UNIVERSITÄT LEIPZIG

Naturwissenschaftlich-Theoretisches

Zentrum

Quasi-complete intersections of monomial curves in projective three-space

by

H. Bresinsky1 and J. Stückrad

1 University of Maine
Dept. of Mathematics
Orono, Maine 04469
U.S.A.

Universität Leipzig
Fakultät für Mathematik und Informatik
Mathematisches Institut
Augustusplatz 10
04109 Leipzig
BRD

Preprint-Nr. 33/1995
Abstract:
We classify completely all quasi-complete intersections of monomial curves in \mathbb{P}_K^3, K an infinite field, see Theorem 4.1 and Theorem 4.2. This completes the investigations started in [B,Sch,St].

1. Introduction and preliminaries

The subject matter under discussion are quasi-complete intersections on three surfaces (q.c.i.) of monomial curves $C(n_1, n_2, n_3)$ in \mathbb{P}_K^3, K an infinite field, with generic zero $(t_0^{n_3}, t_0^{n_3-n_1}t_1^{n_1}, t_0^{n_3-n_2}t_1^{n_2}, t_1^{n_3})$, $n_1 < n_2 < n_3$ positive integers with $g.c.d.(n_1, n_2, n_3) = 1$. $p(n_1, n_2, n_3) \subseteq K[x_0, \ldots, x_3] =: R$ will denote the prime ideal of $C(n_1, n_2, n_3)$, that is the kernel of the substitution homomorphism $\varphi : K[x_0, \ldots, x_3] \rightarrow K[t_0, t_1]$, $x_i \mapsto t_0^{n_3-n_i}t_1^{n_i}$, $0 \leq i \leq 3$, $n_0 := 0$.

There are several equivalent definitions for $p(n_1, n_2, n_3)$ to be a q.c.i. on $\{F_1, F_2, F_3\}$, F_i homogeneous polynomials, $1 \leq i \leq 3$ (see [St], [P.S], [B,Sch,St]). The definition we will use is:

Definition 1.1. $p(n_1, n_2, n_3)$ is a q.c.i. on $\{F_1, F_2, F_3\}$ if $p(n_1, n_2, n_3)|_{x_i=1} = (F_1|_{x_i=1}$, $F_2|_{x_i=1}, F_3|_{x_i=1})R_i$, $0 \leq i \leq 3$. Here $R_i := K[x_0, \ldots, x_i, \ldots, x_3]$ and the image of a set or an element under the substitution homomorphism $R \rightarrow R_i$ given by $x_j \rightarrow x_j$, $j \neq i$, $x_i \rightarrow 1$, $0 \leq i \leq 3$, is denoted by placing $|x_i=1$ behind the set or element.

We list next some prerequisites, needed for an understanding of the proofs and results. Important to our investigation is the algorithm in [B,R] (see also [B,C,F,H]), which obtains a minimal generating set B of binomials for $p(n_1, n_2, n_3)$. It starts from a minimal generating set of binomials for $p(n_1, n_2, n_3)|_{x_0=1}$, which is either two or three in
number [H]. The distinction between $\mu(p(n_1, n_2, n_3)|_{x_0=1})=2$ and $\mu(p(n_1, n_2, n_3)|_{x_0=1})=3$ (μ denotes the minimum number of generators) can be arithmetically interpreted by considering the so called symmetric property of the numerical semigroup $(n_1, n_2, n_3) := \{z|z := \sum_{i=1}^{3} z_in_i, z_i \text{ nonnegative integers } \}$. There are again several equivalent definitions for a numerical semigroup (n_1, n_2, n_3) to be symmetric. Our definition here is:

Definition 1.2. Let $(i, j, h) := \{1, 2, 3\}$, (n_1, n_2, n_3) is (n_i, n_j)-symmetric if $n_i = q_i d$, $n_j = q_j d$, $d = g.c.d.(n_i, n_j)$ and $n_h = \alpha_i q_i + \alpha_j q_j \in \langle q_i, q_j \rangle := \{z|z = z_i q_i + z_j q_j, \ z_i \text{ and } z_j \text{ nonnegative integers } \}$. If no specific identification with the integers n_i, n_j is needed, then (n_1, n_2, n_3) is said to be symmetric, if it is (n_i, n_j)-symmetric for some $i, j \in \{1, 2, 3\}$, $i \neq j$. If (n_1, n_2, n_3) is (n_1, n_j)-symmetric and $(n_3 - n_2, n_3 - n_1, n_3)$ is symmetric, then we say that (n_1, n_2, n_3) and $(n_3 - n_2, n_3 - n_1, n_3)$ are symmetric of the same type, if for $j = 2$ $(n_3 - n_2, n_3 - n_1, n_3)$ is $(n_3 - n_2, n_3 - n_1)$-symmetric, or for $j = 3$ $(n_3 - n_2, n_3 - n_1, n_3)$ is $(n_3 - n_2, n_3)$-symmetric.

It follows from [H], that $p(n_1, n_2, n_3)|_{x_0=1}$ is minimally generated by $G_1 := \{g_{ij} := x_0^{q_i} - x_1^{q_i}, g_h := x_h^{d} - x_i^{\alpha_i} x_j^{\alpha_j} \}$ if (n_1, n_2, n_3) is (n_i, n_j)-symmetric and $G_2 := \{f_i := x_i^{\alpha_i} - x_j^{\alpha_j} x_h^{\alpha_h}, f_j := x_j^{\alpha_j} - x_i^{\alpha_i} x_h^{\alpha_h}, f_h := x_h^{\alpha_h} - x_i^{\alpha_i} x_j^{\alpha_j}, \alpha_i, \alpha_j, \alpha_h \text{ minimal and all } exponents \text{ positive, if } (n_1, n_2, n_3) \text{ is not symmetric. We will refer to } g_{ij}, g_h, \text{ respectively } f_i, f_j, f_h, \text{ as the canonical binomial generators of } p(n_1, n_2, n_3)|_{x_0=1}. \text{ They are uniquely determined, up to multiplication by } -1, \text{ provided for } n_i < n_j, \alpha_i < q_j \text{ in } G_1, \text{ which we will assume from now on.}

The algorithm in [B.R] now starts with either the homogenized binomials in G_1 or G_2 and produces a minimal generating set B of $p(n_1, n_2, n_3)$ as follows.

Case 1. (n_1, n_2, n_3) is (n_i, n_j)-symmetric

a) $(i, j) = \{2, 3\}$. In this case $p(n_1, n_2, n_3) = (x_0^{q_3} - x_3^{q_3} x_2^{q_2} - x_2^{q_2} x_1^{d} - x_0^{\alpha_0} x_2^{\alpha_2} x_3^{\alpha_3})R$, $d := g.c.d.(n_2, n_3)$.

b) $(i, j) \neq \{2, 3\}$. W.l.o.g. assume $n_i = n_1$. We obtain a sequence of binomials as follows. We start with $B_{j_1} := x_0^{q_i} - x_1^{q_1} x_2^{q_1} =: m_0 - m_1$, $B_{h_1} := x_0^{\alpha_0} x_2^{d} - x_1^{\alpha_1} x_2^{\alpha_1} =: m_0 - m_1'$, $d := g.c.d.(n_1, n_j)$, $n_1 = q_1 d$, $n_j = q_2 d$, $\alpha_{h_1} < q_j$. If $\alpha_{h_0} = 0$, then $h = 2$, if $\alpha_{h_1} = 0$, then $j = 2$. In both cases $p(n_1, n_2, n_3) = (B_{j_1}, B_{h_1})R$. Otherwise we cross multiply the mon-
mial terms of B_{j_1} and B_{h_1} and cancel in the resulting binomial $m_0m'_1-m'_0m_1$ the highest common monomial term in x_0 and x_1. We obtain a binomial B_{j_2} (with lower x_1-exponent than in B_{j_1}) in $\mathcal{P}(n_1,n_2,n_3)$. We also will say B_{h_1} acts on B_{j_1} to produce B_{j_2}. If B_{j_2} has a pure power in x_2 as a monomial term, then the process stops. If this is not the case and the x_1-exponents of B_{j_2} and B_{h_1} are not equal, then B_{h_1} acts on B_{j_2} to produce B_{j_3} (in case the x_1-exponent in B_{h_1} is smaller than the x_1-exponent in B_{j_2}) or B_{j_2} acts on B_{h_1} to produce B_{h_2}. In case of equal x_1-exponents in B_{j_2} and B_{h_1}, the above process of cross multiplying the monomial terms of B_{j_2} and B_{h_1} and cancelling the highest common monomial term in x_0 and x_1, results in a binomial with a pure power term in x_2 in $\mathcal{P}(n_1,n_2,n_3)$. We call this the binomial B_{j_3} for $j=2$ and B_{h_2} for $h=2$ and the algorithm terminates. Iterating this procedure results in two well defined sequences B_{j_1},\ldots,B_{jr_0} and B_{h_1},\ldots,B_{hs_0}. We set \{B_{j_1},\ldots,B_{jr_0}\} = $\mathcal{B}(j)$ and \{B_{h_1},\ldots,B_{hs_0}\} = $\mathcal{B}(h)$. The binomial with the pure power in x_2, which ends the algorithm, is the binomial in $\mathcal{B}(2)$ with largest second subscript. Now $\mathcal{B} = \mathcal{B}(j) \cup \mathcal{B}(h)$.

Case 2. (n_1,n_2,n_3) is not symmetric.

a) Assume that the homogenized binomials B_{11}, B_{21}, B_{31} in G_2 are $B_{11} := x_1^{a_1} - x_0^{a_{10}}x_2^{a_{12}}x_3^{a_{13}}, B_{21} := x_2^{a_3} - x_0^{a_{20}}x_1^{a_{21}}x_3^{a_{23}}, B_{31} := x_0^{a_{30}}x_3^{a_3} - x_1^{a_{31}}x_2^{a_{32}}$. Then $\mathcal{P}(n_1,n_2,n_3)$ is minimally generated by these elements.

b) Not a). Then $B_{21} = x_0^{a_{20}}x_2^{a_3} - x_1^{a_{21}}x_3^{a_{23}}$ and with B_{21} and $B_{31} = x_0^{a_{30}}x_3^{a_3} - x_1^{a_{31}}x_2^{a_{32}}$ we proceed as in Case 1. to obtain two sets $\{B_{21},\ldots,B_{2r_0}\} = \mathcal{B}(2), \{B_{31},\ldots,B_{3s_0}\} = \mathcal{B}(3)$ with B_{2r_0} the binomial with a pure power in x_2 ending the algorithm. Then $\mathcal{B} = \{B_{11}\} \cup \mathcal{B}(2) \cup \mathcal{B}(3)$ is a minimal generating set of $\mathcal{P}(n_1,n_2,n_3)$.

If in the above B_{2r_0} is the binomial with the pure power in x_2, then B_{3s_0} and B_{2r_0} are said to be the last two elements of the algorithm, $B_{2,r_0-1}, B_{3s_0}, B_{2r_0}$ the last three elements. An analogous statement is obtained if B_{2r_0} is the binomial with the pure power in x_2. We now also have, that if we permute the variables $x_0 \leftrightarrow x_3, x_1 \leftrightarrow x_2$, then the corresponding set $\overline{\mathcal{B}}$ becomes a minimal generating set for $\mathcal{P}(n_3-n_2,n_3-n_1,n_3)$, with the order in which the corresponding binomials appear reversed. This means that the last two, respectively the last three, elements, obtained in the algorithm for \mathcal{B}, become, by setting $x_3 = 1$, a minimal
binomial generating set for $p(n_1, n_2, n_3)|_{x_3=1}$.

We collect the above information in

Lemma 1.3. (i) If $\{i,j\} = \{2,3\}$ and (n_1, n_2, n_3) is (n_i, n_j)-symmetric, then $\mu(p(n_1, n_2, n_3)) = 2$.

(ii) If $j \in \{2,3\}$ and (n_1, n_2, n_3) is (n_1, n_j)-symmetric, then $B_{j1} = x_0^{q_1} - x_j^{q_1} - x_1^{q_i}$, $B_{h1} = x_0^{\alpha_0} x_h^d - x_1^{\alpha_1} x_j^{\alpha_j}$, where $d := g.c.d.(n_1, n_j)$.

If $\alpha_0 = 0$, then $h = 2$ and $\mu(p(n_1, n_2, n_3)) = 2$.

If $\alpha_1 = 0$, then $j = 2$ and $\mu(p(n_1, n_2, n_3)) = 2$

(iii) If $j \in \{2,3\}$ and (n_1, n_2, n_3) is (n_1, n_j)-symmetric, then the x_k-exponents in all binomials constructed above are multiples of $d := g.c.d.(n_1, n_j)$.

(iv) In each of $B(j)$ and $B(h)$ the x_0 and x_1-exponents are decreasing, the x_2 and x_3-exponents increasing sequentially with increasing second subscripts. If (n_1, n_2, n_3) is not symmetric, then B_{11} has the largest x_0 and x_1-exponents in B.

Proof. All of (i)-(iv) are an immediate consequence of the previous and [H].

Finally of importance is Theorem 1.1, Theorem 1.3 and Lemma 1.1 in [B,Sch,St]. Theorem 1.1 gives three necessary and sufficient conditions for a q.c.i. in terms of height, local cohomology and the degrees of the surfaces to be taken. For our purposes here, Theorem 1.3 says that if $p(n_1, n_2, n_3)$ is a q.c.i. on $\{F_1, F_2, F_3\}$, then, say F_1, F_2, can be taken to be binomials in B, one of them of lowest degree and the other (as it turns out) of next lowest degree. Lemma 1.1 states that if $\mu(p(n_1, n_2, n_3)) \geq 3$, then F_1, F_2, F_3 are irreducible.

If one allows complete intersections to be a special type of q.c.i., then for all $p(n_1, n_2, n_3)$ such that $\mu(p(n_1, n_2, n_3)) \leq 3$, $p(n_1, n_2, n_3)$ is a q.c.i. (on three surfaces). Thus of interest is, if $\mu(p(n_1, n_2, n_3)) \geq 4$. The description of all $p(n_1, n_2, n_3)$ with $\mu(p(n_1, n_2, n_3)) = 4$ and $p(n_1, n_2, n_3)$ a q.c.i. was obtained in [B, Sch, St], where it was also shown that $p(n_1, n_2, n_3)$ is not always a q.c.i. on binomials. In view of [B, Sch, St] therefore the assumption $\mu(p(n_1, n_2, n_3)) \geq 5$ is not restrictive.
2. Prerequisite lemmata and corollaries

We start with

Lemma 2.1. Assume \((n_1, n_2, n_3) \) is not symmetric and \(p(n_1, n_2, n_3)|_{x_0=1} = (f_i, f_j, f_h)R_0 \), \(\{i,j,h\} = \{1,2,3\} \). If \(\{b, f, g\} \) is a minimal generating set of \(p(n_1, n_2, n_3)|_{x_0=1} \) and \(b \) is a monic binomial, then \(\pm b \in \{f_i, f_j, f_h\} \). An analogous statement is true for \(p(n_1, n_2, n_3)|_{x_0=1} \) if \((n_2 - n_2, n_3 - n_1, n_3) \) is not symmetric.

Proof. \(\{f_i, f_j, f_h\} \) is a minimal homogeneous generating set of \(a := p(n_1, n_2, n_3)|_{x_0=1} \) with respect to the grading \(\deg(x_i) = n_i \) of \(R_0, 1 \leq i \leq 3 \). Therefore \(\{f_i, f_j, f_h\} \) is a minimal generating set of the extended ideal \(a^e \subseteq K[[x_1, x_2, x_3]] \). Thus \(\{b, f, g\} \) is also a minimal generating set of \(a^e \). Let \(M \) and \(M^* \) be any \(3 \times 3 \) matrices with polynomial entries and with the property that \((b, f, g)^T = M(f_i, f_j, f_h)^T \) and \((f_i, f_j, f_h)^T = M^*(b, f, g)^T \). Then \((MM^* - E_3)(b, f, g)^T = (0, 0, 0)^T, E_3 \) the \(3 \times 3 \) identity matrix. Since \(\{b, f, g\} \) is a minimal generating set of \(a^e \subseteq K[[x_1, x_2, x_3]] \), this implies \((MM^* - E_3)\mod(m := (x_1, x_2, x_3)R_0) \) is the \(3 \times 3 \) 0-matrix. Hence every row of \(M \) has an element not in \(m \). If \(M = ((r_{ij})) \), since \(b, f, f, f_h \) are homogeneous, we may assume \(r_{11}, r_{12} \) and \(r_{13} \) to be homogeneous. W.l.o.g. assume \(r_{11} \not\in m \), thus \(r_{11} \) is a constant \(c \not= 0 \). By the assumptions on the exponents in \(f_i, f_j, f_h \), the term \(c_1 x_1^{\alpha_1} \) does not cancel. Since \(b \) is assumed monic, we conclude \(\pm x_1^{\alpha_1} \) is a monomial term of \(b \). But the monic binomial in \(a \) with one of its monomial terms \(\pm x_1^{\alpha_1} \) is uniquely determined up to multiplication by \(\pm 1 \) and is equal to \(\pm f_i \). Therefore \(\pm b \in \{f_i, f_j, f_h\} \).

Corollary 2.2. If \(\{b_1, b_2, f\} \) is a minimal generating set of \(p(n_1, n_2, n_3)|_{x_0=1} \), \(b_1, b_2 \) monic binomials, then for some set \(\{i, j\} \subseteq \{i, j, h\} = \{1,2,3\} \), \(\pm b_1 = f_i, \pm b_2 = f_j \).

Proof. The existence of \(\{i, j\} \) such that \(\pm b_1 = f_i, \pm b_2 = f_j \) follows by applying Lemma 2.1. twice.

Corollary 2.3. Assume \((n_1, n_2, n_3) \) and \((n_3 - n_2, n_3 - n_1, n_3) \) are not symmetric and \(\mu(p(n_1, n_2, n_3)) \geq 5 \). Then \(p(n_1, n_2, n_3) \) is not a q.c.i.
Proof. Suppose \(p(n_1, n_2, n_3) \) is a q.c.i.. Then by Theorem 1.3 [B, Sch, St] we may assume that two of the elements on which \(p(n_1, n_2, n_3) \) is a q.c.i. are binomials in \(B \), which, by Lemma 2.1, become part of the canonical generating set \(\{ f_i, f_j, f_k \} \) (up to multiplying by \(-1\)) of \(p(n_1, n_2, n_3)_{x_3 = 1} \) and an analogous statement is true for \(p(n_1, n_2, n_3)_{x_3 = 1} \). Thus the first and last three elements in \(B \) have two elements in common, from which \(\mu(p(n_1, n_2, n_3)) \leq 4 \), a contradiction. \(\blacksquare \)

Remark 2.4. If \((n_1, n_2, n_3) = (n_1, n_2) \)-symmetric and neither \(n_1 \) nor \(n_2 \) equals \(n_1 \), then by Lemma 1.3 \(\mu(p(n_1, n_2, n_3)) = 2 \). Thus w.l.o.g. we may assume \(n_1 = n_2 \) and \(\{ n_2, n_3 \} \).

Lemma 2.5. Assume \((n_1, n_2, n_3) \) is \((n_1, n_2) \)-symmetric, \(\mu(p(n_1, n_2, n_3)) \geq 4 \) and \(\{ B_1, B_2, F \} \subseteq p(n_1, n_2, n_3) \) is such that \(B_1, B_2 \) are irreducible monic binomials and \(\{ B_1_{x_3 = 1}, B_2_{x_3 = 1}, F_{x_3 = 1} \} \) is a generating set for \(p(n_1, n_2, n_3)_{x_3 = 1} \). Then one of \(B_1_{x_3 = 1}, B_2_{x_3 = 1} \) is a canonical generator of \(p(n_1, n_2, n_3)_{x_3 = 1} \) (up to multiplication by \(-1\)). An analogous statement holds for \(p(n_1, n_2, n_3)_{x_3 = 1} \) if \((n_3 - n_2, n_3 - n_1, n_3) \) is symmetric.

Proof. It is convenient and necessary for later considerations to rewrite

\[B = B^*(j) \cup B^*(h), \quad B^*(j) := \{ x_0^{i-j_1} x_j^{j_1} - x_1^{j_1} =: B_{j_1}, x_0^{(q_j - q_1) - \alpha_h} x_j^{\alpha_h} - x_1^{q_j - \alpha_h} x_k^{\alpha_h} =: B_{j_k}, \ldots, B_{j_{l(j)}} \}, \quad B^*(h) := \{ x_0^{\alpha_h} x_h^{\alpha_h} - x_1^{\alpha_h} x_j^{\alpha_j} =: B_{h_1}(\alpha_h; 0 < \alpha_h < q_j, \alpha_h > 0), B_{h_2}, \ldots, B_{h_{l(h)}} \} \].

where \(B(x_2) \), the binomial with a pure power in \(x_2 \) obtained by our algorithm, is in \(B^*(j) \) for either \(j = 2, h = 3 \) or \(j = 3, h = 2 \). Thus the reassignment of \(B(x_2) \) is possibly the only change in \(B \) as constructed in the previous section. Its purpose is to obtain \(B^*(h) \) as a set of binomials, where each monomial term is divisible by exactly two different variables. Let \(\text{deg} \) be the weighted degree with \(\text{deg}(x_0) = 0, \text{deg}(x_1) = n_1, 1 \leq i \leq 3 \). Since the exponents of \(x_j \) in \(B^*(j) \) and \(x_h \) in \(B^*(h) \) are increasing, \(\text{deg}(B_{j_1}) < \text{deg}(B_{j_{i+1}}), 1 \leq i \leq l(j) - 1, \) in \(B^*(j) \) and \(\text{deg}(B_{h_1}) < \text{deg}(B_{h_{i+1}}), 1 \leq i \leq l(h) - 1, \) in \(B^*(h) \). (This includes \(B(x_2) \) in either case.). Thus \(\min\{\text{deg}(B_{j_1}), \text{deg}(B_{h_1})\} \) is the smallest weighted degree in \(B \).

Also since \(q_j - \alpha_k > 0 \), \(d_n = \text{deg}(B_{j_1}) = \text{deg}(B_{j_2}) = d_n + (q_j - \alpha_k) n_1 < \text{deg}(B_{j_i}), i \geq 3 \).

If \(B_{h_2} \in B^*(h) \), then \(B_{h_2} = x_0^{(\nu + 1)\alpha_h - (q_j - q_1) \alpha_h} x_j^{(\nu + 1) \alpha_j - q_j} = x_1^{\alpha_h} x_j^{\alpha_j}. \) Therefore \(q_1 n_j < \text{deg}(B_{j_1}) < \text{deg}(B_{h_2}) = ((\nu + 1)\alpha_h + q_1) n_j + ((\nu + 1)\alpha_h - q_j)n_1 < \text{deg}(B_{h_1}), i \geq 3. \)
From this \(\hat{\text{deg}}(B_{j1}) < \hat{\text{deg}}(B_{st}) \) for \(s=j, 2 \leq t \leq l(j) \), and for \(s=h, 2 \leq t \leq l(h) \), \(\hat{\text{deg}}(B_{h1}) < \hat{\text{deg}}(B_{st}) \) for \(s=j, 2 \leq t \leq l(j) \), and for \(s=h, 2 \leq t \leq l(h) \), \(\hat{\text{deg}}(B_{h1}) < \hat{\text{deg}}(B_{st}) \) for \(s=j, 2 \leq t \leq l(j) \), and for \(s=h, 2 \leq t \leq l(h) \). Next \(\hat{\text{deg}}(B_{j1}) \neq \hat{\text{deg}}(B_{h1}) \). Otherwise \(q_1 n_j = q_j n_1 = d n_h \).

If \(h=2, j=3 \), then \(x_2^j - x_0^j x_1^j \in \mathfrak{p}(n_1, n_2, n_3) \), if \(h = 3, j = 2 \), then \(x_3^j - x_2^j - x_2^j \in \mathfrak{p}(n_1, n_2, n_3) \). In both cases \(\mu(\mathfrak{p}(n_1, n_2, n_3)) = 2 \), a contradiction. Assume therefore \(\hat{\text{deg}}(B_{r1}) < \hat{\text{deg}}(B_{t1}) \) with \((r, t) \in \{(j, h), (h, j)\} \). Set \(b_{r1} := B_{r1}|_{x_0=1}, b_{t1} := B_{t1}|_{x_0=1} \). Then \((b_{r1}, b_{t1}) R_0 = \mathfrak{p}(n_1, n_2, n_3)|_{x_0=1} \) by our assumption. Suppose \(\{ \pm B_1, \pm B_2 \} \cap \{ B_{j1}, B_{h1} \} = \emptyset \). Then \(\hat{\text{deg}}(B_1) > \hat{\text{deg}}(B_{t1}), \hat{\text{deg}}(B_2) > \hat{\text{deg}}(B_{t1}) \), since, up to multiplication by \(\pm 1, B_{j1} \) and \(B_{h1} \) are uniquely determined amongst monic irreducible binomials.

Since \(\{ B_1|_{x_0=1} = : b_1, B_2|_{x_0=1} = : b_2, F|_{x_0=1} = : f \} \) generate \(\mathfrak{p}(n_1, n_2, n_3)|_{x_0=1} \), at least one generator must have a nonzero component of lowest degree, thus \(f \) must have a nonzero summand \(c_0 b_{r1}, c_0 \neq 0, c_0 \in K \). This means if \(f \) is written as a linear combination of elements in \(B|_{x_0=1} \), then \(f = f' + c_0 b_{r1}, c_0 \neq 0, \hat{\text{deg}}(m') > \hat{\text{deg}}(b_{t1}) \) for all monomial terms \(m' \) of \(f' \). We also must have:

\[(*) \quad b_{t1} := p_1 b_1 + p_2 b_2 + p_3 f.
\]

If \(p_3 \) does not have a nonzero constant term \(c_1 \), then we obtain the weighted homogeneous equation \(b_{t1} = p'_3 b_{r1} \) for a suitable \(p'_3 \), which is impossible since \(\mu(\mathfrak{p}(n_1, n_2, n_3)|_{x_0=1}) = 2 \).

But for \(c_1 \neq 0 \) in \(p_3 \), the right hand side in \((*) \) always has a noncancelling component of smaller degree than the left side, again a contradiction. Thus \(\{ \pm B_1, \pm B_2 \} \cap \{ B_{j1}, B_{h1} \} \neq \emptyset \), which by the uniqueness property of the canonical binomial generators (up to sign) implies the statement of the lemma.

Lemma 2.6. Let \(G^h := \{ B_{11}, B_{21}, B_{31} \} \), where \(B_{11}|_{x_0=1}, B_{21}|_{x_0=1}, B_{31}|_{x_0=1} \), are the canonical binomial generators for \(\mathfrak{p}(n_1, n_2, n_3)|_{x_0=1} \) if \((n_1, n_2, n_3) \) is not symmetric, and let \(G^h := \{ B_{j1}, B_{h1} \}, \{ j, h \} = \{ 2, 3 \} \), where \(B_{j1}|_{x_0=1}, B_{h1}|_{x_0=1} \) are the canonical binomial generators of \(\mathfrak{p}(n_1, n_2, n_3)|_{x_0=1} \) if \((n_1, n_2, n_3) \) is \((n_1, n_j) \)-symmetric. Assume \(B := m_0 - m_1 \in G^h \), \(r \in \{ 1, 2 \} \) and \(B' := m_0 - m'_1 \in B \setminus G^h \). Then there exists a variable \(x_s, s \in \{ 1, 2, 3 \} \) such that \(x_s^p | m'_1 \), but \(x_s^p | m_0, p_1 \geq 1 \). The same type relation (perhaps for a different variable) exists between \(m'_1 \) and \(m_1' \), and \(m_0, m'_1 \) and \(m_1 \).

Proof. A tedious proof follows by checking different cases. A short proof ensues by ob-
serving that \(\mathcal{B} \) forms a reduced and normalized Gröbner basis for \(\mathfrak{p}(n_1, n_2, n_3) \) with respect to the graded lexicographical term order, where \(x_2 \) is the largest linear term \([B,C]\). This proves the above statement for the monomials not divisible by \(x_0 \). For the other monomials the proof is obtained by observing that the \(x_2 \) and \(x_3 \)-exponents are increasing throughout the algorithm. \(\blacksquare \)

Definition 2.7. Let \(p \in K[x_0, \ldots, x_n] \). Then \(\text{supp}(p) := \\{ (\alpha_0, \ldots, \alpha_n) \in \mathbb{Z}^{n+1} | cx_0^{\alpha_0} \cdots x_n^{\alpha_n} \) is a monomial term of \(p \) with \(c \neq 0 \} \) is called the support of \(p \). For \(S \subseteq K[x_0, \ldots, x_n] \) we define \(\text{supp} \ S := \bigcup_{p \in S} \text{supp} (p) \).

Corollary 2.8. Let \(\mathcal{B} \) be as in the statement of Lemma 2.6. Then \(\text{supp} \ \{ x_0^{\rho_0} B | \rho_0 \geq 0 \} \cap \text{supp} \ \{ (\mathcal{B} \setminus G^*_k) R \} = \emptyset. \)

Proof. This is immediate by Lemma 2.6. \(\blacksquare \)

Corollary 2.9. Assume \(\{ B_1, B_2, B_3 \} \subseteq \mathcal{B} := \{ B_1, \ldots, B_l \} \) and \(F \in \mathfrak{p}(n_1, n_2, n_3) \) are such that \((B_1, B_2, F) R |_{x_0=1} = \mathfrak{p}(n_1, n_2, n_3) |_{x_0=1} = (B_1, B_2, B_3) R |_{x_0=1} = (B_1, B_2, B_3) R |_{x_0=1} \subseteq \mathfrak{p}(n_1, n_2, n_3) |_{x_0=1} \) and w.l.o.g. \(F := \sum_{i=3}^l P_i B_i \), where \(P_i, 3 \leq i \leq l \), is homogeneous. Then \(P_3 = P_3' + c_0 x_0^{\rho_0}, c_0 \neq 0, P_3' \in (x_1, x_2, x_3) R \) and \(\text{supp} \ (c_0 x_0^{\rho_0} B_3) \cap \text{supp} \ (P_3' B_3, P_3 B_4, \ldots, P_l B_l) = \emptyset. \) If the above hypothesis holds for \(x_3=1 \), with binomials \(B_1, B_2 \) as before, \(B_s, s > 3, \) in \(\mathcal{B} \), and \(F \) as before, then \(P_3 = P_3' + c_3 x_3^{\rho_3}, c_3 \neq 0, \) with an analogous statement about the support.

Proof. That \(P_3 = P_3' + c_0 x_0^{\rho_0}, c_0 \neq 0, \) follows from Lemma 2.6 and the fact that \(B_3 |_{x_0=1} \) is the unique binomial which contains at least one minimal pure power of the variables \(x_1, x_2, x_3 \). It is easily checked that \(\text{supp} \ (c_0 x_0^{\rho_0} B_3) \cap \text{supp} \ (P_3' B_3) = \emptyset. \) Therefore Corollary 2.8 implies the statement about the support. The last statement now also follows from Corollary 2.8. \(\blacksquare \)

3. Two types of q.c.i. for monomial curves in \(\mathbb{P}_K^3 \).

Throughout this paragraph if \(\mathfrak{p}(n_1, n_2, n_3) \) is a q.c.i. on three surfaces \(\{ B_1, B_2, F \} \), then \(B_1, B_2 \) will denote binomials in \(\mathcal{B} \), in accordance with Theorem 3.1 in [B, Sch, St]. Also
always $\mu(p(n_1, n_2, n_3)) \geq 4$. Assume first (n_1, n_2, n_3) is (n_1, n_j)-symmetric (i.e. $p(n_1, n_2, n_3)|_{x_0=1} = (x_0^{q_i-q_j} x_j^{q_j} - x_0^{q_j} x_j^{q_i})|_{x_0=1} = x_0^{\alpha_0} x_h^{\alpha_1} x_0^{\alpha_1} x_j^{\alpha_1}$) and (n_3-n_2, n_3-n_1, n_3) is symmetric. We then have:

Theorem 3.1. $p(n_1, n_2, n_3)$ is a q.c.i. (on three surfaces) iff $p(n_1, n_2, n_3)$ is a q.c.i. on three binomials in B. Also in this case if $p(n_1, n_2, n_3)$ is a q.c.i. (on three surfaces), then

i) (n_1, n_2, n_3) and (n_3-n_2, n_3-n_1, n_3) are symmetric of the same type, and

ii) $B^*(h) = \{ x_0^{\alpha_0} x_h^{\alpha_1} x_0^{\alpha_1} x_j^{\alpha_1} \}$.

Proof. \iff. This follows trivially.

\Rightarrow. Assume $p(n_1, n_2, n_3)$ is a q.c.i. on $\{B_1, B_2, F\}$. Let $B := \{B_1, B_2\}, B^0 := \{B_1^0, B_2^0\}$ be such that $\{B_1^0|_{x_0=1}, B_2^0|_{x_0=1}\}$ is a set of canonical generators of $p(n_1, n_2, n_3)|_{x_0=1}$ and define $B^3 := \{B_1^3, B_2^3\}$ analogously for $p(n_1, n_2, n_3)|_{x_3=1}$.

I. Assume $B^0 \cap B^3 \neq \emptyset$. For $B^0 = \{B_1^0 = B_{1h}, B_2^0 = B_{j1}\}$ (in our previous notation) $= x_0^{\alpha_0} x_h^{\alpha_1} x_0^{\alpha_1} x_j^{\alpha_1}$, $B_2^0 = B_{j1}$ (in our previous notation) $= x_j^{q_j} - x_i^{q_i} - x_1^{q_1} - x_i^{q_i}$, $\{h, j\} = \{2, 3\}$, $n_1 = q_i d, n_j = q_j d, d := \text{g.c.d.}(n_1, n_j)$, $x_0^{q_0} x_j^{q_j} - x_0^{q_0} x_j^{q_j} \not\in B^3$ (since by the algorithm of [B,R] this binomial always has a successor (B_{j2} in the proof of Lemma 2.5), therefore is not one of the last two binomials in B). Therefore $B^0 \cap B^3 = \{ x_0^{\alpha_0} x_h^{\alpha_1} x_0^{\alpha_1} x_j^{\alpha_1} = B_1^3 \}$, where all exponents in B_1^0 are positive since $\mu(p(n_1, n_2, n_3)) \neq 2$. By Lemma 2.5, B_1^0 is one of B_1 or B_2. Let $B_1 := B_1^0$. It now follows:

$p(n_1, n_2, n_3)$ is a q.c.i. on $\{B_2 = B_2^0, B_1 = B_1^0 = B_1^3, B_2^3\}$, since $p(n_1, n_2, n_3)|_{x_1=1} = (B_2|x_1=1 = B_2^0|x_1=1, B_1|x_1=1 = B_1^0|x_1=1 = B_1^3|x_1=1) R_1$, respectively $p(n_1, n_2, n_3)|_{x_3=1} = (B_1|x_2=1 = B_1^0|x_2=1, B_2|x_2=1 = B_2^0|x_2=1) R_2$ (see $[B, C]$).

(i) All exponents in $B_1 = B_1^0 = B_1^3$ are positive. Thus if $j=2, h=3$, then (n_3-n_2, n_3-n_1, n_3) is (n_3-n_2, n_3-n_1)-symmetric. If $j=3, h=2$, then $B(x_2) = x_0^{q_0} x_3^{q_3} x_2^{q_2}$, thus (n_3-n_2, n_3-n_1, n_3) is (n_3-n_2, n_3-n_1)-symmetric. Therefore (n_1, n_2, n_3) and (n_3-n_2, n_3-n_1, n_3) are symmetric of the same type.

(ii) $B^*(h) = \{ B_1 = B_1^0 = B_1^3 \}$.

II. Suppose $B^0 \cap B^3 = \emptyset$. Then $p(n_1, n_2, n_3)$ is not a q.c.i. on three binomials, since if this
was the case, binomials being homogeneous in the weighted grading and since every homogeneous generating set contains a minimal generating set, this would imply that the set of binomials (on which \(p(n_1, n_2, n_3)\) is a q.c.i.) for \(x_0 = 1\) and \(x_3 = 1\) would contain a minimal set of generators, thus \(B^0 \cap B^3 \neq \emptyset\). We now show, that under the stated hypothesis, II cannot happen. We do this by obtaining:

1. The pure power binomials \(B(x_1)\) and \(B(x_2)\) in \(B\) are of equal degree.
2. \(p(n_1, n_2, n_3)\) is a q.c.i. on \(\{B_1, B_2, B(x_1) + cB(x_2)\}\) for suitable \(c \in K^*\).
3. \((n_1 - n_2, n_3 - n_1, n_3)\) are symmetric of the same type.
4. The assumption \(B^0 \cap B^3 = \emptyset\) entails a contradiction.

Since by Lemma 2.5 \(\{B_1, B_2\} \cap B^0 \neq \emptyset\) and \(\{B_1, B_2\} \cap B^3 \neq \emptyset\), assume \(B_1 =: B^0_1 \in B^0, B_2 =: B^3_1 \in B^3\). Then by Corollary 2.8., \(F\) (after possibly multiplying by a nonzero constant) has a nonzero summand \(c x_0^{n_0} B^0_1 + x_3^{n_3} B^3_1, c \neq 0\). Thus \(\deg(F) \geq \deg(B^0_1)\) and \(\deg(F) \geq \deg(B^3_1)\). If \(B^0_1 \not\subset q\) for all \(q \in \text{Ass}(R/(B_1, B_2)R), q \neq p(n_1, n_2, n_3)\), then by Theorem 1.1 in [B, Sch, St] and since \(p(n_1, n_2, n_3)|_{x_0 = 1} = (B_1, B_2, B^0_1)R|_{x_0 = 1}, p(n_1, n_2, n_3)\) is a q.c.i. on \(\{B_1, B_2, L^a B^0_1\}\), where \(L\) is a generic linear form and \(\rho := \deg(F) - \deg(B^0_1)\). By Lemma 1.1 in [B, Sch, St], we must have \(\rho = 0\), a contradiction since \(p(n_1, n_2, n_3)\) is not a q.c.i. on three binomials. Assume \(B^0_2 \in q, q \in \text{Ass}(R/(B_1 = B^0_1, B_2 = B^3_2)R), q \neq p(n_1, n_2, n_3)\). Since \((B_1 = B^0_1, B_2 = B^3_1)R\) is a complete intersection, \(q\) is minimal over \((B_1 = B^0_1, B_2 = B^3_1)R\), thus minimal over \((B_1 = B^0_1, B_2 = B^3_1, B^0_2)R\), hence \(q \in \text{Ass}(R/(B_1, B_2, B^0_1)R)\). Since \((B_1|_{x_0 = 1} = B^0_1|_{x_0 = 1}, B_2|_{x_0 = 1}, B^0_2|_{x_0 = 1})R_0 = p(n_1, n_2, n_3)|_{x_0 = 1, x_1 \in q ([Z, S], \text{Vol. II, Ch. VII, Theorem 18})}. From \(B^0 \subset q, x_0^{n_0} x_1^{n_1} - x_1^{n_1} \in q\), thus \(x_1 \in q\), hence \(q = (x_0, x_1)R\) since \((B_1 = B^0_1, B_2 = B^3_1)R\) is unmixed. Since \(B^3_1 \in q, x_0\) and \(x_1\) divide different monomial terms in \(B^3_1\) and therefore all four variables appear in \(B^3_1\) (a general property of the binomials in \(B\) except perhaps \(B(x_1)\)). Hence \(B^0_2\) is a binomial in exactly three variables, \(x_0\) and \(x_1\) divide the same monomial term of \(B^0_2\), thus \(B^0_2 \not\subset q\) and \(B^0_2 = B(x_2)\). Analogously we obtain \(x_2\) and \(x_3\) divide different monomial terms of \(B^0_2\), thus all four variables divide a monomial term of \(B^0_1\), hence \(B^0_2\) (up to sign) = \(x_0^{n_0} x_1^{n_1} - x_1^{n_1} = B(x_1)\), a binomial in exactly three variables. Assume first that \(B^0_2\) and \(B^3_2\) are of equal degree. Let \(q_i, 1 \leq i \leq n\), be the prime ideals of \(\text{Ass}(R/(B_1 = B^0_1, B_2 = B^3_1)R)\) with \(q_i \neq p(n_1, n_2, n_3)\) and \(B^0_2 \not\subset q_i\). There exist then
ζ_i ∈ \mathbb{P}_K^3, K the algebraic closure of K, ζ_i a zero of q_i, such that B^0_2(ζ_i) ≠ 0. Let c ∈ K such that c ≠ 0 and \frac{-B^0_2(ζ_i)}{B^1_2(ζ_i)} ≠ c, 1 ≤ i ≤ n, a possible choice since K is infinite. Then cB^0_2(ζ_i) + B^1_2(ζ_i) ≠ 0, thus cB^0_2 + B^1_2 \not∈ q_i, 1 ≤ i ≤ n. Thus cB^0_2 + B^1_2 \not∈ q for all q ∈ \text{Ass}(R/(B_1 = B^0_1, B_2 = B^1_2)R), q ≠ p(n_1, n_2, n_3). Let b = p = p(n_1, n_2, n_3) - primary component of p^2 + (B^0_1, B^1_1)R. We have B^0_2 \not∈ b if b ⊂ p, since then bR_p ⊂ pR_p and pR_p = (B^0_1, B^1_1)R_p. Let C^∗ = \{c^∗ ∈ L \mid c^∗B^0_2 + B^1_2 ∈ b\} and suppose c^∗_1 ∈ C^∗, c^∗_2 ∈ C^∗, c^∗_1 ≠ c^∗_2. This implies c^∗_1(c^∗_1B^0_2 + B^1_2) - c^∗_1(c^∗_2B^0_2 + B^1_2) = (c^∗_1 - c^∗_2)B^0_2 ∈ b, thus B^0_2 ∈ b and therefore B^0_2 ∈ b, a contradiction. Thus the cardinality of C^∗ is equal to or less than 1. Assume additionally to the above restrictions on c, c \not∈ C^∗. Also deg(F) ≥ cB^0_2 + B^1_2. By Theorem 1.1 in [B, Sch, St] therefore p(n_1, n_2, n_3) is a q.c.i. on \{B_1 = B^0_1, B_2 = B^1_2, L^0(cB^0_2 + B^1_2)\}, where:

a) L is a linear form which is "generic enough","n
b) B_1 = B^0_1 and B_2 = B^1_2 are such that all four variables divide some monomial term,

c) B^0_2 = B(x_1), B^1_2 = B(x_2) are binomials in exactly three variables,

d) c ≠ 0.

But then p(n_1, n_2, n_3) is also a q.c.i. on \{B_1 = B^0_1, B_2 = B^1_2, cB^0_2 + B^1_2\} (since (B_1 = B^0_1, B_2 = B^1_2, L^0(cB^0_2 + B^1_2))R ⊆ (B_1 = B^0_1, B_2 = B^1_2, cB^0_2 + B^1_2)R), which by the degree requirement of Theorem 1.1 in [B, Sch, St] is only possible if actually deg(F) = deg(cB^0_2 + B^1_2). Thus in this case p(n_1, n_2, n_3) is a q.c.i. on \{B_1 = B^0_1, B_2 = B^1_2, cB^0_2 + B^1_2\}. We show next that B^0_2 and B^1_2 must be of equal degree. Thus suppose B^0_2 and B^1_2 are of unequal degree. Assume first deg(B^0_2) < deg(B^1_2) and cB^0_2 + x_3^{p_3}B^3_2 is homogeneous with p_3 ≥ 1. As before if B^0_2 \in q, q ∈ \text{Ass}(R/(B_1 = B^0_1, B_2 = B^1_2)R), q ≠ p(n_1, n_2, n_3), then q = (x_0, x_1)R, thus x_3^{p_3}B^3_2 \not∈ q. Also, again as above, let c ∈ K, c ≠ 0, be such that cB^0_2 + x_3^{p_3}B^3_2 \not∈ q, q ∈ \text{Ass}(R/(B_1 = B^0_1, B_2 = B^1_2)R), q ≠ p(n_1, n_2, n_3), and cB^0_2 + x_3^{p_3}B^3_2 \not∈ b if b ⊂ p := p(n_1, n_2, n_3), where b is defined as above. Since deg(F) ≥ deg(B^0_2), we have again p(n_1, n_2, n_3) is a q.c.i. on \{B_1 = B^0_1, B_2 = B^1_2, cB^0_2 + x_3^{p_3}B^3_2\} (after first perhaps multiplying cB^0_2 + x_3^{p_3}B^3_2 by L^0, where L is a "generic enough" linear form). But this is impossible, since p(n_1, n_2, n_3)|_{x_2=1} has a binomial with a constant nonzero term, whereas the ideal \{B_1|_{x_2=1} = B^0_1|_{x_2=1}, B_2|_{x_2=1} = B^1_2|_{x_2=1}, cB^0_2|_{x_2=1} + x_3^{p_3}B^3_2|_{x_2=1}\}R_2 does not since p_3 ≥ 1 (c.f. [B, C]). The proof for deg(B^0_2) < deg(B^1_2) is analogous, since also x_0^{p_0}B^0_2 \not∈ b
if \(b \subset p = p(n_1, n_2, n_3) \). This proves 1. and 2.

Suppose next that \((n_1, n_2, n_3) \) and \((n_3 - n_2, n_3 - n_1, n_3) \) are not symmetric of the same type. W.l.o.g. assume \((n_1, n_2, n_3) \) is \((n_1, n_2) \)-symmetric and \((n_3 - n_2, n_3 - n_1, n_3) \) is \((n_3 - n_2, n_3) \)-symmetric. We have \(B_2^0 = x_0^{2 - q_1} x_1^{q_1} - x_1^{q_1}, B_0^1 = x_0^{\alpha_1} x_1^d - x_1^{\alpha_1} x_1^d, B_3^1 = x_0^{\beta_1} x_1^d - x_1^{\beta_1} x_1^d \), \(n_1 = q_1, n_2 = q_2, d = q.c.d.(n_1, n_2) \) and \(\text{deg}(B_2^0) = \text{deg}(B_2^1) = q_2 \). But then, since \((n_3 - n_2, n_3 - n_1, n_3) \) is \((n_3 - n_2, n_3) \)-symmetric, \(q_2 | n_3 \), say \(n_3 = q_2 d^* \). From \(B_0^0 |_{x_0 = 1} = 1 \), we obtain \(dq_2 d^* = d n_3 = \alpha_3 n_1 + \alpha_3 n_2 \). On the other hand \(dq_2 d^* = d^* n_2 \), which gives \((d^* - \alpha_3) n_2 = \alpha_3 n_1 \), a contradiction since \(0 < \alpha_3 < q_2 \). Therefore \((n_1, n_2, n_3) \) and \((n_3 - n_2, n_3 - n_1, n_3) \) must be symmetric of the same type, which proves 3.

We have now \(B_2^0 = x_0^{q_1 - q_1} x_1^{q_1} - x_1^{q_1}, B_0^1 = x_0^{\alpha_1} x_1^d - x_1^{\alpha_1} x_1^d, B_3^1 = x_0^{\beta_1} x_1^d - x_1^{\beta_1} x_1^d \) with \(\nu > 1 \) since \(B_0^0 \cap B_3^1 = \emptyset \).

\[
B_3^1 = \begin{cases}
 x_0^{q_1} - x_1^{q_1} & x_1^{\alpha_1} = \mu d \\
 x_0^{q_1} - x_1^{q_1} & x_1^{\alpha_1} = \mu d
\end{cases} \quad \text{if} \quad j = 2, h = 3, h = 2.
\]

(We note again that by Lemma 1.3 (iii) all \(x_k \)-exponents are multiples of \(d \).

Observe that \(\{ B_0^0 | x_0 = 1, B_0^0 | x_0 = 1 \} \) forms a Gröbner basis of \(p(n_1, n_2, n_3) | x_0 = 1 \) with respect to the lexicographical term order with \(x_1 \) as largest linear term. Since \(p(n_1, n_2, n_3) \) is a q.c.i. on \(\{ B_0^0, B_0^1, B_0^2 - c B_3^1 \} \). \(c \neq 0 \), we must have \((x_1^d - x_1^{\alpha_1} x_1^{\beta_1} - x_1^{q_1} - x_1^{q_1})R_0 = p(n_1, n_2, n_3) | x_0 = 1 = (x_1^d - x_1^{\alpha_1} x_1^{\beta_1} - x_1^{q_1} - x_1^{q_1} + c B_3^1 | x_0 = 1)R_0 \). Let \(G = \{ x_1^d - x_1^{\alpha_1} x_1^{\beta_1} - x_1^{q_1} - x_1^{q_1} + c B_3^1 | x_0 = 1 \} \). The set \(G \) can be changed into a generating set \(\{ x_1^d - x_1^{\alpha_1} x_1^{\beta_1} - x_1^{q_1} - x_1^{q_1} + c g_1 \} \) where \(g_1 = x_1^d - x_1^{\alpha_1} x_1^{\beta_1} - x_1^{q_1} - x_1^{q_1} \), \(P, P \in K[x_1, x_1] \), \(\gamma_1 > 0, \gamma_2 > 0, g_2 := x_1^d - x_1^{\beta_1} + c g_2 \) for \(j = 2, h = 3 \); \(g := x_1^d - x_1^{\beta_1} + c g_1 \). Since \(B_0^0 | x_0 = 1, B_2^1 | x_0 = 1 \) is a Gröbner basis for \(p(n_1, n_2, n_3) \) in the specified term order and since the leading terms in \(g_1, g_2 \) are relatively prime, the Gröbner algorithm implies that we must have \(J_1 := (x_1^{q_1} x_1^{q_1} P, 1 + c x_1^{\alpha_1} Q_1)R_0 = R_0, i \in \{ 1, 2 \} \). But this is impossible since \(c \neq 0 \) and \(1 + c x_1^{\alpha_1} Q_1 | x_0 = 0 \) is a polynomial in \(K[x_1] \) of degree > 0, thus has a zero \(\zeta_j \in K \). Therefore \(J_1 \) has a zero \(x_1 = 0, x_j = \zeta_j \) in \(K^2 \), thus \(J_1 \neq R_0 \).

This proves that \(\Pi \) as stated cannot happen, which completes the proof of Theorem 3.1. \(\blacksquare \)
Now we assume \((n_1, n_2, n_3)\) is \((n_1, n_j)\)-symmetric and \((n_3 - n_2, n_3 - n_1, n_3)\) is not symmetric. Thus again \(B^0 := \{B^0_1 = x^0_0 x^d_1 - x^0_1 x^d_0, B^0_2 = x^q_0 x^d_0 - x^d_0 x^q_1 \} \subseteq \mathcal{B}\) is such that \(\{B^0_1|_{x_0 = 1}, B^0_2|_{x_0 = 1}\}\) is a canonical set of binomial generators for \(\mathfrak{p}(n_1, n_2, n_3)|_{x_0 = 1}\). Similarly define \(B^3 := \{B^3_1, B^3_2, B^3_3\} \subseteq \mathcal{B}\) such that \(B^3_i|_{x_3 = 1}, 1 \leq i \leq 3\), are the canonical generators of \(\mathfrak{p}(n_1, n_2, n_3)|_{x_3 = 1}\). W.l.o.g. assume \(B^3_3 = B(x_2)\) has the pure power in \(x_2\).

We have:

Theorem 3.2. \(\mathfrak{p}(n_1, n_2, n_3)\) is a q.c.i. on \(\{B_1, B_2, F\} = B \cup \{F\}\), where \(B := \{B_1, B_2\}\) iff

(i) \(\text{deg}(B^0_2) = \text{deg}(B^3_2)\)

(ii) \(B^*(h) = \{B^0_1 = x^0_0 x^d_1 - x^0_1 x^d_0, B^3_2\}\).

In this case \(F\) can be taken to be \(cB^0_2 + B^3_3, c \neq 0\).

Proof. \(\Rightarrow\). Assume \(\mathfrak{p}(n_1, n_2, n_3)\) is a q.c.i. on \(\{B_1, B_2, F\}\), \(B_1, B_2\) binomials in \(\mathcal{B}\) in accordance with Theorem 3.1 in [B, Sch, St]. By Lemma 2.5 \(B \cap B^0 \neq \emptyset\). \(B^0_2 \notin B \cap B^0\), since by Corollary 2.2 \(B \subseteq B^3\) and no binomial in \(B^3\) has a pure power in \(x_1\) (since \(\mu(\mathfrak{p}(n_1, n_2, n_3)) \geq 4\)). Therefore \(B \cap B^0 = \{B^0_1 = x^0_0 x^d_1 - x^0_1 x^d_0\}\) thus \(B^0_1 \in B \subseteq B^3\).

W.l.o.g. \(B^0_1 =: B_1 =: B^3_1\). Note that \(F\) cannot be a binomial. For if \(F\) were a binomial, then since \(\{B_1 = B^0_1 = B^3_1|_{x_0 = 1}, B_2|_{x_3 = 1}, F|_{x_3 = 1}\}\) generates \(\mathfrak{p}(n_1, n_2, n_3)|_{x_0 = 1}, F\) would have to be \(B^0_2\). Here, after setting \(x_0 = 1\), we reason by way of homogeneous elements in the weighted grading and assume \(F\) to be irreducible by Lemma 1.1 in [B, Sch, St]. Since also \(\{B_1|_{x_3 = 1}, B_2|_{x_3 = 1}, F|_{x_3 = 1}\}\) is a minimal generating set of binomials for \(\mathfrak{p}(n_1, n_2, n_3)|_{x_0 = 1}\), also \(F \in B^3\), a contradiction as already observed. By Corollary 2.8 and 2.9 \(F\) has nonzero summand \(c x^{n_i}_0 B^0_2 + x^{n_3}_3 B^3_3, c \neq 0, i \in \{2, 3\}\). (Here \(B^3_1 \notin B_0\),) Therefore \(\text{deg}(F) \geq \text{deg}(B^0_2)\) and \(\text{deg}(F) \geq \text{deg}(B^3_3)\).

Let \(B_2 := B^3_s, s \in \{2, 3\}, s \neq i\). Assume \(B^0_2 \in q, q \in \text{Ass}(R/(B_1 = B^0_1, B_2 = B^3_3)R)\), \(q \neq \mathfrak{p}(n_1, n_2, n_3)\). Then since \(\{B^0_1|_{x_0 = 1}, B^0_1|_{x_0 = 1} = B_1|_{x_0 = 1}, B_2|_{x_0 = 1} = B^3_3|_{x_0 = 1}\}R_0 = \mathfrak{p}(n_1, n_2, n_3)|_{x_0 = 1}\), as in the proof of Theorem 3.1. \(x_0 \in q\), and since \(B^0_2 \in q, x_1 \in q\), thus \(q = (x_0, x_1)R\). Since \(B_2 = B^3_s \in q, x_0\) and \(x_1\) divide different monomials in \(B^3_s\), thus \(s = 2, i = 3\) and \(B^3_3 \notin q\) with

\[
B^3_3 = \begin{cases}
 x^{2j}_j - x^{2j}_0 x^j_1, x^{2h}_h = \mu d \in B^*(j) \text{ if } j = 2, h = 3, \\
 x^{0n}_0 x^j_1 x^{hj}_j - x^{n_3}_3 \in B^*(j) \text{ if } j = 3, h = 2.
\end{cases}
\]
As in the proof of Theorem 3.1 we obtain \(\deg(B_0^2) = \deg(B_3^2) = \deg(F) \) and \(p(n_1, n_2, n_3) \) is a q.c.i. on \(\{B_1 = B_4, B_2 = B_3^2, cB_2^2 + B_3^3, c \neq 0\} \).

Suppose next \(B_2 = B_3^2 = x_0^{\sigma_0} x_h^d - x_1^{\sigma_1} x_j^{\sigma_j}, \nu > 1 \). We then obtain a contradiction to \(B_1|_{x_3 = 1} B_1^1|_{x_3 = 1} \) being a canonical binomial generator of \(p(n_1, n_2, n_3)|_{x_3 = 1} \), since for \(h = 2, j = 3 \) the \(x_1 \)-exponent in \(B_2 = B_3^2 \) is smaller than the \(x_1 \)-exponent in \(B_1 = B_1^1 = x_0^{\sigma_0} x_h^d - x_1^{\sigma_1} x_j^{\sigma_j} \) by Lemma 1.3 (iv), and for \(h = 3, j = 2 \) the same is true for the \(x_0 \)-exponents of the two binomials. We note here that for \(h = 2, j = 3 \) or \(h = 3, j = 2 \), the "missing" canonical generator for \(p(n_1, n_2, n_3)|_{x_3 = 1} \), i.e. the canonical generator whose homogenization is not used for the q.c.i., is obtained from \(B_3^3 \notin \mathcal{B} \). Thus \(B_2^2 \in \mathcal{B}^*(h) \) and \(\mathcal{B}^*(h) = \{B_1 = B_1^1 = B_1^2\} \).

\[\iff \] We show that for \(p(n_1, n_2, n_3) \), with \(\langle n_1, n_2, n_3 \rangle (n_1, n_2) \)-symmetric and \(\langle n_3 - n_1, n_3 - n_3 - n_1, n_3 \rangle \) not symmetric, with \(\mathcal{B}^*(h) = \{B_1^0 = x_0^{\sigma_0} x_h^d - x_1^{\sigma_1} x_j^{\sigma_j} = B_3^1 \} \) and \(\deg(B_0^2 = B(x_1)) = \deg(B_3^2 = B(x_2)), p(n_1, n_2, n_3) \) is a q.c.i. on \(\{B_1^0, B_2^2, B_3^2 + B_3^3\} \). (For convenience we use \(c = 1 \), but the proof is valid for any \(c \neq 0 \).) Note that there is no ambiguity as to the binomial \(B_3^2 \). We make this clear by explicitly listing \(B \) subject to our hypothesis. We have: \(\mathcal{B}^*(h) = \{B_1^1 = x_0^{\sigma_0} x_h^d - x_1^{\sigma_1} x_j^{\sigma_j} = B_3^1 \} = B_{h1} \) (previously), \(\mathcal{B}^*(j) = \{x_0^{g_j} x_j^{d_j} = B_0^2 = B(0) = B_{h1} \) (previously), \(x_0^{(g_j - g_1)} - x_1^{(g_j - g_1)} \)\(x_j^{(g_j - g_1)} = B_3^2 \) =: B(1) = B_{h2} \) (previously), etc.

\[B_3^3 = \begin{cases} x_0^{(g_j - g_1)} x_j^{(e_j - e_1)} - x_0^{(g_j - g_1)} x_j^{(e_j - e_1)} x_1^{(e_1 - g_1)} & \text{for } j = 2, h = 3, \\ x_0^{(g_j - g_1)} x_j^{(e_j - e_1)} x_1^{(e_1 - g_1)} x_1^{(e_1 - g_1)} - x_0^{(g_j - g_1)} x_j^{(e_j - e_1)} x_1^{(e_1 - g_1)} & \text{for } j = 3, h = 2. \end{cases} \]

We show next that for \(\mathcal{G}^* := \{B_1^0 = B_3^1, B_2^2, B_3^2 + B_3^3\}, \mathcal{G}^*|_{x_i = 1} \) generates \(p(n_1, n_2, n_3)|_{x_i = 1} \), for all \(i \) such that \(0 \leq i \leq 3 \), by showing that the needed canonical binomial generators are obtainable from the given elements in \(\mathcal{G}^*|_{x_i = 1} \). For this we need to obtain certain syzygies of elements in \(\mathcal{B} \). We do this by eliminating monomial terms of two binomials in \(\mathcal{B} \) (as listed above). These syzygies allow us to show that one of the two binomials in \(B_2^2|_{x_i = 1} + B_3^3|_{x_i = 1} \) is in \(\mathcal{G}^*|_{x_i = 1} \), thus defining a generating set.

1. Let \(j = 2, h = 3 \). Then \(x_j^{(e_j - e_1)} B_3^2 = x_0^{(g_j - g_1)} x_j^{(e_j - e_1)} x_1^{(e_1 - g_1)} B_3^2 = x_0^{(g_j - g_1)} x_j^{(e_j - e_1)} x_1^{(e_1 - g_1)} B_3^2 \). Similarly for \(j = 3, h = 2 \), \(x_1^{(e_1 - g_1)} x_j^{(e_j - e_1)} B_3^3 = x_0^{(g_j - g_1)} x_j^{(e_j - e_1)} x_1^{(e_1 - g_1)} B_3^3 \). This shows that \((\mathcal{G}^*|_{x_0 = 1})R_0 = \)
\(p(n_1, n_2, n_3)|_{x_1=1} \).

2. Let \(j = 2, h = 3 \). Then \(x_0^{(\nu+1)\alpha \delta -(\eta - \eta_1)} x_1^d B_2^3 - x_1^{\alpha \delta_1} B_3^3 = x_0^{\gamma_1 + \nu \alpha \delta_1} B_1^0 \). For \(j = 3, h=2, x_0^d B_2^3 - x_1^{\nu \alpha \delta_1} B_3^3 = x_0^{(\eta - \eta_1) -(\nu+1)\alpha \delta -(\nu(\nu+1)) \alpha \delta_1} x_1^{\gamma_1 + \nu \alpha \delta_1} B_1^0 \). This means \((G^*)|_{x_1=1}) R_1 = p(n_1, n_2, n_3)|_{x_1=1}\) by [B,C].

3. Let \((j, h) = (2, 3)\) or \((j, h) = (3, 2)\). Let \(B(\nu - 1) := x_0^{(\eta - \eta_1)- (\nu-1) \alpha \delta} x_1^{\gamma_1 + \nu \alpha \delta_1} - x_1^{\nu \alpha \delta} x_{j-1}^{\nu(\nu+1) \alpha \delta_1} x_{j-1}^{\nu \alpha \delta_1} B_0^0 \) be the predecessor of \(B(\nu) = B_2^0 \) in \(B \). Then \(x_0^d B(\nu - 1) - x_0^{\alpha \delta_1} B_2^3 = x_0^{(\eta - \eta_1) -(\nu-1) \alpha \delta} x_1^{\gamma_1 + \nu \alpha \delta_1} B_0^0 \). Thus \(x_0^d B(\nu - 1) \in (G^*)R \). Inductively \(x_0^d B_2^0 \in (G^*)R \), \(B_2^0 = B(0) \), thus \((G^*)|_{x_1=1}) R_1 = p(n_1, n_2, n_3)|_{x_1=1} \). Finally \(x_1^{\alpha \delta_1} B(\nu - 1) - x_0^{\alpha \delta_1} B_2^3 = x_1^{\nu \alpha \delta_1} x_{j-1}^{\nu(\nu+1) \alpha \delta_1} \). Therefore \(x_1^{\alpha \delta_1} B(\nu - 1) \in (G^*)R \). Inductively \(x_1^{\alpha \delta_1} B_2^0 \in (G^*)R \), thus \((G^*)|_{x_1=1}) R_2 = p(n_1, n_2, n_3)|_{x_1=1} \). (Here \((G^*)|_{x_2=1}) R_2 \). This completes the proof of Theorem 3.2. qed

Example 3.3. Examples for the monomial curves with \((n_1, n_2, n_3) = (1, n-1, n)\), \(n \geq 4, \mu(p(1, n-1, n)) = n\). For Theorem 3.2 we give examples with \(5 \leq \mu(p(n_1, n_2, n_3)) < \infty \) (examples for Theorem 3.2 with \(\mu(p(n_1, n_2, n_3)) = 4\) are given in [B,Sch,St]). In 1. below \(\mu(p(n_1, n_2, n_3))\) assumes every value \(\geq 5\), in 2. this is not the case, by \(\mu(p(n_1, n_2, n_3))\) increases beyond any finite bound.

1. Consider the binomials \(x_0^d x_1^d - x_1^a + b, x_0 x_1^d - x_2^e x_1^c x_2^e, \) i.e. \(d = e - 1\). If \(\sigma\) denotes the number of binomials in the algorithm of [B,R] after the first two binomials, then \(\sigma \geq 3\) is needed. To obtain equality of degree for the pure power binomials, \(\sigma(c-1) = a\) is required. As for the algorithm to end properly, we need \(\sigma c > \sigma(c-1) = a > (\sigma-1)c\).

2. For \((n_1 - n_2, n_2 - n_1, n_3)\) not to be symmetric, \(a + b > \sigma e\) is required. These conditions reduce to \(\sigma(c-1) = a, c > \sigma, b > \sigma(e-c+1)\). In particular for \(c = 4, \sigma = 3, a\) is equal to 9. Let \(d = 1, e = 2, b = 3\). We obtain \(p(n_1, n_2, n_3) = p(1, 10, 32)\) the minimal generating set \(\{x_0^4 x_3 - x_1^d x_2, x_0^2 x_2 - x_0^4 x_3, x_0 x_2^2 - x_0^4 x_3, x_0^4 x_2 - x_0^4 x_3\}\). Similarly for \(\sigma = n \geq 3, c = n+1, a = n^2, d = 1, e = 2, b \geq n(2-n-1+1) = n(2-n), n_1 = 1, n_2 = n^2 + 1, n_3 = 2 + n(n^2 + 1)\), we obtain \(\mu(p(n_1, n_2, n_3)) = n + 2\) and \(p(n_1, n_2, n_3)\) is as in Theorem 3.2 with \(j = 2, h = 3\).

2. We start now with \(x_0^d x_1^a - x_1^{a+b}, x_0 x_2^d - x_1^a x_2^e, \) i.e. \(d = e - 1\). With \(\sigma\) as in
1., we need to satisfy $\sigma d = a + b$, $e > \sigma$, $a > \sigma c$. Let $\sigma = n$, n an odd prime, $e = n + 1$, $d = n$, $a + b = n^2$, $c = 2$, $b = 2$, $a = n^2 - 2$. From the matrix
\[
\begin{pmatrix}
 n^2 & 0 & -2 \\
 -(n + 1) & n & -1
\end{pmatrix}
\] we obtain $n_1 = 2n < n_2 = n^2 + 2n + 2 < n_3 = n^3$ (since $n \geq 3$). Also $g.c.d.(n_1, n_2) = 1$ since n is an odd prime. Now $p(2n, n^2 + 2n + 2, n^3)$ satisfies Theorem 3.2 with $j = 3, h = 2$ and $p(2n, n^2 + 2n + 2, n^3) = n + 2$. In particular for $\sigma = 3, e = 4, d = 3, a + b = 9, c = 2, a = 7, b = 2$. We have $n_1 = 6, n_2 = 17, n_3 = 27$ and $p(6, 17, 27)$ has a minimal generating set \(\{x_0^3 x_2^3 - x_1^4 x_3, x_0^7 x_3^2 - x_1^5 x_2^2, x_0^5 x_3^3 - x_1^6 x_2^3, x_0^3 x_3^4 - x_1 x_2^6, x_0 x_3^5 x_3^3 - x_2^9 \} \).

4. Conclusion

We combine here Theorem 3.1 and Theorem 3.2 with the results obtained in [B, Sch, St].

Our notation for B, $B^*(j), B^*(h), \{j, h\} = \{2, 3\}, B(x_1), B(x_2)$ is as before and if (n_1, n_2, n_3) is (n_1, n_2)-symmetric, then the binomials $x_0^q - x_1^q, x_0 x_1^q - x^q, x_0 x_1 x_2^q - x^q, x_1 x_2 x_3^q - x^q$ are in the previous paragraphs. For the convenience of the reader we restate:

Theorem 4.1 [B, Sch, St]. Assume $\mu(p(n_1, n_2, n_3)) = 4$. Then $p(n_1, n_2, n_3)$ is a q.c.i. (on three surfaces) iff either

(i) (n_1, n_2, n_3) and $(n_3 - n_2, n_3 - n_1, n_3)$ are symmetric of the same type with $B^*(h) = \{x_0^{\alpha h} x_1^{\alpha h} - x_1^{\alpha h} x_2^{\alpha h}\}, h \in \{2, 3\}$, or

(ii) (n_1, n_2, n_3) and $(n_3 - n_2, n_3 - n_1, n_3)$ are both not symmetric, but $\deg(B(x_1)) = \deg(B(x_2))$.

In case (i) $p(n_1, n_2, n_3)$ is a q.c.i. on binomials in B, in case (ii) it is not, but is a q.c.i. on two binomials and $B(x_1) + B(x_2)$.

Combining Theorems 3.1, 3.2 and 4.1 we have:

Theorem 4.2. Assume $\mu(p(n_1, n_2, n_3)) \geq 4$. Then $p(n_1, n_2, n_3)$ is a q.c.i. (on three surfaces) iff either

(i) (n_1, n_2, n_3) and $(n_3 - n_2, n_3 - n_1, n_3)$ are symmetric of the same type and $B^*(h) = \{x_0^{\alpha h} x_1^{\alpha h} - x_1^{\alpha h} x_2^{\alpha h}\}, h \in \{2, 3\}$, or

(ii) exactly one of (n_1, n_2, n_3) and $(n_3 - n_2, n_3 - n_1, n_3)$ is symmetric, (w.l.o.g. assume (n_1, n_2, n_3) is (n_1, n_3)-symmetric), $B^*(h) = \{x_0^{\alpha h} x_1^{\alpha h} - x_1^{\alpha h} x_2^{\alpha h}\}, h \in \{2, 3\}$, and $\deg(B(x_1)) = \deg(B(x_2))$, or
(iii) \(\mu(p(n_1, n_2, n_3)) = 4. \) \((n_1, n_2, n_3) \) and \((n_3 - n_2, n_3 - n_1, n_3) \) are both not symmetric, but \(\text{deg}(B(x_1)) = \text{deg}B((x_2)) \).

In case (i) \(p(n_1, n_2, n_3) \) is a q.c.i. on binomials, in cases (ii) and (iii) it is not, but is a q.c.i. on two binomials and \(B(x_1) + B(x_2) \).

Acknowledgement. The first named author was supported by the "Naturwissenschaftlich-Theoretisches Zentrum" at the University of Leipzig. For this he wishes to express his thanks and appreciation.

References

[B,R] Bresinsky, H., B. Renschuch: Basisbestimmung Veranesescher Projektionsideale mit allgemeiner Nullstelle \((t_0^m \cdot t_1^{m-1}, t_0^m \cdot t_1^{m-1}, t_1^m) \). Math. Nachr. 96 (1980), 257-269.

