Characterization of an Irradiated Double-sided Silicon Strip Detector with Fast Binary Readout Electronics in a Pion Beam

National Laboratory for High Energy Physics, 1995

KEK Reports are available from:

Technical Information & Library
National Laboratory for High Energy Physics
1-1 Oho, Tsukuba-shi
Ibaraki-ken, 305
JAPAN

Phone: 0298-64-5136
Telex: 3652-534 (Domestic)
 (0)3652-534 (International)
Fax: 0298-64-4604
Cable: KEK OHO
E-mail: Library@kekvax.kek.jp (Internet Address)
Characterization of an Irradiated Double-sided Silicon Strip Detector with Fast Binary Readout Electronics in a Pion Beam

Abstract

We report on the characterization of an AC-coupled, double-sided silicon strip detector, with fast binary readout electronics, in a pion beam before and after proton irradiation. The proton irradiation was non-uniform and to increase the damage the detector was heated to accelerate the anti-annealing. The effective irradiation level was about 1×10^{14} p/cm2.

Both the bias voltage of the detector and the threshold of the discriminator of the binary readout electronics were varied, and the efficiency determined. The irradiated detector clearly shows the effect of bulk inversion. The binary system proved to be efficient well below the full depletion voltage on the p-n junction side. Due to the highly non-uniform irradiation, the depletion voltage changes from close to zero to about 120V along a single strip, but the detector appears to work without any noticeable failures.

I. INTRODUCTION

Silicon strip detectors will play a central role in vertexing and tracking of the charged particles in TeV-energy proton-proton colliders such as the LHC. One of the main concerns for their use are the high predicted radiation doses. In the LHC detector ATLAS, the silicon strip detector (ATLAS SCT-strip) [1] expects a cumulative fluence of charged particles of more than 10^{14} particles/cm2 over the life of the detector. A n-bulk AC-coupled double-sided silicon strip detector (DSSD) has been designed to have high radiation tolerance [2]. The structures of the strips have been improved to allow high bias voltage operation of more than 150 volts for the 300 micron thick detector. In addition to developing a radiation-tolerant silicon strip detector, understanding of the detector performance after radiation damage is an urgent task.

A simple, fast, and low-power electronics has been developed to readout the strip detectors. High speed is required to match the 40 MHz bunch crossing of the collider in order to tag the bunch crossing of the event and also to keep the occupancy low. Low power is required because the number of channels of a future silicon strip tracking detector would easily reach over several millions of channels, and cooling is a major engineering problem. The readout scheme is the "Binary-readout" which registers only one bit for a hit channel with pulse height above a fixed threshold and stores the bits in a digital pipeline until a trigger arrives [3].

A combination of the DSSD and the binary readout has been beam-tested before at KEK for proof of principle, and, subsequently, for characterization of improved versions of the DSSD and the read-out system [4, 5]. In order to characterize an irradiated detector, the DSSD used in ref.5 was irradiated with protons at TRIUMF and at LBNL, and, then, beam-tested at KEK. Although the binary readout has a fixed threshold during data taking, it is possible to determine the pulse height by varying the threshold. In this report, we will describe the proton irradiation and a characterization of the non-irradiated and the irradiated DSSD using 4 GeV pions from the 12 GeV proton synchrotron at KEK.

II. PROTON IRRADIATION

The detector assembly ("module") consisted of a PC board which carried one DSSD and two chip pairs of readout electronics as shown in Fig. 1. One pair of chips could readout 64 channels, and the two pairs of chips were bonded to the detector side-by-side. Using three of these detector-boards a beam-test was carried out and the results on signal-to-noise ratio etc. were reported in ref.5.

![Fig. 1 Schematic drawing of the detector-board. Two chip pairs were mounted to readout an area of 6.4mm width of 6cm strips. Overlaid is the rings of the ion chambers which reflect the fluence profile in the irradiation.](image-url)
After the beam test, one detector-board was irradiated with protons at TRIUMF and at LBNL. At TRIUMF, a fluence of 0.6-0.7x10^{13} p/cm^2 of 500 MeV protons were delivered to the detector uniformly [6]. An additional irradiation was carried out at the LBNL 88" cyclotron using 50 MeV protons, with a beam spot much smaller than the detector. The profile of the fluence was monitored with an ion chamber setup whose ring structure is overlaid on the detector-board in the Fig. 1. The area and the relative fluence of the ion chamber rings are summarized in Table I.

Table I. Ion chamber area and relative fluence, Fr.

<table>
<thead>
<tr>
<th>Ring#</th>
<th>Radius [cm]</th>
<th>Area [cm^2]</th>
<th>Fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.78</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>2.36</td>
<td>0.97</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
<td>9.42</td>
<td>0.42</td>
</tr>
<tr>
<td>4*</td>
<td>3.0</td>
<td>-14</td>
<td>0.11</td>
</tr>
<tr>
<td>5*</td>
<td>4.0</td>
<td>-13</td>
<td>0.03</td>
</tr>
</tbody>
</table>

(*) The rings 4 and 5 were shadowed by the beam aperture. Active area were ~90% for the ring 4 and ~60% for 5.

After the irradiation the leakage current for a sample of individual strips were measured across the DSSD and the fluence delivered was calculated to be about 6x10^{13} p/cm^2 in 1 MeV neutron equivalent damage at the peak, which was slightly off-set from the readout area. The irradiation was done at the room temperature at LBNL and the detectors were kept at below 0 °C immediately after irradiation.

Because the fluence was still too low for the required 1x10^{14} p/cm^2, we increased the damage level by heating the detector up to 35 °C for 3.3 days to expedite the anti-annealing [7]. It was also heated up to 28 °C for more than 10 days with the heat of electronics while being tested. After tracing the temperature history, the depletion voltage was calculated along the strip at the time of the KEK beam test as shown in Fig. 2.

Fig. 2 1 MeV neutron equivalent fluence (dashed line) and calculated depletion voltage (solid line) of the irradiated DSSD at the time of beam test.

One important property of the radiation damage was its high non-uniformity. At y=1cm the detector was almost intrinsic, and at y=4.2cm, the most irradiated region in the readout area, the depletion voltage was about 120V, which is close to the expected depletion voltage when the detector has been operated at -10 °C and accumulated a fluence of 1x10^{14} p/cm^2 over 10 years. The beam test was carried out at a temperature of 20 °C, in which a leakage current of about 550µA was drawn over the whole detector. The leakage current was about 1.6µA per strip in the readout area, corresponding to the expected leakage with a fluence of >1x10^{14} p/cm^2 at -10 °C operation. Subsequently to this beam test, the detector was allowed to continue to anti-anneal and its performance was remeasured using a 106 Ru telescope [8].

III. BEAM TEST SETUP

The beam test setup was the same as the one used for the non-irradiated detector [5]. The 4 GeV π^- beam was defined by a set of three scintillation counters: one of 2cm×2cm, a pair of 2cm×2cm displaced diagonally to have 1cm×1cm overlap, and a pair of 7mm(width) × 60mm(height) sandwiching the four planes of detector-boards. The coincidence of area ≤7mm × 10mm supplied a trigger initiating the readout. The two outside silicon detectors were used as anchors having identical bonding arrangements. One inner detector plane, the device under test (DUT), was the detector being irradiated. It had varying strip pitch as explained below.

The detectors were n-bulk double-sided AC-coupled with 50µm strip pitch, having narrow implant strips to minimize the interstrip capacitance, developed to have higher tolerance to radiation [2], and fabricated by Hamamatsu Photonics. They were 6cm long, 3.4cm wide, and 300µ thick, with axial strips on the n-side and the stereo strips on the p-side with a 10mm rad stereo angle. The detectors were instrumented only in the central part of both sides (6.4mm width) with two pairs of 64 channel, fast, low-power, low-noise front-end electronics (FEE). A schematic drawing of the detector-electronics chain is presented in Fig. 3.

Fig. 3 Binary readout concept of the DSSD. Two controls in the system: Bias voltage of the detector and threshold of the discriminator.
The detector is symbolized by the diode. The FEE consists of two chips: the bipolar amplifier-shaper-comparator ASIC (LBIC) [3] and the CMOS 40MHz digital pipeline (CDP64) [9]. The bipolar amplifier-shaper-comparator has an unipolar shaping with a peaking time of 22ns. In the binary readout scheme, two parameters control the performance of the detector: the detector bias voltage to deplete the detector and the threshold of the discriminator to suppress noise hits and to count events which have signals exceeding the threshold.

In order to characterize the performance of the detector as a function of its pitch, we employed different bonding schemes between the detector strips and FEE channels. On one chip set of both sides of the detectors, each strip was bonded to a corresponding FEE channel with 50µ pitch. On the other chip set, two strips were ganged and bonded into one FEE channel to give 100µ pitch, thus simulating larger detector pitch. On the n-side of the DUT, the chip set was bonded into four configurations: alternating bonding with one intermediate floating (100µ-floating), the ganging of two (100µ), the ganging of three (150µ), and the ganging of four (200µ).

IV. RESULTS

Here we will report the result on the charge collection of the irradiated detector; in conjunction with the non-irradiated detector. Though the binary system has only one threshold, it is possible to extract pulse height information out of the system. This is done by varying the thresholds. With one threshold the system accumulates the events where the signal pulse height exceeds the threshold, thus giving efficiency. The efficiency is the integral of the pulse height distribution. By scanning the threshold, one can map out the integral distribution and recover the pulse height spectrum by differentiation. The median pulse height is the point where the efficiency is 50%.

Beam data were collected by changing the bias voltages (40 ~ 160V), the threshold (0 ~ 6fC), the y positions for the different damage regions (1 ~ 4.2cm), and incident angles perpendicular to the strips (θ angles: 0° ~ 45°). In the previous beam test, the non-irradiated detector in ref. 5, the scanned ranges were slightly narrower than the irradiated detector: bias voltage (60 ~ 120V), threshold (0 ~ 2fC; 0 ~ 8 fC for 100V), and incident angles (0° ~ 54°). In most of the beam data, 20k events were accumulated and, at major points, 50k events were collected. For the present analysis, since we are not interested in the time-walk of the events, we have OR'ed the time-slices. Essentially the analysis is done for the n-side and the p-side separately.

Efficiency

To measure the efficiency the hits in the outer anchor planes were used to predict the position of the expected hit in DUT. Only one hit (or one cluster where consecutive hits were defined as a cluster) was allowed in each anchor plane. A search for a matching hit was made in the DUT within a region of ±three 50µ-strips. If none was found the event was considered as in-efficient.

![Efficiency Graph](http://example.com/efficiency_graph.png)

Fig. 4 Efficiencies of 50µ-pitch single strips as a function of bias voltages in the n-side (circle) and the p-side (cross) at a threshold of 1fC: (a) non-irradiated, (b) nearly intrinsic region, and (c) the most irradiated region where the depletion voltage is estimated to be 120V.

Efficiencies measured with single strips of 50µ pitch are shown in Fig. 4 for the non-irradiated, the nearly intrinsic region (y=1cm) and the most irradiated region (y=4.2cm) of the irradiated detector. The data are chosen for a threshold close to 1fC: 0.94 fC and 1.03 fC in the n-side and the p-side respectively for the non-irradiated detector, 0.92 fC and 1.00 fC for the irradiated detector. The difference of the n-side and the p-side was due to the difference of amplifier response to
the positive and negative swing of signals. The difference of
the non-irradiated and the irradiated detectors was simply the
difference of threshold voltage setting.

Clearly seen in the figure is the inversion of the side of
high efficiency. In the non-irradiated detector, the p-side has
high efficiency at low bias voltage, while in the most
irradiated region, the n-side has high efficiency. The high
efficiency side is the p-n junction side where the strips are kept
in isolation even for bias voltages below the full depletion of
the silicon bulk. The binary readout is highly efficient well
below the full depletion voltage on the p-n junction side. One
should note, however, that the data was for normal incidence
and there will be charge sharing among neighboring strips
when the beams cross at an angle.

Median pulse height distribution

In threshold scans, the Landau distribution is calculated
from the change in efficiency. A typical example is shown in
Fig. 5 where the threshold scan was carried out for charges up
to 6 fC. In order to estimate the peak of the Landau
distribution, we have fitted the Error function to the efficiency
curves. Since the Landau distribution has a long tail toward
larger values, the fit tends to give a higher peak value than the
peak of the Landau distribution. The fitted Error function has
shown to give a 3% higher peak value using a Monte Carlo
simulation of the Landau distribution [10], which we ignore in
this analysis.

![Efficiency of various pitches](image)

Fig. 5 Efficiencies of various pitches as a function of
threshold at a bias voltage of 130V at the most irradiated
region (y=4.2cm): (a) n-side with strip pitches of 50μ (cross),
100μ (diamond), 150μ (square), and 200μ (circle), and (b) p-
side of 50μ (square) and 100μ (circle).

From the Error function fit, we have obtained the median
pulse height distribution as a function of the bias voltage as
shown in Fig. 6. This is the charge collected on single strips.
At a bias where the pulse height is saturated, the median
charge collected on the p-n junction side is, for the 50μ-pitch
strips, about 3fC and, for 100μ-pitch (i.e., ganging of two
50μ strips), about 3.5fC. No charge loss was observed
between before and after the irradiation (within a precision of
10%). Although the binary electronics had been calibrated by
injecting known charges, the uncertainty of the absolute value
of the charge collected was estimated to be 10% around 4fC,
much smaller for smaller charges, due to the non-linearity of
the amplifier which was designed for low-power. A major
factor of charge-loss is the ballistic deficit which is more
pronounced when the depletion voltage is low, and on the p-
side where the slowly drifting holes are collected.

The collected charge is reflecting the depth of the
depletion which has the characteristic \(\sqrt{V} \) dependence of
the semiconductor. The pulse heights of the y=4.2cm point after
irradiation shows this behavior in the n-side, while before
irradiation this is characteristic for the p-side, another proof
that the n-side is the p-n junction and the bulk was inverted
from n- to p-bulk.

![Median pulse height](image)

Fig. 6 Median pulse height distribution as a function of
the bias voltage: (a) non-irradiated detector, and (b) most
irradiated region (y=4.2cm). The n-side strips are 50μ (square) and 100μ
(circle), and the p-side strips 50μ (cross) and 100μ (diamond).

V. Summary

A n-bulk AC-coupling double-sided silicon strip detector,
designed to have a high tolerance to radiation, was
characterized with fast binary readout electronics in a pion
beam. The detector was tested in the beam before and after proton irradiation. The spot of the irradiation was much smaller than the size of the detector and the irradiation was very non-uniform. To increase the damage, the detector was heated to accelerate the anti-annealing and the effective radiation level was about \(1 \times 10^{14} \text{ p/cm}^2\), which is the expected ultimate fluence level of the ATLAS SCT-strip detectors in the LHC.

The detector was characterized by varying two parameters: bias voltage of the detector and the threshold of the compactor of the binary readout electronics. By scanning the threshold we could obtain the integral of the Landau distribution in the form of efficiency curves, which we differentiated to get the pulse height distribution of the charges collected on single strips.

The irradiated detector has clearly shown the effect of bulk inversion, the move of p-n junction from the p-side to the n-side, both in the efficiency variation with a fixed threshold and in the median pulse height distribution, as a function of bias voltage. In the irradiated region, collected charge in the n-side has shown the characteristic \(\sqrt{V}\) dependence of the depletion depth, while the charge collection on the p-side suffered losses below depletion due to the sharing of charge collection on many strips and the ballistic deficit of slowly drifting holes.

The binary system was proved to be efficient well below the full depletion voltage on the p-n junction side. We have clear evidence that the n-side is highly efficient when the bulk is inverted. Finally, the detector worked without any noticeable failures whose bulk was irradiated highly non-uniformly and changed from nearly intrinsic to heavily inverted along the strips, with the effective fluence of about \(1 \times 10^{14} \text{ p/cm}^2\) at the maximum.

VI. ACKNOWLEDGMENT

The authors wish to thank to the staff and the facilities that provided the proton irradiation. We thank especially M. Frautschi and his collaborators carrying out the TRIUMF irradiation, and personnel at FNAL and Los Alamos National Lab for the fluence measurement. The work is supported in part by DoE and the US-Japan Scientific cooperation program.

VII. REFERENCES

[6] The samples were cooled at -1 to 0 °C during and after the irradiation at TRIUMF. The fluence was measured with Al foil activation. The calculated fluence from the leakage currents was consistent with the fluence.