it experimentally. In this simple situation, the only errors are phase errors in basis 1.
The errors are modelled by rotating the \( j \)'th qubit using an operator

\[
\begin{pmatrix}
    e^{i\epsilon \phi_j/2} & 0 \\
    0 & e^{-i\epsilon \phi_j/2}
\end{pmatrix}
\]

(7)

where the matrix has been written in basis 1. The angles \( \phi_j \) are independent, and \( \epsilon \) is a parameter used to indicate the typical magnitude of the errors, \( 0 < \epsilon \leq 1 \). If the single qubit state \( a \ket{0} + b \ket{1} \) is subject to such errors, its density matrix becomes

\[
\rho = \begin{pmatrix}
|a|^2 & \alpha ab^* \\
\alpha^* a^* b & |b|^2
\end{pmatrix}
\]

(8)

where \( \alpha = e^{i\epsilon \phi} \).

Since \( \exp(i\epsilon \phi) = 1 + O(\epsilon) \), the error in the off-diagonal elements is of order \( \epsilon \).

Phase errors in basis 1 can be corrected as follows. Each qubit in the quantum computer is ‘encoded’ using a set of three physical qubits, by the encoding method shown in figure 1. This set is then ‘corrected’ from time to time by the correction method shown in figure 2. Computing operations, when required, can be carried out by first ‘decoding’, then carrying out the relevant operation, then encoding again, or by another sequence having the same net effect. The decoding operation is the inverse of the encoding one.

To understand the error-correction scheme, one notes that it is based on the simplest classical error correction code, the \( n = 3 \) repetition code, operating in basis 2. This is because phase errors in basis 1 cause amplitude errors in basis 2, so we employ a scheme which corrects amplitude errors in basis 2. A general single-qubit state \( a \ket{0} + b \ket{1} \) is encoded by two controlled not (\( \text{cnot} \)) operations in basis 2,\(^3\) acting on an initial state \( (a \ket{0} + b \ket{1}) \otimes \ket{00} \) (see figure 1). The state thus encoded using three qubits is

\[
a (|000\rangle + |011\rangle + |101\rangle + |110\rangle) + b (|111\rangle + |100\rangle + |010\rangle + |001\rangle)
\]

\[
= (a + b) \ket{000} + (a - b) \ket{111}
\]

(10)

Therefore the only ‘legal’ states are \( \ket{000} \) and \( \ket{111} \) or linear combinations of these.

The random phase errors in basis 1 cause departures from the subspace spanned by \( \ket{000} \) and \( \ket{111} \). As long as the errors are small, the component which was \( \ket{000} \) is

\(^3\text{CNOT in basis } 1 \text{ is } (\ket{00} \langle 00| + \ket{01} \langle 01| + \ket{10} \langle 10| + \ket{11} \langle 11|) \text{ where the first qubit is the control, the second is the target. CNOT in basis } 2 \text{ (as here) is the operator having the same form, but with } 0 \text{ and } 1 \text{ replaced by } 0 \text{ and } 1.\)
likely to remain in the region of Hilbert space spanned by \{\ket{000}, \ket{001}, \ket{010}, \ket{100}\} while the component which was \ket{111} is likely to remain in the region spanned by \{\ket{111}, \ket{110}, \ket{101}, \ket{011}\}. As long as only such ‘single errors’ occur, they can be corrected.

The error corrector shown in figure 2 works as follows. First, two CNOT operations carry out parity checks. The checks required are those given by the parity check matrix for the \{000, 111\} repetition code:

\[
H_{\text{rep}} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}
\]  

(11)

After these checks, the ‘control’ qubit contains the state to be corrected, and the other two ‘target’ qubits (hereafter called parity qubits) contain the error syndrome. The two parity qubits containing the syndrome are now measured. The syndrome indicates which qubit is to be complemented. That is, if the measurements give 11 then the NOT operation is carried out on the control qubit.\(^4\) Whatever the result of the measurements, the parity qubits are reset to \ket{00}. After this, the three qubits are in the decoded state. The final part of the error corrector reencodes the state.

The effect of the above transformations can easily be calculated. Once the encoding has been carried out, yielding the state given by equation (10), all three bits are subjected to errors given by the operator (7) with independent unknown \(\phi_0, \phi_1, \phi_2\). The resulting erroneous state is to be corrected. The two CNOT operations are applied, and measurements are modelled by projection operators. This yields 4 different density matrices for the 4 different measurement outcomes. The NOT operation is carried out on the relevant qubit or bits as indicated by the syndrome associated with each density matrix. The resulting four density matrices are added with the weights given by the probabilities of obtaining them. Now we are at the stage just before the final reencoding. If instead of reencoding, we simply extract the density matrix of the control qubit, the result is equation (8) with

\[
\alpha = \frac{1}{2} \{ \cos(\epsilon \phi_0) + \cos(\epsilon \phi_1) + \cos(\epsilon \phi_2) \\
- \cos(\epsilon \phi_0) \cos(\epsilon \phi_1) \cos(\epsilon \phi_2) - i \sin(\epsilon \phi_0) \sin(\epsilon \phi_1) \sin(\epsilon \phi_2) \}. 
\]  

(12)

When only one of the three angles \(\phi_j\) is non-zero (that is, one qubit is erroneous), the state is restored exactly, and when all three are non-zero, the error term is of order \(\epsilon^3\) instead of order \(\epsilon\), as a Taylor expansion of the trigonometric functions will show.

\(^4\)NOT in basis 1 is the operator \(\ket{0} \bra{1} + \ket{1} \bra{0}\). NOT in basis 2 (as here) is \(\ket{0} \bra{1} + \ket{1} \bra{0}\).
The corresponding properties of classical single-error correction are that single errors are corrected exactly, and error probabilities of order \( p \) become of order \( p^2 \) after correction. Since in this case the qubit error term goes directly to \( O(\epsilon^3) \) rather than \( O(\epsilon^2) \), the correction is efficient. In the next section a case which mimics the classical behaviour more closely will be discussed.

It has been assumed throughout that the process of encoding and correcting does not itself introduce more errors than it corrects.

The discussion so far only demonstrates a modest correction ability. However, the concepts can be generalised, enabling the limitations of the method to be derived. We turn to this in later sections. The main result so far is to show that unitary evolution of a qubit can be preserved, while information about error processes is nevertheless gathered and used to correct the qubit. Next it will be shown that the general methods discussed in this paper are not limited to the correction of unitary errors, but can enable the quantum computer to recover from relaxation caused by erroneous coupling to its environment.

### 3.2 Simplest Purity Amplification

The single error correction in basis 2 discussed in the previous section with regard to unitary phase errors in basis 1 is also sufficient to correct a restricted class of relaxation errors (ie errors caused by coupling to external systems). The restricted class is relaxation which does not cause amplitude errors in basis 1. One can either model such relaxation as a decay in the off-diagonal density matrix elements of each qubit in basis 1, or as an entanglement with the environment introduced by operators of the type

\[
W_j = \begin{pmatrix}
|0\rangle_j \otimes |\psi_1j\rangle & |0\rangle_j \otimes |\psi_2j\rangle & |1\rangle_j \otimes |\psi_1j\rangle & |1\rangle_j \otimes |\psi_2j\rangle
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 - \epsilon_j & \sqrt{2\epsilon_j - \epsilon_j^2} \\
0 & 0 & -\sqrt{2\epsilon_j - \epsilon_j^2} & 1 - \epsilon_j
\end{pmatrix}.
\]

Here, \(|\psi_1j\rangle\) and \(|\psi_2j\rangle\) are orthogonal states of the environment, and the product states on the left of the operator matrix indicate the basis in which the matrix is written. The (real) parameter \(\epsilon_j\), bounded by \(0 < \epsilon_j \leq 1\), indicates the strength of the entanglement with the environment. The entanglement can be imagined as an imperfect (\(\epsilon < 1\)) or perfect (\(\epsilon = 1\)) measurement of the qubit in basis 1. Such
entanglements, when perfect, have the effect of making the “interference phase” between the two parts \(|0\rangle \text{ and } |1\rangle\) of qubit’s state unobservable (a discussion of this property is provided by Steane 1995b.) No amplitude error is introduced in basis 1, which is the clue that the ‘simplest possible’ error-correction procedure introduced in the previous section will be sufficient to correct errors having this form.

The effect of the entanglement \(W_j\) on a single qubit is calculated by operating \(W_j\) on the joint qubit–environment state \((a |0\rangle + b |1\rangle) \otimes |\psi_1\rangle\), and then obtaining the reduced density matrix of the qubit by tracing over the environment variables. The result is a density matrix as in equation (8), with

\[
\alpha = 1 - \epsilon. \tag{14}
\]

This is clearly a mixed state when \(\epsilon > 0\), and the error term is of \(O(\epsilon)\).

When we examine the density matrix in basis 2, this error appears partly as an amplitude error, and it can be corrected by the encoding and correcting procedure described in the previous section (figures 1 and 2). To calculate the effects, first the general single-qubit state \((a |0\rangle + b |1\rangle)\) is encoded using three qubits, then each of the three undergoes entanglement with the environment, described by three operators \(W_0, W_1, W_2\) defined by equation 13. The overall state then involves 8 different environment states, associated with 8 different 3-qubit states. The error correction procedure is carried out next. In the calculation, it appears as a set of eight independent corrections on each of the eight 3-qubit states. The final ‘corrected’ 3-qubit density matrix is then taken to be the weighted sum of the eight 3-qubit density matrices associated with different states of the environment. The density matrix of the control qubit is extracted, yielding the form (8) with

\[
\alpha = 1 - \frac{1}{2} (\epsilon_0\epsilon_1 + \epsilon_0\epsilon_2 + \epsilon_1\epsilon_2) + \frac{1}{2}\epsilon_0\epsilon_1\epsilon_2 \tag{15}
\]

This result shows that when only a single qubit decoheres (ie only one of the entanglement terms \(\epsilon_j\) is non-zero), the state is corrected exactly \((\alpha = 1)\), and when all three undergo errors, the error term is of \(O(\epsilon^2)\) instead of \(O(\epsilon)\). The corresponding properties of classical single-error correction are that single errors are corrected exactly, and error probabilities of order \(p\) become of order \(p^2\) after correction.

The fact that the corrected density matrix is nearer to ‘pure state’ conditions than the original density matrix (when \(\epsilon = \epsilon_j < 1\), is an example of a general phenomenon called ‘quantum privacy amplification’ in the context of a quantum communication channel (Bennet et al. 1995; Ekert et al 1995), and which will be referred to here
as ‘purity amplification’. The ability to implement purity amplification is an important part of the general problem of error correction in quantum communication channels and computers. This section has shown that the approach to error correction adopted in this paper is capable of handling purity amplification. Indeed, the ‘quantum privacy amplification’ protocol described by Ekert et al. 1995 can be understood as an implementation of single-error detection in basis 1 and basis 2 simultaneously, by means of a single parity check in each basis. The fact that it is a detection rather than correction scheme explains why non-useful pairs of bits have to be thrown away.

3.3 General single error correction

Suppose now the type of error is completely general—there is an arbitrary change in the state of a qubit, including possible relaxation. To correct this, the method is to implement single error correction in both bases simultaneously. For this, the encoding used in the previous section is not sufficient, since there single errors in basis 1 could not be corrected. To understand the encoding requirements, the concept of minimum distance, introduced by Hamming 1950, is employed. The Hamming distance between two words is equal to the number of bits which must be complemented in order to convert one word into the other. The minimum distance $d$ of a code is the minimum Hamming distance between any two words in the code. A code of minimum distance $d > 2x$ is necessary if $x$ errors are to be corrected, since only if fewer than $d/2$ errors occur can the codeword which gave rise to the erroneous word be identified unambiguously as the only codeword within distance $d/2$ of the erroneous word. In what follows, the standard notation $[n, k, d]$ will be employed to refer to a linear code using $n$ bits, having $2^k$ codewords and minimum distance $d$.

To correct for a general single error, we require an encoding allowing minimum distance 3 in both basis 1 and basis 2. A method to do this was presented by Steane 1995a, as follows. We seek a code $C$ having the following properties: its dual code $C^\perp$ has minimum distance 3, and it is itself a subcode of a code $C^+$ of minimum distance 3. The reasoning behind this is best demonstrated by means of an example.

The $[7, 3, 4]$ simplex code presented in section 2.2 has the properties required. Its dual code is the $[7, 4, 3]$ Hamming code which has minimum distance 3, and it is a subcode of the $[7, 4, 3]$ punctured Reed-Muller code, also of minimum distance 3. $n = 7$ is the smallest number of bits for which a code can be found with these properties. The encoding and correcting procedure is shown in figures 3 and 4, and
explained as follows.

The encoding method is based on the generator matrix of the [7, 3, 4] simplex code, given by equation (5) with $\phi_1, \phi_2, \phi_3 = 0$. The simplex code thus generated will be called $|C\rangle$. It is the state $|G_s\rangle$ shown in equation (6) with all phase angles set to zero. The essential idea is that a qubit state $|0\rangle$ is encoded as $|C\rangle$, while a qubit state $|1\rangle$ is encoded as $|\neg C\rangle$, which is $|C\rangle$ with the NOT operation carried out on all the qubits, i.e., the coset $|C \oplus 111111\rangle$. It is easy to deduce that when the qubit $Q$ to be encoded is in the state $|0\rangle$, the encoder shown in figure 3 places the 7 qubits in the state $|C\rangle$. To see that $|1\rangle$ becomes encoded as $|\neg C\rangle$, consider the parity check matrix of $|C\rangle$:

$$H_C = \begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0
\end{pmatrix} \quad (16)$$

Now, $|\neg C\rangle$ fails all those parity checks for which there is an odd number of 1’s in the relevant row of $H_s$, and passes the others. Hence, the operations which generate $|C\rangle$ when starting from $|000000\rangle$, will generate $|\neg C\rangle$ when starting from $|0010110\rangle$, since the complemented qubits ensure that the final state will pass and fail the checks in $H_C$ in the way appropriate for $|\neg C\rangle$. This initial complementing of qubits is the job of the first two CNOT operations in the encoder. The encoder therefore encodes a general single qubit state $(a|0\rangle + b|1\rangle)$ as $(a|C\rangle + b|\neg C\rangle)$.

Now, $|C\rangle$ and $|\neg C\rangle$ are subcodes (strictly, cosets) of the [7, 4, 3] punctured Reed-Muller code $C^+$ whose parity check matrix is

$$H_{C^+} = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{pmatrix} \quad (17)$$

All legal encoded states satisfy this parity check matrix, and this is the basis of the corrector shown in figure 4. The operation of the corrector is similar to that of the corrector presented in the previous section (figure 2). Multiple CNOT operations are used to carry out parity checks, the parity qubits are measured, and the state corrected by means of NOT operations on qubits identified by the measured syndrome. Finally, the state is reencoded.

So far, error correction has been carried out in basis 1. However, the coding was carefully selected in such a way that only words in the [7, 4, 3] Hamming code $C^\perp$ should appear in basis 2. Therefore, error correction can also be carried out in basis
2. The corrector is based on the parity check matrix of the [7, 4, 3] Hamming code, which is equal to the generator matrix of its dual, the matrix $G_C$ given in equation (5). Now, it so happens that the [7, 4, 3] Hamming code is the same as the [7, 4, 3] punctured Reed-Muller code (this is not true for higher order codes), as can be seen by the fact that $G_C$ and $H_C^+$ are equal (one can be converted to the other by linearly combining rows). Therefore, the corrector in basis 2 is once again given by figure 4, only now all the operations are carried out in basis 2.

The correction scheme described will tend to keep the encoded state confined to the region of Hilbert space spanned by the two state vectors $\{|C\rangle, |\neg C\rangle\}$. This is a two-dimensional subspace within the 128-dimensional total Hilbert space. The subspace is also spanned by the state vectors $\{|H, e\rangle, |H, o\rangle\}$ defined by the even and odd parity subcodes of the [7, 4, 3] Hamming code in basis 2, since theorem 4 implies that $|C\rangle + |\neg C\rangle \equiv |H, e\rangle$ and $|C\rangle - |\neg C\rangle \equiv |H, o\rangle$, up to a normalisation factor. If an arbitrary single-qubit state is encoded as $(a|C\rangle + b|\neg C\rangle)$, and then any one (but only one) of the 7 qubits is allowed to change state and entangle with the environment in an arbitrary manner, the error corrector described in this section will return the 7 qubits exactly to the error-free state $(a|C\rangle + b|\neg C\rangle)$. This will be proved below as part of the more general theorem 6. If more than one qubit is allowed to undergo errors, then error terms which would be of order $\epsilon$ in the density matrix of an uncorrected qubit become of order $\epsilon^2$ or higher when encoding and correction is employed.

3.4 Multiple correction of multiple qubits

The previous sections have introduced almost sufficient insights to enable the general problem of multiple error correction of many qubits to be addressed. The final ingredient is theorem 5 below. Before it is presented, we remark that just as in classical information theory, it is necessary to distinguish between the amount of information $k$ and the number of bits $n$ used in a $[n, k, d]$ code, it will be necessary here to distinguish between the number $K$ of independent quantum bits of information we wish to keep free of errors, and the number $n$ of qubits used to do this. Thus, in section 3.1 a single qubit was encoded, $K = 1$, by means of $n = 3$ encoding qubits, and in section 3.3 a single qubit $K = 1$ was encoded by means of $n = 7$ encoding qubits.

**Theorem 5.** To encode $K$ qubits with minimum distance $d_1$ in one basis, and minimum distance $d_2$ in the other, it is sufficient to find a linear code $C^{+K}$ of minimum
distance $d_1$, whose $K$'th order subcode $C$ is the dual of a distance $d_2$ code.

**Corollary:** Finding such a code is sufficient not only to demonstrate that the encoding is possible, but also to make self-evident the physical procedures for encoding and correction.

A $K$'th order subcode of $C^{+K}$ is a code obtained by adding $K$ rows to the parity check matrix of $C^{+K}$.

**Proof:** The general insight is that whereas in classical theory, information is encoded using different *words* of a code, in the quantum mechanical case, information is encoded using different *cosets* of a code. Thus in section 3.3, cosets of the $[7, 4, 3]$ punctured Reed-Muller code, were used, and in section 3.1, the even parity and odd parity codes in basis 1 were cosets of the $[n, n, 1]$ code of all possible words.

To encode $K$ qubits, we require $2^K$ cosets. If these are all non-overlapping cosets of a distance $d_1$ code, then clearly they are all separated from one another by at least $d_1$. That is, all words in one coset are at least $d_1$ from all words in another coset. We can ensure the cosets do not overlap by defining them as follows. $K$ new rows are added to the parity check matrix of $C^{+K}$. The new rows are linearly independent of each other and of all the other rows. (If this is not possible then $n$ must be increased and the argument restarted). Each of the $K$ new parity checks can either be satisfied or not satisfied. This allows $2^K$ different possibilities, each of which produces a coset which has no words in common with any of the other cosets. Hence the cosets are non-overlapping.

Suppose the first coset $C$ is a code having a dual $C^\perp$. To obtain one of the other $2^K - 1$ cosets from $C$, it is sufficient to complement in basis 1 whichever parity qubits implement a parity check which $C$ satisfies but the new coset does not. The effect in the other basis is to change the sign of some of the words (by theorem 2). (Equivalently, it is sufficient to change the sign of the relevant rows of the parity check matrix in basis 1, which is the generator matrix in basis 2, by theorem 4)). Therefore, each coset in basis 1 produces the words of $C^\perp$ in basis 2, with signs depending on the coset. Hence, for any superposition of the cosets in basis 1, all words appearing in basis 2 are in the code $C^\perp$. Therefore, if we require minimum distance $d_2$ in basis 2, it is sufficient that $C^\perp$ should be a distance $d_2$ code, and the theorem is proved.

The coding method of theorem 5 uses a $2^K$-dimensional subspace to store the quantum information, within a total Hilbert space of dimension $2^n$. The subspace is spanned by the $2^K$ cosets of $C^{+K}$ in basis 1, and by $2^K$ cosets of $C^\perp$ in basis 2.
The encoding and correcting operations are deduced directly from the parity check matrices of the relevant linear codes, in the manner illustrated by figures 1 to 4. An alternative approach to error correction is illustrated by figure 5. To implement correction in basis 1 (basis 2), a set of \( n - k_1 \) (respectively \( n - k_2 \)) ancillary qubits is introduced, and the error syndrome is stored into this ancilla by means of multiple CNOT operations. The operations required are exactly those specified by the parity check matrix of \( C^{+K} \) (respectively \( C^\perp \)), which proves the corollary to theorem 5. The ancilla is measured (in the relevant basis), and the result used to calculate which qubits in the quantum computer are to undergo a NOT operation.

### 3.5 Error correction in two bases is sufficient

This section is dedicated to the proof of the following theorem.

**Theorem 6.** Error correction in basis 1 followed by error correction in basis 2 is sufficient to restore the quantum computer after arbitrary decoherence of a small enough subset of its qubits. Specifically, if \( x \) qubits decohere, then correction is successful if at least \( x \) errors can be corrected in both basis 1 and basis 2.

This theorem shows that the correction methods described in this paper are not limited to the correction of simple ‘qubit complementing’ errors, but can handle any error process, as long as it only affects a subset of the \( n \) qubits in the computer. To keep a clear distinction, the word error is reserved in this section to refer to error processes of the form either \( |0\rangle \leftrightarrow |1\rangle \) (‘an error in basis 1’) or \( |0\rangle \leftrightarrow |1\rangle \) (‘an error in basis 2’). Completely general erroneous changes in the state of a qubit, including entanglement with the environment, will be referred to as decoherence.

The following notations will be used.

\[
\begin{align*}
|C_i\rangle &= \text{the } i\text{'th coset of } |C^{+K}\rangle. \\
|C_{ij}\rangle &= \text{the } j\text{'th coset of } |Ci\rangle. \\
|Ci_{/1S_k}\rangle &= |Ci_{j}\rangle \text{ subject to errors in basis 1 whose error syndrome is } S_k \\
|Ci_{/2S_l}\rangle &= |Ci\rangle \text{ subject to errors in basis 2 whose error syndrome is } S_l \\
|e_n\rangle &= \text{a state of the environment.}
\end{align*}
\]

As an example of the above, consider the state \( |Ci\rangle = |0000\rangle + |0011\rangle + |1100\rangle + |1111\rangle \). One pair of possible cosets is \( |Ci_{0}\rangle = |0000\rangle + |0011\rangle \) and \( |Ci_{1}\rangle = |1100\rangle + \ldots \)
Suppose the error syndrome for the case of no errors is \( S_0 \), then \( |C_{ij}/^1 S_0\rangle = |C_{ij}\rangle \). If a single error in the last bit produces the syndrome \( S_1 \), then \( |C_{i0}/^1 S_1\rangle = |0001\rangle + |0010\rangle; |C_{i1}/^1 S_1\rangle = |1101\rangle + |1110\rangle; |C_{i2}/^1 S_1\rangle = |0000\rangle - |0011\rangle + |1100\rangle - |1111\rangle. \)

In what follows, we will require the following result:

\[
|Ci_j\rangle = \sum_{l=0}^{2^x-1} |Ci/^2 S_l\rangle (-1)^{\|j \cdot l\|} \tag{18}
\]

where the notation \( \|j \cdot l\| \) means the Hamming weight of \( j \cdot l \), and the dot indicates the bitwise AND operation carried out between \( j \) and \( l \). The result holds for a particular type of coset \( Ci_j \), which will be identified shortly.

It is obvious that a code can be written as the sum of its cosets: \( |Ci\rangle = \sum_j |Ci_j\rangle \).

The content of (18) is the inverse result, that a coset \( |Ci_j\rangle \) can be written as a sum of (erroneous) codes. The errors in basis 2 cause sign changes amongst the basis 1 words of \( |Ci\rangle \) in such a way that when the sum in equation (18) is carried out, all words in \( |Ci\rangle \) which do not belong to \( |Ci_j\rangle \) cancel, so the result is \( |Ci_j\rangle \).

**Proof of equation (18).** If \( Ci_j \) is an \( x \)'th order coset of \( Ci \), then the parity check matrix for \( Ci_j \) consists of the parity check matrix of \( Ci \), plus \( x \) extra rows. We consider the case that each of these extra rows contains all zeroes apart from a single 1. For example, for \( x = 3 \), \( n = 10 \), the 8 cosets might be counted by the values of the fourth, sixth and tenth qubits in basis 1, in which case the parity check matrix in basis 1 is

\[
|Ci_j\rangle \leftrightarrow \begin{pmatrix}
H_i \\
(-1)^{\|j \cdot 001\|} \ 0000000001 \\
(-1)^{\|j \cdot 010\|} \ 0000010000 \\
(-1)^{\|j \cdot 100\|} \ 0001000000 \\
\end{pmatrix}
\tag{19}
\]

where \( H_i \) is the parity check matrix of \( |Ci\rangle \). The \( j \)'th coset passes or fails these extra parity checks according as the bits of the binary value of \( j \) are zero or one. This pass/fail property is indicated by the sign (power of \(-1\) ) in front of each row of the matrix.\(^6\) Thus, \( Ci_0 \) is the set of words of \( Ci \) for which the 4'th, 6'th and 10'th bits are zero, \( Ci_5 \) is the set of words of \( Ci \) for which the 4'th and 10'th bits are one, and the 6'th is zero, since decimal 5 is binary 101, and so on.

\(^5\)The Hamming weight of a bit string \( x \) is the number of 1’s in \( x \).

\(^6\)This sign is an example of the phase factor introduced in section 2.2 to generalise the use of such matrices in the quantum mechanical as opposed to classical context (cf Theorem 4).
In general, the type of coset for which equation (18) holds is one consisting of all words in $|Ci⟩$ for which a chosen set of $x$ qubits has the value $j$ in basis 1.

Since the matrix in equation (19) is the parity check matrix of $|Ci_j⟩$ in basis 1, it is the generator matrix in basis 2 of the same quantum state (theorem 4). But, such a generator matrix will generate the code $Ci$ plus $2^x - 1$ erroneous copies of $Ci$, where a given copy will have errors in just the bits selected by those extra rows of the generator matrix which were used to generate that copy. Hence, equation (18) is proved.

We now pass on to the question of decoherence and its correction. A general decoherence of a single qubit can be written

$$
\begin{align*}
|0⟩|e_0⟩ & \rightarrow |0⟩|e_1⟩ + |1⟩|e_2⟩ \\
|1⟩|e_0⟩ & \rightarrow |0⟩|e_3⟩ + |1⟩|e_4⟩
\end{align*}
$$

(20)

where no assumptions are made about the states $|e_i⟩$—they may or may not be orthogonal, and they may include arbitrary (complex) coefficients (they are not normalised). A general decoherence of $x$ qubits is

$$
|j⟩|e_0⟩ \rightarrow \sum_{k=0}^{2^x-1} |j/S_k⟩|e_{jk}⟩
$$

(21)

where $|j⟩$ is any one of the $2^x$ possible $x$-qubit words.

Now, suppose that in some state $|Ci⟩$, a subset of the qubits decohere. The subset contains $x$ qubits positioned anywhere among the $n$ qubits of the total system. A state $|Ci⟩$ (ie before decoherence) can be written $|Ci⟩ = \sum_{j=0}^{2^x-1} |Ci_j⟩$ where the $j$’th coset consists of all words in $|Ci⟩$ for which the subset of $x$ bits has the value $j$ in basis 1. A general decoherence among the $x$ decohering qubits is the process indicated by equation (21), with the $n-x$ unchanged qubits acting as spectators, and with $j$ indicating the initial values of the decohering qubits. Therefore, the effect of decoherence on $|Ci_j⟩$ is

$$
|Ci_j⟩|e_0⟩ \rightarrow \sum_{k=0}^{2^x-1} |Ci_j/S_k⟩|e_{jk}⟩.
$$

(22)

Note that the state of the environment after decoherence is independent of $i$ in this equation. This is because we selected the cosets $|Ci_j⟩$ in such a way as to bring exactly this property about. The environment does not ‘care’ about the state of the
spectator qubits, so its final state is not sensitive to which code $|Ci\rangle$ gave rise to the coset $|Ci_j\rangle$.

We now have enough results to prove Theorem 6.

**The proof:** Using the encoding method of Theorem 5, a general state of a computer before decoherence can be written

$$|QC\rangle = \sum_{i=0}^{2^K-1} c_i |Ci\rangle$$  \hspace{1cm} (23)

Expanding each state $|Ci\rangle$ as a set of cosets, this is

$$|QC\rangle = \sum_{i=0}^{2^K-1} c_i \sum_{j=0}^{2^x-1} |Ci_j\rangle$$  \hspace{1cm} (24)

where we choose the set of cosets identified by the $2^x$ possible values in basis 1 of the $x$ qubits which now decohere. Using equation (22), the effect of decoherence is

$$|QC\rangle |e_0\rangle \rightarrow \sum_{i=0}^{2^K-1} c_i \sum_{j=0}^{2^x-1} \sum_{k=0}^{2^x-1} |Ci_j/1S_k\rangle |e_{jk}\rangle.$$  \hspace{1cm} (25)

Now apply error correction in basis 1. As long as $x < d_1/2$, this has the effect that

$$|Ci_j/1S_k\rangle |1m_0\rangle \rightarrow |Ci_j\rangle |1m_k\rangle$$  \hspace{1cm} (26)

where $|1m_k\rangle$ indicates a state of the measuring apparatus used for correction (cf figure 5). Therefore the total state of the quantum computer, environment and measuring apparatus becomes

$$\sum_{i=0}^{2^K-1} c_i \sum_{j=0}^{2^x-1} \sum_{k=0}^{2^x-1} |Ci_j\rangle |1m_k\rangle |e_{jk}\rangle$$  \hspace{1cm} (27)

$$= \sum_{i=0}^{2^K-1} c_i \sum_{j=0}^{2^x-1} |Ci_j\rangle \left(\sum_{k=0}^{2^x-1} |1m_k, e_{jk}\rangle\right).$$  \hspace{1cm} (28)

Note that the error correction has corrected all $2^x$ cosets $|Ci_j\rangle$ in parallel. The correction is not yet complete because each coset is entangled with a different state of the environment.
Using equation (18), the total state given by (28) can be written

\[
\sum_{i=0}^{2^K-1} c_i \sum_{j=0}^{2^x-1} \sum_{l=0}^{2^x-1} |Ci/2S_i\rangle (-1)^{j-l} \left( \sum_{k=0}^{2^x-1} |1m_k, e_{jk}\rangle \right).
\] (29)

Now apply error correction in basis 2. As long as \(x < d_2/2\), this has the effect that

\[
|Ci/2S_i\rangle |^2 m_0\rangle \rightarrow |Ci\rangle |^2 m_l\rangle
\] (30)

where \(|^2 m_l\rangle\) indicates a state of the measuring apparatus using for correction in basis 2. Therefore the total state of the quantum computer, environment and both measuring apparatuses becomes

\[
\sum_{i=0}^{2^K-1} c_i \sum_{j=0}^{2^x-1} \sum_{l=0}^{2^x-1} |Ci\rangle |^2 m_l\rangle (-1)^{j-l} \left( \sum_{k=0}^{2^x-1} |1m_k, e_{jk}\rangle \right)\] (31)

\[
= \left( \sum_{i=0}^{2^K-1} c_i |Ci\rangle \right) \left( \sum_{j=0}^{2^x-1} \sum_{l=0}^{2^x-1} |^2 m_l\rangle (-1)^{j-l} \left( \sum_{k=0}^{2^x-1} |1m_k, e_{jk}\rangle \right) \right)
\] (32)

\[
= |QC\rangle \otimes |^2 m, ^1 m, e\rangle.
\] (33)

Hence, the quantum computer becomes completely disentangled from its environment, and is returned to its initial state. Therefore, error correction in basis 1 and basis 2 is sufficient to restore the quantum computer after arbitrary decoherence of \(x < d_1/2, d_2/2\) qubits, and theorem 6 is proved.

4 Error rate limitations

We now turn to the question of whether errors can be suppressed sufficiently to enable useful computations to be carried out on a quantum computer. This may also be regarded as a problem of communication over a noisy quantum channel. The method is to establish the limitations implicit in the coding method described by theorems 5 and 6.

The fundamental problem of the theory of classical error correcting codes is to find codes of length \(n\) (ie \(n\) is the length of the words) and minimum distance \(d\) which contain the maximum possible number of codewords. Let this maximum possible number of codewords be \(A(n, d)\). Although \(A(n, d)\) is not known in general, a number
of upper and lower bounds have been established. In what follows, we will make use of two simple bounds. The first is the Hamming or sphere-packing bound introduced by Hamming 1950. In the limit of large $n$, it takes the form

$$\frac{\log_2(A(n,d))}{n} \leq \left(1 - H\left(\frac{d}{2n}\right)\right)(1 - \zeta) \tag{34}$$

where $\zeta \to 0$ as $n \to \infty$, and $H(x)$ is the entropy function

$$H(x) \equiv x \log_2 \frac{1}{x} + (1 - x) \log_2 \frac{1}{1 - x}. \tag{35}$$

There are no codes of length $n$ and distance $d$ which have more words than this upper limit, and usually the upper bound itself cannot be achieved. This is the “bad news”. The good news is that useful codes do exist. The Gilbert-Varshamov bound (Gilbert 1952; Varshamov 1957; see also MacWilliams & Sloane 1977) is a sufficient but not necessary condition for the existence of a $[n,k,d]$ code. In the limit of large $n$, it takes the form

$$\frac{k}{n} \geq \left(1 - H\left(\frac{d}{n}\right)\right)(1 - \zeta) \tag{36}$$

where $\zeta \to 0$ as $n \to \infty$. It can be shown (MacWilliams & Sloane 1977) that there exists an infinite sequence of $[n,k,d]$ linear codes satisfying inequality (36) with $d/n \geq \delta$ if $0 \leq \delta < 1/2$.

Theorem 5 states that to encode $K$ qubits with minimum distances $d_1$ and $d_2$ in bases 1 and 2, we require codes $C^{+K}$, $C$, $C^\perp$ related as follows:

$$[n, x + K, d_1] \xrightarrow{\text{subcode}} [n, x, y] \xrightarrow{\text{dual}} [n, n - x, d_2] \tag{37}$$

This implies that the codes $C^{+K} = [n, k_1, d_1]$ and $C^\perp = [n, k_2, d_2]$ have sizes $k_1$, $k_2$ related by

$$k_1 + k_2 = n + K \tag{38}$$

Since all codes satisfy the Hamming bound (34), both $C^{+K}$ and $C^\perp$ do so. Substituting in equation (38), this implies

$$\frac{K}{n} \leq 1 - H\left(\frac{d_1}{2n}\right) - H\left(\frac{d_2}{2n}\right) \tag{39}$$

where the factors $(1 - \zeta)$ have been dropped for clarity (this will not affect the argument).
Now, provided the parameters \([n, k_1, d_1]\) satisfy the Gilbert-Varshamov (G-V) bound (36), then it is certainly possible to find a code \(C^{+K}\) having size \(k_1\) and minimum distance \(d_1\). What is the condition that such a code will have associated with it a \(K\)th order subcode \(C\) whose dual \(C^\perp\) has minimum distance \(d_2\)? I conjecture that it is sufficient that \(C^\perp\) also satisfy the Gilbert-Varshamov bound. I have not been able to prove this, but the conjecture seems reasonable since it is known that there is an infinite series of self-dual codes which satisfy (36). Therefore in the set \(\{C^{+K} \leftrightarrow C \leftrightarrow C^\perp\} = \{[n, n/2 + K, d_1] \leftrightarrow [n, n/2, d_2] \leftrightarrow [n, n/2, d_2]\}\), both \(C\) and \(C^\perp\) can satisfy the G-V bound simultaneously. In passing from \(C\) to \(C^{+K}\) in this case, one does not expect the minimum distance to fall especially rapidly, so it is reasonable to suppose that \(C^{+K}\) can also be found satisfying the G-V bound.

It will be assumed, then, that a sufficient condition for \(K\) qubits to be encoded with minimum distances \(d_1, d_2\), is that \(C^{+K}\) and \(C^\perp\) both satisfy the Gilbert-Varshamov bound. Substituting this bound (36) in equation (38) leads to

\[
\frac{K}{n} \geq 1 - H\left(\frac{d_1}{n}\right) - H\left(\frac{d_2}{n}\right)
\]

(40)

Inequalities (39) and (40) are closely related to Shannon’s main theorem in the classical regime. The classical regime corresponds to the limit \(d_2/n \rightarrow 0\), \(d_1 = d\), in which case we obtain \(1 - H(d/2n) \geq K/n \geq 1 - H(d/n)\). The context in which we have been working throughout corresponds classically to a binary symmetric channel, having capacity \(C(p) = 1 - H(p)\) where \(p\) is the error probability. Shannon’s theorem states that the rate \(K/n\) can be arbitrarily close to capacity, while allowing error-free transmission. This implies \(K/n \sim 1 - H(p)\) is possible for a code of average distance \(\bar{d} = 2np(1 + \zeta)\) with \(\zeta\) arbitrarily close to zero. The averaging employed here involves various technicalities which are discussed in standard texts; a good introduction is given by Hamming 1986. For our present purposes, we note simply that Shannon’s theorem gives \(K/n \sim 1 - H(\bar{d}/2n)\). Comparing this with inequality (39), one sees that classically the Hamming bound gives a good guide to the limits of what is possible for an average distance between codewords, even though the minimum distance cannot not reach the upper limit of the Hamming bound, and indeed more restrictive bounds are known (see MacWilliams & Sloane 1977). This suggests that the Hamming bound is a useful indicator in general, ie that codes which ‘approach’ it in an average way do exist.

Returning to the quantum regime, let us consider for simplicity the case \(d_1 = d_2 = d\). This is the type of coding one would choose if the probabilities of errors in bases 1 and 2 were equal. If they are not equal, one can always choose \(d\) sufficiently large.
to allow correction in the most error-prone basis, then it will also be more than sufficient for correction in the other basis. For \( d_1 = d_2 = d \), inequalities (39) and (40) give

\[
H\left(\frac{d}{n}\right) \geq \frac{1}{2} \left(1 - \frac{K}{n}\right) \geq H\left(\frac{d}{2n}\right),
\]

which, in the case \( n \gg K \), implies

\[
H^{-1}\left(\frac{1}{2}\right) \leq \frac{d}{n} \leq 2H^{-1}\left(\frac{1}{2}\right).
\]

The inverse entropy function \( H^{-1}(x) \) is defined for \( 0 < x \leq 1/2 \) by \( H^{-1}(x) = y \) iff \( x = H(y) \). Using \( H^{-1}(1/2) \approx 0.1100028 \) (see figure 6), we find that encoding \( K \) qubits using \( n \gg K \) allows \( d/n \) to be greater than 0.11, while \( d/n \) is certainly less than 0.22006. These limits are shown on figure 6.

At this point, a complete discussion would introduce the notion of the capacity of a noisy quantum channel. The capacity would be limited by error rates, and one would investigate whether error-free transmission is possible at rates close to capacity, as in Shannon’s theorem. However, the capacity of a noisy quantum channel is not yet understood, and the present author has not developed a satisfactory definition. The equivalent of Shannon’s noiseless coding theorem has been developed for the quantum regime by Schumacher 1995, and it is found that the number \( K \) of qubits is a useful measure of “amount of information” in the quantum case, as one would hope. To understand the effect of noise (ie decoherence) in the quantum regime, I conjecture that it is useful to model decoherence in a way analogous to that employed in classical information theory. That is, we assume that decoherence in a real quantum computer or information channel can be modelled by a stochastic treatment, in which, between two defined times, each qubit either undergoes an arbitrary decoherence, or follows the error-free evolution governed by the known parts of the system Hamiltonian. Which of these two occurs for any given qubit during any given time interval is a random decision, the decoherence occurring with probability \( p \). This model is somewhat akin to the ‘quantum jump’ or ‘quantum Monte Carlo’ models of dissipative processes in quantum mechanics introduced by several authors in different contexts (Carmichael 1991; Dalibard et al. 1992; Dum et al. 1992; Gisin 1984; Mølmer et al. 1993 and references therein). This similarity suggests that the model can provide a realistic description of a large class of real error processes.\(^7\) In fact the assumption we make is not that error processes can be fully

---

\(^{7}\)Note, however, that the occurrence of a random error is not to be identified exactly with a quantum jump occurring in the quantum Monte Carlo method of Dalibard et al. 1992, Mølmer
modelled in this way, but merely that a scheme which can correct this assumed type of error will be able to correct satisfactorily the errors in a real physical computer.

With our stochastic model of errors, an argument using the law of large numbers can be employed to show that the probability that uncorrectable errors occur falls to zero when codes of long enough minimum distance are employed, just as in classical information theory. Thus, in the stochastic model, the probability that exactly \(x\) errors occur among \(n\) qubits is given by the binomial distribution, if we assume that errors in different qubits are independent. The probability that any number up to \(x\) qubits decohere is

\[
F(x) = \sum_{i=0}^{x} \binom{n}{i} p^i (1 - p)^{n-i}.
\]  

(43)

where \(p\) is the probability of decoherence of a single qubit, during some defined interval of time \(t \rightarrow t + \Delta t\). When \(n, np \gg 1\), this can be approximated using the error function: \(F(x) \simeq \text{erf}((x - \mu)/\sigma \sqrt{2})\) where \(\mu = np\), \(\sigma = \sqrt{np(1-p)}\). If an \(x\)-error correction scheme is implemented (using a code of distance \(d = 2x + 1\)), then \(F(x)\) is the probability that the code can be corrected successfully. When the correction is successful, the state of the quantum computer is exactly what it should be (the assumptions of the stochastic model permit this ‘unphysical’ conclusion).

If the whole computation requires a total number \(T\) of time steps, each of duration \(\Delta t\), and error correction is carried out at the end of each time step, then the probability that the whole computation is free of errors is

\[
P(n, p, d, T) = (F(x = \lfloor (d - 1)/2 \rfloor))^T
\]

(44)

In the case of the binomial distribution, the law of large numbers is expressed by the fact that once the number of correctable errors \(x = \lfloor (d - 1)/2 \rfloor\) becomes larger than the mean number of errors \(\mu = np\), the error function \(F(x)\) becomes arbitrarily close to 1 as \(n\) is increased. To see just how close, we use the asymptotic expansion

\[
1 - \text{erf}(z) \simeq \left(\exp(-z^2)/2\sqrt{\pi}\right)(1 - 1/2z^2 + \cdots), \text{ for } z \gg 1,
\]

which gives

\[
P(\text{recover successfully after one timestep}) \simeq F(x = d/2)
\]

\[
\simeq 1 - \frac{1}{d/2n - p} \sqrt{\frac{2p(1-p)}{n\pi}} \exp \left( \frac{-n(d/2n - p)^2}{2p(1-p)} \right)
\]

et al. 1993, since in that method an error term still appears in the state when no quantum jump occurs, due to the non-Hermitian part of the Hamiltonian employed during the periods of evolution between jumps. The quantum Monte Carlo method has exactly the stochastic form we require when only phase relaxation occurs in one basis (“relaxation of type \(T_2^\ast\)”, cf section 3.2).
where \[ \frac{d}{2n} \sim H^{-1}((1 - K/n)/2) \]

using inequalities (41). The probability that the computer cannot recover from errors falls exponentially with \( n \), as long as codes are used which keep close to the maximum possible correction ability (ie Hamming distance), and as long as \( p \) is below an upper bound which does not depend on \( n \) or \( K \). It has been supposed that such exponential stabilisation would be impossible for a quantum computer. Indeed, it is a surprising result which goes right against the usual conclusion of the Schrödinger cat paradox, in which macroscopic superpositions appear to be inherently unstable, and unstabilisable. However, using inequalities (42) (cf figure 6), we find that error-free computation is guaranteed to be possible if \( p < \sim 0.055 \), and is impossible if \( p > \sim 0.11003 \).

As an example, consider a computer requiring \( K = 1000 \) qubits, which are encoded using a set of \( n = 10000 \) qubits. Inequalities (41) allow \( d_1 = d_2 = 939 \). Suppose the error probability during each time step is \( p = 0.04 \), and \( T = 10000 \) time steps are required. During each step, on average 400 errors occur, and the standard deviation of the error distribution is about 20. The probability of error-free computation is, from equation (44), \( P(n,p,d,T) \approx 0.01 \). If \( p \) is reduced to \( p = 0.03 \), on the other hand, then \( F(x) \approx 1 - 4 \times 10^{-23} \) and error-free computation is almost certain for any reasonable length \( T \) of the calculation.

## 5 Concluding remarks

The error correction methods which have been presented involve many two-qubit CNOT operations each time correction is carried out, and the whole process only works if these operations can be performed without introducing too many extra errors. The number of 1’s in the parity check matrix of a \([n,k,d]\) code is about \( kd \), since each message bit must be associated with at least \( d - 1 \) parity checks. Therefore, the error corrector of such a code involves of the order of \( kd \) two-qubit operations. For the case \( d_1 = d_2 \) one uses coding with \( k_1 = k_2 \approx n/2 \), and correction is carried out in both bases. Therefore the total number of operations for one complete correction is of order \( nd \approx 2n^2p \). A logical choice would be to correct the whole computer every time an elementary computing operation is performed. Therefore, the introduction of error correction causes the total number of two-qubit operations to be multiplied by \( 2n^2p \). This is a modest extension of the resources necessary to complete a computation, since \( n \) itself does not increase faster than the
number $K$ of bits of quantum information employed. The great gains in computing power associated with “quantum parallelism” are retained in the corrected noisy computer.

It may come as a surprise that the condition for error-free computation derived above is simply an upper bound $p < H^{-1}(1/2) \simeq 0.11$ on the error probability, rather than a scaling law for $n$ as a function of $K$ and $p$. However, this is in the nature of the approach we have adopted, since when $np \gg 1$, the number of errors that actually occur during any one time step is almost certainly very close to the average number $np$, so the whole battle is won or lost on the ability to correct this number of errors. The corresponding limit in the classical regime is $p < H^{-1}(1) = 1/2$, above which error-free communication is impossible and the channel capacity falls to zero. Indeed, if the only errors that occur in the quantum case are phase errors in one of the bases (say basis 1), then we can afford to use $d_1 = 1$, and the coding problem reduces to the classical one, so $p$ can approach $H^{-1}(1)$ once again. The factor $1/2$ rather than 1 appearing in the inverse entropy function arose because it was assumed just before inequalities (41) that arbitrary unknown decoherence will require correction in both basis 1 and basis 2. It is here that the difference between a qubit and a classical bit enters: the extra degrees of freedom associated with the qubit mean that we do not know, in general, in which basis to correct it, so we are forced to correct it in two mutually rotated bases. By theorem 3, this means that both a code and its dual must be capable of correcting the expected error rate, so both $k/n$ and $1 - k/n$ are limited by Shannon’s theorem. The classical and quantum cases can be compared thus:

<table>
<thead>
<tr>
<th>Classical</th>
<th>Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k/n &lt; 1 - H(p)$</td>
<td>$k/n &lt; 1 - H(p)$</td>
</tr>
<tr>
<td>$k/n &gt; 0$</td>
<td>$1 - k/n &lt; 1 - H(p)$</td>
</tr>
<tr>
<td>$\Rightarrow H(p) &lt; 1$</td>
<td>$\Rightarrow H(p) &lt; 1/2$</td>
</tr>
</tbody>
</table>

It should be stressed that the left hand side of this comparison represents a well-founded body of knowledge, while the right hand side involves some assumptions which remain to be investigated further.

The whole argument has assumed that the process of error correction does not itself introduce decoherence. However this is an unrealistic assumption, since the error correction procedure is itself a special kind of quantum computation. Clearly, the probability of decoherence during one time step must be reckoned to increase with the number of operations needed to implement error correction. However, such decoherence can be corrected during the next time step, provided that it affects
sufficiently few qubits. The analysis of this in detail is an important avenue for future work.

In conclusion, the main contribution of this paper has been to show how to adapt the classical methods of error correction to the quantum regime. Theorems 5 and 6 are central. The sections leading up to them introduced the ideas, and those following examined the implications. The theorems show that a macroscopic quantum system can be stabilised by a judicious use of unitary operations and dissipative measurements. This is a type of feedback loop or ‘quantum servo-control’. Among the results gained along the way are a useful taxonomy of types of multiple-particle (or multiple-qubit) interference, and a general insight into how to perform quantum purity amplification. These are basic properties of quantum theory, the former showing how information can be embodied in many qubits simultaneously, and the latter showing how quantum communication can be isolated from noise and eavesdropping. The linear codes we have discussed constitute a generalisation of the ‘Bell basis’ to many qubits.

The obvious need now is for a fuller understanding of the capacity of a noisy quantum channel. In particular, it would be useful to find out whether a stochastic model for errors in a quantum channel is sufficient to enable the error rate for many qubits to be estimated. Also, the effect of decoherence during the error correction process needs to be investigated. On the experimental side, an implementation of the simplest error correction schemes using 3 or 7 qubits would be a significant step forward.

I thank members of the Oxford Quantum Information group for commenting on the manuscript. The author is supported by the Royal Society.
References


Hughes, R. J. *et al.* 1995 *Contemp. Phys.* To be published.

Landauer, R. *Proc. R. Soc. London Ser.* A. To be published.


Figure 1: Encoding for simplest error correction scheme. Initially $Q$ is the qubit to be encoded, and the three 'encoding' qubits are in the state $|000\rangle$. Symbols: $\downarrow$ = state swapping; $\times$ = controlled not in basis 2.

Figure 2: Simplest error correction scheme. All operations take place in basis 2. After two CNOT operations, the lower two qubits are measured in basis 2. The results are fed to a classical 'box' which then complements (NOT operation) one or more of the qubits, depending on the measurement results. The two final CNOT's reencode the state (see text).

Figure 3: Encoder for the simplest scheme enabling single error correction in both bases. The multiple CNOT symbols mean successive CNOT operations carried out between the single control qubit and each of the target qubits. The initial state is $|00Q000\rangle$. The first two CNOT operations prepare for the generation of a superposition of the simplex code and its complement. The rest generates the code from this preparatory state. The symbol $\circ$ means the rotation $|0\rangle \rightarrow |0\rangle$, $|1\rangle \rightarrow |1\rangle$.

Figure 4: Error corrector for the code generated by figure 3. Multiple CNOT operations perform parity checks. The lower three qubits are measured, and the results used to determine which qubits undergo a NOT operation. The scheme is first applied in basis 1, then in basis 2 (see text).

Figure 5: Alternative method of error correction. Codes need not be corrected 'in place' using the qubits of the computer itself (as in the previous figures). It may be more convenient to establish the error syndrome using a set of ancillary qubits. The example shown here carries out the same correction as the corrector of figure 4.

Figure 6: The entropy function $H(x)$, showing the limits introduced on $x = d/n$ by the Hamming (full vertical line) and Gilbert-Varshamov (dashed vertical line) bounds.